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Abstract. Solutions of linear elliptic partial differential equations in unbounded

domains can be represented by boundary potentials if they satisfy certain conditions at

infinity. These radiation conditions depend on the fundamental solution chosen for the

integral representation. We prove some basic results about radiation conditions in a

rather general framework.

Fundamental solutions G are considered that are defined only on the complement

of a compact set. It turns out, however, and we present examples for this, that the more

interesting results only hold if G is defined on all of Rn or if it is a Green function for

an exterior boundary value problem.
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1 INTRODUCTION

An essential step in the boundary element method for an elliptic boundary value
problem is the representation of the unknown solution by boundary potentials. As
is well known, even if the domain under consideration is bounded, any analysis of
the integral equation method involves the complementary domain. Therefore one
always has to study boundary potential representations on unbounded domains.

Such integral representations make use of a fundamental solution of the elliptic
differential operator, and their validity is strongly linked with a certain behavior
at infinity: a function will have such a representation only if, in a certain sense, it
behaves at infinity like the fundamental solution chosen to represent it.

There are several classical approaches to the question of characterizing the
behavior at infinity of solutions of elliptic partial differential equations:

• In the widely studied cases of the Laplace or Helmholtz equations, condi-
tions guaranteeing existence and uniqueness of exterior boundary value problems
are known. These conditions allow the construction of Green functions and repre-
sentation formulas (see [5, Chap.II]).

• For strongly elliptic homogeneous operators, weighted Sobolev spaces have
been studied by Nedelec [11, 12] and Giroire [6], which allow variational formu-
lations of exterior problems, and as a consequence, representation formulas by
boundary potentials.

• In [10], Nazarov and Plamenevskii study spaces with asymptotics at infinity
and discuss the validity of Green formulas and variational formulations. Radiation
conditions appear as conditions for obtaining well-posed problems.

Here we concentrate on the question of validity of the representation by bound-
ary potentials in exterior domains. We can consider rather general elliptic opera-
tors having a fundamental solution, and we can also consider general fundamental
solutions, including Green functions for exterior domains. This gives a lot of flex-
ibility in the choice of the behavior at infinity (see the examples in section 7).

For the behavior at infinity guaranteeing the validity of the representation
formulas in the exterior domain, we choose the expression “radiation condition”.
The study of radiation conditions in this generalized sense was started in [3, 4].

In this paper, we prove some general results on representation formulas and
radiation conditions. In particular, we prove for fundamental solutions in Rn :

- Every fundamental solution satisfies its own radiation condition;

- If a solution can be represented by any combination of boundary or volume
potentials, then it can be represented by its own Cauchy data on a given surface;
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- There is a one-to-one correspondence between radiation conditions and funda-
mental solutions for any given elliptic differential operator.

We generalize these results to the case of Green functions of an exterior domain.

Next, we consider boundary conditions covering the elliptic differential oper-
ator. It is well known that such an elliptic boundary value problem induces a
Fredholm operator in the interior bounded domain. With the help of the represen-
tation formulas, we prove that we also obtain a Fredholm operator in the exterior
unbounded domain on spaces of functions satisfying the radiation condition at
infinity.

We discuss many examples, some of them well known, some less. We see
in particular that the general results above are no longer true in general if the
fundamental solution is not defined on all of Rn .

2 FUNDAMENTAL SOLUTIONS AND GREEN FORMULAS

Throughout the paper, we consider the following geometric situation:

K a compact set in R
n, D its complement R

n \ K.

We assume that D is connected and D will be the underlying domain of everything
we want to consider. In fact the case when D = R

n is the most important case
for us, but the possibility of considering other underlying domains allows to treat
for example the Green function related to the domain D .

The basic boundary on which we will work is denoted Γ . We assume that Γ
is a bounded C ∞ manifold of dimension n − 1 and that Γ is the boundary







of a bounded open set Ω− ⊃ K

and of an unbounded connected domain Ω+ = Rn \ Ω−.

We refer to Ω− as the interior and to Ω+ as the exterior domain.

Our purpose is to study representation formulas in Ω+ by boundary potentials
on Γ . Let

L(x, ∂x) =
∑

|α| ≤ 2m

aα(x) ∂α
x

be a properly elliptic differential operator with scalar coefficients

aα ∈ C ∞(D).
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We denote by
L′(x, ∂x) =

∑

|α| ≤ 2m

(−1)|α|∂α
x aα(x)

the formal transpose of L .

The two main assumptions concern the availability of a fundamental solution
and of a Green formula.

A fundamental solution of L in D is a distribution G ∈ D ′(D×D) satisfying
{

∀y ∈ D : L(x, ∂x) G(x, y) = δy(x)
∀x ∈ D : L′(y, ∂y) G(x, y) = δx(y).

(2.1)

It is well known that fundamental solutions always exist if L has constant coeffi-
cients. At the opposite, there are elliptic operators without fundamental solutions
[7]. Furthermore the following properties are well known.

Lemma 2.1 (i) G ∈ C ∞
(

{(x, y) ∈ D × D | x 6= y}
)

.

(ii) G(x, y) = O (|x − y|2m−n log |x − y|) as |x − y| → 0 . Hence

∀x ∈ D : G(x, ·) ∈ L1
loc(D).

(iii) Let G1 be a fundamental solution for L in D . Then G2 ∈ D ′(D×D) is another

fundamental solution for L in D if and only if

G2 = G1 + H

where H ∈ C ∞(D × D) satisfies

∀(x, y) ∈ D × D : L(x, ∂x) H(x, y) = L′(y, ∂y) H(x, y) = 0.

(iv) Let G denote the integral operator with kernel G(x, y) :

Gf(x) =

∫

D

G(x, y) f(y) dy.

Then G as a continuous operator C ∞
0 (D) → C ∞(D) satisfies

∀f ∈ C ∞
0 (D) : LGf = f

∀u ∈ C ∞
0 (D) : GLu = u.

Moreover, G has a continuous extension on the space E ′(D) of compactly supported

distributions G : E ′(D) → D ′(D) and satisfies

∀f ∈ E ′(D) : LGf = f (2.2a)

∀u ∈ E ′(D) : GLu = u. (2.2b)
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Note that (??) means in particular that there are no non-trivial solutions of
Lu = 0 in D with compact support.

A Green formula for the operator L in a bounded domain Ω such that Ω ⊂ D

and with C ∞ boundary ∂Ω consists of two Dirichlet systems [9] of order 2m on
∂Ω :

(Bj)j = 0,...,2m−1
and (Q2m−1−j)j = 0,...,2m−1

such that

∀u, v ∈ C ∞(Ω) :

∫

Ω

(

Lu v − u L′v
)

dx =
2m−1
∑

j = 0

∫

∂Ω

Bju Qjv ds. (2.3)

Thus Bj and Q2m−1−j are differential operators on ∂Ω with C ∞ coefficients
whose total order is j and whose order with respect to the normal derivative is
also j . It is known [9] that to any choice of a Dirichlet system (Bj)j = 0,...,2m−1

there exists a complementary Dirichlet system (Q2m−1−j)j =0,...,2m−1
such that

(2.3) holds.

One standard consequence of Green’s formula is the representation formula in
a bounded domain:

Theorem 2.2 Under the above assumptions, one has

∀u, f ∈ C ∞(Ω) with f = Lu in Ω, ∀x ∈ Ω :

u(x) =

∫

Ω

G(x, y) f(y) dy +
2m−1
∑

j = 0

∫

∂Ω

Bju(y) Qj(y, ∂y)G(x, y) ds(y).

(2.4)

Proof. For the proof, one uses
〈

Lu, v
〉

−
〈

u, L′v
〉

= 0 (2.5)

which is true, by the definition of L′ , for any u ∈ C ∞
0 (D) and for any v ∈ D ′(D) ,

together with (2.3): By combining (2.5) and (2.3), we see that (2.3) remains true
for any u ∈ C ∞(Ω) and any distribution v ∈ D ′(D) whose singular support does
not intersect ∂Ω . For any x 6∈ ∂Ω , such a distribution is given by

v(y) = G(x, y).

Using L′v = δx , one obtains (2.4).

Remark 2.3 The above proof shows also that under the hypotheses of the theorem,
one has ∀x ∈ D \ Ω :

∫

Ω

G(x, y) f(y) dy +
2m−1
∑

j =0

∫

∂Ω

Bju(y) Qj(y, ∂y)G(x, y) ds(y) = 0.
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3 RADIATION CONDITIONS

Let us now study the representation formula in the unbounded domain Ω+ . That
is, we look for conditions on the function u such that

u(x) =

∫

Ω+

G(x, y) f(y) dy +
2m−1
∑

j = 0

∫

Γ

Bju(y) Qj(y, ∂y)G(x, y) ds(y) (3.1)

holds for x ∈ Ω+ . As above, we write f = Lu in Ω+ . First of all, it is clear that
(3.1) holds if u ∈ C ∞(Ω+) has compact support in Ω+ .

Secondly, let for ρ sufficiently large,

Ωρ := Ω+∩ {x ∈ R
n | |x| < ρ}, Γρ := {x ∈ R

n | |x| = ρ}.

Then (2.4) holds for the bounded domain Ωρ :

u(x) =

∫

Ωρ

G(x, y) f(y) dy +
2m−1
∑

j =0

∫

Γ

Bju(y) Qj(y, ∂y)G(x, y) ds(y)

−
2m−1
∑

j = 0

∫

Γρ

Bju(y) Qj(y, ∂y)G(x, y) ds(y).

(3.2)

Here we used ∂Ωρ = Γ∪Γρ and we chose the signs for the boundary integrals such
as to remember the importance of the orientation of the boundary: If {Bj, Qj}
are complementary Dirichlet systems for L on a part Γ0 of a domain Ω , then
{−Bj , Qj} are complementary Dirichlet systems for L on Γ0 if one considers
Green’s formula in a domain whose boundary contains Γ0 , but lies on the other
side of Γ0 as Ω . But, strictly speaking, this sign has no meaning, since the
operators Bj and Qj on Γρ are a priori different from those on Γ , their only
relation being the the validity of Green’s formula in Ωρ :

∀u, v ∈ C ∞(Ωρ) :

∫

Ω

(

Lu v − u L′v
)

dx =

2m−1
∑

j =0

(

∫

Γ

Bju Qjv ds −

∫

Γρ

Bju Qjv ds

)

.
(3.3)

The Green formula (2.3) shows in particular that the quantity

J (u, v; ∂Ω) :=
2m−1
∑

j =0

∫

∂Ω

Bju Qjv ds (3.4)

does not depend on the choice of the complementary Dirichlet systems {Bj, Qj}
on ∂Ω , if u and v are C ∞ in some one-sided neighborhood of ∂Ω in Ω . It
depends, however, on the orientation of ∂Ω .
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Likewise, (3.3) shows that J (u, v; Γρ) does not depend on the choice of the
complementary Dirichlet systems {Bj, Qj} on Γρ provided the Green formula
(3.3) is satisfied.

The following definition is therefore independent on the choice of {Bj, Qj} on
Γρ for ρ sufficiently large.

Definition 3.1 Let u ∈ C ∞(Ω+) .
We say that u satisfies the radiation condition (RG) if

(RG) ∀x ∈ Ω+ : lim
ρ→∞

2m−1
∑

j =0

∫

Γρ

Bju(y) Qj(y, ∂y)G(x, y) ds(y) = 0.

The reason of this definition is immediately clear if one compares (3.1) and
(3.2).

Proposition 3.2 Let u ∈ C ∞(Ω+) with Lu = f ∈ C ∞
0 (Ω+) . Then u is represented

by formula (3.1) if and only if u satisfies the radiation condition (RG) .

A simple consequence of (3.2) is the following: If Lu(x) = 0 for |x| > ρ0 ,
then the function

pG
u (x) := J (u, G(x, ·); Γρ) for ρ > ρ0 and ρ > |x| (3.5)

does not depend on ρ . It is therefore well defined for any x ∈ D :

pG
u ∈ C ∞(D) and ∀x ∈ D, LpG

u (x) = 0.

So condition (RG) is equivalent to the vanishing of pG
u in Ω+ .

4 FUNDAMENTAL SOLUTIONS ON THE WHOLE SPACE

Here we consider the case

K = ∅, that is D = R
n.

In this case, the class of functions satisfying (RG) allows several useful equivalent
characterizations.

The following theorem shows that the class of functions u such that Lu = 0
outside a bounded set and satisfying the radiation condition (RG) is precisely the
class of functions given either as volume potentials or as boundary potentials using
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the fundamental solution G . We introduce the following multilayer potentials for
densities defined on a surface Γ : For ϕ ∈ L1(Γ) :

∀x ∈ R
n \ Γ, Qjϕ(x) :=

∫

Γ

ϕ(y) Qj(y, ∂y)G(x, y) ds(y).

The natural extension to ϕ ∈ D ′(Γ) can be written as

Qjϕ(x) :=
〈

ϕ, QjG(x, ·)
〉

.

Theorem 4.1 Let G a fundamental solution for L on D = Rn . For a distribution

u ∈ D ′(Rn) , the following assertions are equivalent:

(i) There is a ρ0 > 0 such that Lu = 0 for |x| > ρ0 and u satisfies condition (RG) .

(ii) There is a ρ1 > 0 and f ∈ E ′(Rn) such that u = Gf in |x| > ρ1 .

(iii) There is f ∈ E ′(Rn) such that u = Gf in Rn .

(iv) There is a smooth closed surface Γ with exterior Ω+ such that ∀x ∈ Ω+ :

u(x) =
2m−1
∑

j =0

∫

Γ

Bju(y) Qj(y, ∂y)G(x, y) ds(y). (4.1)

(v) There is a bounded set such that for any smooth closed surface Γ containing it in

its interior, (4.1) holds.

(vi) There is a smooth closed surface Γ with exterior Ω+ and 2m functions ϕj ∈
C ∞(Γ) such that:

∀x ∈ Ω+ : u(x) =
2m−1
∑

j =0

∫

Γ

ϕj(y) Qj(y, ∂y)G(x, y) ds(y). (4.2)

(vii) There is a smooth closed surface Γ with exterior Ω+ and 2m distributions

ϕj ∈ D ′(Γ) such that:

u =
2m−1
∑

j = 0

Qjϕj in Ω+. (4.3)

Proof. We show the chain of implications (ii) ⇒ (iii) ⇒ (i) ⇒ (v) ⇒ (iv) ⇒
(vi) ⇒ (vii) ⇒ (ii) . Some of these, namely (v) ⇒ (iv) ⇒ (vi) ⇒ (vii) , are trivial.
The equivalence of (i) and (v) was seen above (Proposition 3.2).

(ii) ⇒ (iii) . Suppose u and f as in (ii). Let u0 = u − Gf . Then u0 has
compact support and therefore u0 = GLu0 . Let f1 = f + Lu0 ∈ E ′(Rn) . It
follows u = u0 + Gf = Gf1 .

(iii) ⇒ (i) . If u = Gf with f ∈ E ′(Rn) , we have Lu = 0 outside supp f , thus
for |x| > ρ0 for some ρ0 . Let us first assume that f ∈ C ∞

0 (Rn) . For ρ > ρ0 ,
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the representation formula (2.4) holds in the ball Bρ with radius ρ . This can be
written as

u(x) = Gf(x) − J (u, G(x, ·); Γρ).

Since u = Gf , we find J (u, G(x, ·); Γρ) = 0 .
Let now f ∈ E ′(Rn) with supp f ⊂ Bρ0

. We can approximate f in E ′ by
(fk)k∈N

with fk ∈ C ∞
0 (Rn) , supp fk ⊂ Bρ0

. For ρ > ρ0 , Gfk converges to
u = Gf uniformly with all its derivatives on Γρ . Hence, once again we find

J (u, G(x, ·); Γρ) = 0.

Thus u satisfies (RG) .

(vii) ⇒ (ii) . For ϕj ∈ D ′(Γ) , let fj ∈ E ′(Rn) be the distribution with support
on Γ defined by

∀χ ∈ C ∞(Rn) :
〈

fj , χ
〉

=
〈

ϕj, Qjχ
∣

∣

∣

Γ

〉

.

Then Qjϕj = Gfj , and by assumption we have

u = G
(

∑

j

fj

)

in Ω+.

Thus (ii) is satisfied.

Remark 4.2 The Calderón operator C + for Ω+ corresponding to the Dirichlet
systems {Bj} and {Qj} is classically defined by the mapping

C ∞(Γ)2m ∋
(

ϕ0, . . . , ϕ2m−1

)

7−→
(

B0u, . . . , B2m−1u
)∣

∣

∣

Γ
∈ C ∞(Γ)2m

where u =
2m−1
∑

k = 0

Qkϕk in Ω+.

It is well known [1], [4], that this is a matrix of pseudodifferential operators of
orders (j−k)

j,k = 0,...,2m−1
. From Theorem 4.1 — especially the implication (vi) ⇒

(v) , we see that (C +)2 = C + and that C + is a projector onto the space of traces
(Bju)

j
of solutions u of Lu = 0 in Ω+ satisfying (RG) .

Remark 4.3 For fixed y0 , if we consider the right hand side f = δy0
, one has

G(·, y0) = Gf . Therefore the fundamental solution G(·, y0) satisfies the radiation
condition (RG) . It can therefore be represented by (4.1):

G(x0, y0) = J (G(·, y0), G(x0, ·); Γ)

if y0 is in the interior Ω− and x0 in the exterior Ω+ of the closed surface Γ .
The radiation condition (RG) gives directly

J (G(·, y0), G(x0, ·); Γ) = 0 (4.4)
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if x0 and y0 are both in the interior domain Ω− . Of course, the representation
formula (2.4) in the interior domain Ω− yields (4.4) again if x0 and y0 are both
in the exterior domain Ω+ .

Here are a few important consequences of Theorem 4.1.

Corollary 4.4 For a distribution u ∈ D ′(Rn) with Lu ∈ E ′(Rn) there holds

u satisfies (RG) ⇐⇒ u = GLu.

Corollary 4.5 The problem

Lu = 0 in all R
n and u satisfies (RG)

has only the trivial solution u = 0 .

Corollary 4.6 Let G and G̃ be two fundamental solutions for L in Rn . If (RG)
implies (RG̃) , then G = G̃ .

Proof. The difference u = G(·, y0) − G̃(·, y0) satisfies Lu = 0 in Rn and the
condition (RG̃) . Hence u = 0 .

5 GREEN FUNCTIONS

For D 6= Rn , the results of the previous section are not true, in general. In partic-
ular, functions having a representation as a multilayer potential cannot always be
represented by their own Cauchy data, and the corresponding Calderón operator
is not a projection operator, in general. But these results do remain true if G

is a Green function for L in D . To define this notion in our general setting, we
introduce the following assumptions:

α) The compact K is the closure of an open set with smooth boundary ∂K =
∂D .

β) There are two closed subspaces V and V ′ of the space of functions C ∞

in a neighborhood of ∂D in D which are orthogonal with respect to the
bilinear form J (3.4):

∀u ∈ V, ∀v ∈ V ′ : J (u, v; ∂D) = 0. (5.1)

The fundamental solution G satisfies the boundary conditions corresponding
to V and V ′ in both variables:

∀y ∈ D : G(·, y) ∈ V ; ∀x ∈ D : G(x, ·) ∈ V ′. (5.2)
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γ) There holds the following trace lifting property: For any u ∈ C ∞(D) , there
exists u0 ∈ C ∞

0 (D) such that u − u0 ∈ V .

Typical examples of such spaces V and V ′ are defined by m boundary con-
ditions: The set {0, . . . , 2m − 1} is partitioned into 2 sets:

{0, . . . , 2m − 1} = M1 ∪ M2, M1 ∩ M2 = ∅

and the spaces V and V ′ are defined as:

V = {u | ∀j ∈ M1 : Bju = 0 on ∂D}, V ′ = {u | ∀j ∈ M2 : Qju = 0 on ∂D}.

For example V = V ′ can correspond to Dirichlet conditions, and if L is selfad-
joint, Neumann conditions can also correspond to some V = V ′ .

If Γ is a smooth closed surface containing K in its interior Ω− , the conditions
(5.2) imply that in the representation formula (2.4) for u ∈ V in the domain
Ω = Ω− ∩ D whose boundary is ∂Ω = ∂D ∪ Γ , no boundary integral over ∂D

appears. In particular, if u has a compact support, one can choose a surface Γ
surrounding the support of u and one obtains the following lemma

Lemma 5.1 Let u ∈ C ∞
0 (D) , u ∈ V . Then

u = GLu.

Let us note that, because of (5.2), G(x, ·) ∈ C ∞(D \ {x}) ; therefore the operator
f → Gf has a natural extension to f ∈ E ′(Rn) with supp f ⊂ D .

The statement corresponding to Theorem 4.1 is

Theorem 5.2 Let α) and β) above be satisfied. For a distribution u ∈ D ′(D)
satisfying u ∈ V , the following assertions are equivalent:

(i) Lu has compact support in D and u satisfies condition (RG) .

(ii) There is a ρ1 > 0 and f ∈ E ′(D) such that u = Gf in |x| > ρ1 .

(iii) There is f ∈ E ′(Rn) with sing supp f ⊂ D such that u = Gf in D .

(iv) There is a smooth closed surface Γ whose exterior Ω+ is a subdomain of D such

that:

∀x ∈ Ω+ : u(x) = J (u, G(x, ·); Γ). (5.3)

(v) There is a bounded set such that for any smooth closed surface Γ containing it in

its interior, (5.3) holds.
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(vi) There is a smooth closed surface Γ with exterior Ω+ and 2m functions ϕj ∈
C ∞(Γ) such that:

u =
2m−1
∑

j = 0

Qjϕj in Ω+. (5.4)

(vii) There is a smooth closed surface Γ with exterior Ω+ and 2m distributions

ϕj ∈ D ′(Γ) such that (5.4) holds.

Proof. In order to see that the proof of Theorem 4.1 is working here, we have
to note the following points:

Because of (5.2), any distribution represented either as Gf with f ∈ E ′(D) or
as a multilayer surface potential as in (vi) or (vii), satisfies also u ∈ V .

In the implication (ii) ⇒ (iii) , the distribution u0 will now have compact support
in D — but not in D in general. But since it satisfies u0 ∈ V , the relation
u0 = GLu0 still holds (Lemma 5.1).

In the implication (iii) ⇒ (i) , one has for Lu = f ∈ C ∞(D ∩ Bρ) the represen-
tation formula in D ∩ Bρ :

u(x) = Gf(x) − J (u, G(x, ·); Γρ).

Again, no boundary term from ∂D appears.

All other arguments remain the same as above.

Corollary 5.3 For any fixed y0 ∈ D , G(·, y0) satisfies (RG) .

Corollary 5.4 The problem “ Lu = 0 in D , u satisfies u ∈ V and (RG) ” has

only the trivial solution u = 0 .

Corollary 5.5 Let G and G̃ be two fundamental solutions for L in D . If both G

and G̃ satisfy (5.2) with the same spaces V and V ′ , and if (RG) implies (RG̃) , then

G = G̃ .

So far we have considered representation formulas for u in the exterior Ω+ of
a closed surface Γ which is disjoint from the boundary ∂D where the boundary
conditions (spaces V and V ′ ) are considered. It is obvious that for the validity
of the radiation condition (RG) for u , the condition u ∈ V has no importance.
Thus we have

Theorem 5.6 Let u ∈ C ∞(D) satisfy Lu = f ∈ C ∞
0 (D) and condition (RG) . Then

∀x ∈ D : u(x) = Gf(x) + J (u, G(x, ·); ∂D). (5.5)
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Proof. Choose ρ sufficiently large. Then the representation formula between
∂D and Γρ is

u(x) = Gf(x) + J (u, G(x, ·); ∂D) − J (u, G(x, ·); Γρ).

But J (u, G(x, ·); Γρ) = 0 for ρ > |x| if u satisfies (RG) .

If we make the supplementary assumption γ) about a lifting of traces, for
the equivalence of the assertions of Theorem 5.2 with the exception of (iii), the
condition u ∈ V can be dropped.

Corollary 5.7 Let u0 and f ∈ C ∞
0 (D) be given. Then there exists a unique solution

of the exterior boundary value problem

Lu = f in D; u − u0 ∈ V ; u satisfies (RG). (5.6)

Moreover u ∈ C ∞(D) and there holds the Poissontype representation

u(x) = Gf(x) + J (u0, G(x, ·); ∂D).

Proof. The uniqueness follows from Corollary 5.4. Existence follows from the
explicit solution formula for u :

u = u0 + G(f − Lu0).

The Poisson-type representation is then a consequence of Theorem 5.6.

6 ELLIPTICITY OF THE EXTERIOR PROBLEM

In this section, we show that the radiation condition (RG) is an elliptic boundary
condition in a certain sense. The classical notion of elliptic boundary conditions
(see [9], for example) means in a bounded domain that the resulting operators are
Fredholm operators between suitable Sobolev spaces.

In an unbounded domain, in general, conditions at infinity will be required so
that the resulting operator is Fredholm, and we can call such conditions elliptic.
Consider, for instance, the exterior Dirichlet problem: It is well known and easy
to see that the operator

u 7→ ((−∆ + 1)u, u
∣

∣

∣

Γ
) : H2(Ω+) → L2(Ω+) × H3/2(Γ)

is an isomorphism, whereas the operator

u 7→ (−∆u, u
∣

∣

∣

Γ
) : H2(Ω+) → L2(Ω+) × H3/2(Γ)
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is not a Fredholm operator. In the latter case, one has to consider conditons
at infinity that are different from those implied by the standard Sobolev spaces
Hs(Ω+) . For the example of the Laplace operator, this can be done by using
weighted Sobolev spaces, see [11, 12]. This approach is, however, restricted to
homogeneous strongly elliptic operators, and is not applicable to the Helmholtz
equation, for example. On the other hand, our radiation condition (RG) requires
that the homogeneous differential equation Lu = 0 is satisfied in a neighborhood
of infinity. Thus we shall consider only the homogeneous differential equation. The
corresponding operator which we want to be Fredholm is then given by traces of
u on Γ .

We will show now that the radiation condition (RG) is an elliptic boundary
condition in this sense. To this purpose, we assume that we are given on our
C ∞ manifold Γ , whose exterior is the domain Ω+ , a set of boundary operators
R = (R1, . . . , Rm) that defines elliptic boundary conditions on Γ . That is, R

satisfies the usual [9] normality and covering conditions of Shapiro-Lopatinski.

We show that the exterior boundary value problem

Lu = 0 in Ω+; Ru = g; u satisfies (RG). (6.1)

is elliptic. Let

L+ = {u ∈ C ∞(Ω+) | Lu = 0 in Ω+; u satisfies (RG)}

and H(Γ) = C ∞(Γ)m .

We will first give a formulation for C ∞ regularity and afterwards, as an easy
consequence, the corresponding result for finite regularity measured by a Sobolev
index s ∈ R .

Theorem 6.1 Let either D = Rn or G be a Green function for D in the sense of §5,

where Ω+ ⊂ D . Then the mapping

γR : L+ −→ H(Γ), γRu := Ru
∣

∣

∣

Γ

has finitedimensional kernel and cokernel.

Proof. We compare the problem on the unbounded domain Ω+ with one on a
bounded domain Ω# = Ω+∩Ω#

0 , where Ω#
0 is some large ball with boundary Γ# .

On Γ# , we choose Dirichlet conditions R# = (1, ∂n, . . . , ∂m−1
n ) and we denote by

γ# the restriction operator on Γ# .

We also introduce nonlocal boundary conditions on Γ# :

γ#R
#
Γ u = γ#R#

(

2m−1
∑

j = 0

∫

Γ

Bju(y) Qj(y, ∂y)G(·, y) ds(y)
)

.
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Since Γ ∩ Γ# = ∅ , the traces γ#R
#
Γ are defined by integral operators with

C ∞(Γ# × Γ) kernels. Let

L# = {u ∈ C ∞(Ω
#
) | Lu = 0 in Ω#; γ#(R# − R

#
Γ )u = 0}.

Since the boundary conditions in L# are given by a regularizing perturbation of
the elliptic conditions γ#R# , the standard elliptic theory shows that the mapping

γR : L# −→ H(Γ)

has a finite-dimensional kernel N#
R and a closed range γRL# with finite codi-

mension in H(Γ) .

We will complete the proof by showing that the kernel N+
R of the mapping

γR : L+ −→ H(Γ)

and its range γRL+ satisfy
N+

R ⊂ N#
R (6.2)

and
γRL+ + K# ⊃ γRL#, (6.3)

where K# ⊂ H(Γ) is some finite-dimensional space.

Let u be in L+ . Then u satisfies Lu = 0 in Ω+ and the condition (RG) . It
can therefore be represented by its Cauchy data on Γ , and therefore

γ#R#u = γ#R
#
Γ u,

hence u
∣

∣

∣

Ω#
∈ L# . Thus N+

R ⊂ N#
R .

For (6.3), we give the proof in the case of D = Rn , and we leave the case of a
Green function of D 6= Rn to the reader (one uses Corollary 5.7). Let g ∈ γRL# :
g = γRu# with u# ∈ L# . We define u on Ω+ by

u(x) = J (u#, G(x, ·); Γ)

and u0 = u# − u . Since u satisfies Lu = 0 and (RG) , we have also

u(x) = J (u, G(x, ·); Γ) in Ω+

and therefore
J (u0, G(x, ·); Γ) = 0 in Ω+.

The representation formula for u0 in Ω# is thus

u0(x) = J (u0, G(x, ·); Γ) − J (u0, G(x, ·); Γ#)
= −J (u0, G(x, ·); Γ#).
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This formula shows that u0 has a continuation as a solution of Lu = 0 in all of
Ω#

0 . In addition, γ#R#u0 = 0 , because γ#R
#
Γ u0 = γ#R#J (u0, G; Γ) = 0 and

u0 = u# − u
∣

∣

∣

Ω#
∈ L# . Altogether, we have g = γRu + γRu0 where u ∈ L+ ,

and u0 belongs to the finite-dimensional space of solutions of the homogeneous
Dirichlet problem in Ω#

0 :

Lu0 = 0 in Ω#
0 ; γ#R#u0 = 0.

Thus (6.3) is shown.

For the analogous result in Sobolev spaces, we introduce the space:

Ls
+ = {u ∈ Hs

loc(Ω
+) | Lu = 0 in Ω+; u satisfies (RG)}.

Let µ1, . . . , µm ∈ {0, . . . , 2m − 1} be the orders of R1, . . . , Rm . The trace space
on Γ is then

Hs(Γ) =
m
∏

j = 1

Hs−µj−1/2(Γ).

It is well known [1] that

γR : Ls
+ −→ Hs(Γ), u 7−→ Ru

∣

∣

∣

Γ

is well defined and continuous for any s ∈ R .

Theorem 6.2 Let either D = Rn or G be a Green function for D in the sense of §5,

where Ω+ ⊂ D . Then the mapping

γR : Ls
+ −→ Hs(Γ)

has finitedimensional kernel and cokernel.

The proof is the same as for Theorem 6.1, and it shows in fact that this kernel
and cokernel are independent of s and the same as in the C ∞ case.

7 EXAMPLES

7.a Operators with invertible symbol

We assume here that D = Rn and that L has constant coefficients. If the symbol
σ(L) does not vanish on Rn , then there is a unique tempered fundamental solution
given by Fourier transformation:

G(x, y) = F−1
( 1

σ(L)(ξ)

)

(x − y).
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The corresponding radiation condition can be expressed simply by requiring that

u ∈ S ′(Rn). (7.1)

In fact, if u ∈ S ′(Rn) with Lu = f ∈ E ′(Rn) , one has σ(L)(ξ) Fu(ξ) = Ff(ξ) ,
hence u = Gf . On the other hand any distribution u = Gf with f ∈ E ′(Rn)
decays exponentially at infinity. Thus an equivalent formulation of (RG) is in this
case:

∃ ε > 0 such that u(x) = O
(

e−ε|x|
)

as |x| → ∞. (7.2)

Of course there are many other equivalent formulations between (7.1) and (7.2).

As the well-known example of the operator

L = −∆ + 1 in R
3

shows, besides the tempered fundamental solution

G0(x, y) =
e−|x−y|

4π|x − y|
,

there exist exponentially growing fundamental solutions

Gt(x, y) =
1

4π|x − y|

(

t e+|x−y| + (1 − t) e−|x−y|
)

that give rise to different conditions (RGt
) for each t ∈ C . These seem to have

no simple characterization in terms of asymptotics at infinity.

7.b Homogeneous operators

We assume again D = Rn and L has constant coefficients, so we can choose G

as a convolution kernel in S ′(Rn) . For any u with Lu = 0 in Ω+ there holds
the representation formula, cf (3.5):

u(x) = u0(x) − pG
u (x) where







u0(x) = J (u, G(x, ·); Γ) satisfies (RG)

pG
u satisfies LpG

u = 0 on Rn.

If L is homogeneous and u ∈ S ′(Rn) , this implies that pG
u is a polynomial. Its

vanishing is equivalent to (RG) , and this is therefore a condition on the expansion
of u at infinity (whose terms behave as products of log |x| and powers of |x| ).
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7.c The Laplace operator

(i) The standard fundamental solution in R2 . For D = R2 and L = ∆ :

G0(x, y) = −
1

2π
log |x − y|.

The corresponding condition (RG0
) is

∃ c ∈ C : u(x) = c log |x| + O (1) as |x| → ∞.

In connection with integral equations methods, this condition has been used for a
long time instead of the more classical condition of boundedness at infinity [8].

Corollary 4.6 shows that there exists no fundamental solution G̃ on all of
R2 such that its radiation condition (RG̃) characterizes the class of harmonic
functions vanishing at infinity.

(ii) Fundamental solutions on R2 \ {0} . We examine three families of fun-
damental solutions on R2 \ {0} . Of course they cannot be considered as Green
functions. Thus we can expect that the self-representation will not always occur.

Example 1. Let

Gt(x, y) = G0(x, y) − t G0(x, 0) = G0(x, y) +
t

2π
log |x|.

For all t ∈ C , this is a fundamental solution on R2 \ {0} . By using Remark 4.3
for G0 , it is easy to verify that for |x0| , |y0| < ρ one has

J (Gt(·, y0), Gt(x0, ·); Γρ) = −
t2 − t

2π
log |x0|.

This means that

- for t 6= 0 , the condition (RGt
) is equivalent to

u(x) = O (1) as |x| → ∞;

- the fundamental solution Gt is representable in Ω+ by its own Cauchy data —
and therefore the conclusions of Theorem 4.1 are true with K = {0} — if and
only if t = 0 or t = 1 .

Thus

G1(x, y) = −
1

2π
log

|x − y|

|x|
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is suitable for the representation of harmonic functions vanishing at infinity if
0 6∈ Ω+ .

Example 2. Let G̃t(x, y) = Gt(y, x) . Then one has

J (G̃t(·, y0), G̃t(x0, ·); Γρ) = −
t − t2

2π
log |y0|.

Thus, once again, the conclusions of Theorem 4.1 are valid in D = R2 \{0} if and
only if t = 0 or t = 1 .

From the relation
pGt

u (x) = pG0

u (x) − t pG0

u (0)

one obtains that (RG0
) implies (RG̃t

) for any t . In fact, (RG0
) is equivalent to

(RG̃t
) for t 6= 1 . For t = 1 , (RG̃1

) is equivalent to

∃ c, d ∈ C : u(x) = c log |x| + d + O (1) as |x| → ∞.

Example 3. By symmetrisation of G1 , one obtains a fundamental solution

G(x, y) = −
1

2π
log

|x − y|

|x| |y|

for −∆ on R2 \ {0} whose condition (RG) is equivalent to the boundedness of
the harmonic function at infinity.

(iii) Green functions for the exterior of a circle. A Green function
for the Dirichlet problem in the exterior Dρ of a circle of radius ρ is obtained by
the classical reflexion method. We set

x∗ =
ρ2

|x|2
x. (7.3)

Then a Green function is given by

Gρ,0(x, y) = −
1

2π
log

ρ

|x|

|x − y|

|x∗ − y|
.

Gρ,0 is symmetric as can be seen by the complex writing

Gρ,0(x, y) = −
1

2π
log

ρ|x − y|

|ρ2 − x̄y|
.

The corresponding radiation condition is the boundedness at infinity.
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For any t ∈ C , the following is also a Green function for Dρ :

Gρ,t(x, y) = Gρ,0(x, y) + t log
|x|

ρ
log

|y|

ρ
.

For every t , the results of §5 hold. In particular, conditions (RGρ,t
) are different

for different t , and for each t the exterior Dirichlet problem

∆u = 0 in Dρ, u = g on Γρ

has a unique solution satisfying (RGρ,t
) .

(iv) The standard fundamental solution in R
n . For L = −∆ and n ≥

3 :
G0(x, y) = cn |x − y|2−n.

It corresponds to harmonic functions vanishing at infinity. By Corollary 4.6, there
does not exists any fundamental solution on all of Rn corresponding to the class
of harmonic functions bounded at infinity. However, the latter class corresponds
to (RG1

) for

G1(x, y) = cn

(

|x − y|2−n − |y|2−n
)

on R
n \ {0}.

(v) Green functions for the exterior of a sphere. In R3 , the following
is a Green function for the Dirichlet problem in the exterior of a sphere of radius
ρ :

Gρ,0(x, y) =
1

4π

(

1

|x − y|
−

ρ

|x|

1

|x∗ − y|

)

where x∗ is defined as in (7.3). Condition (RGρ,0
) is equivalent to the vanishing

at infinity. For every t

Gρ,t(x, y) = Gρ,0(x, y) + t

(

1 −
ρ

|x|

)(

1 −
ρ

|y|

)

is also a Green function.

7.d Helmholtz equation

For the operator L = ∆ + k2 , k > 0 , in Rn , the classical outgoing Sommerfeld
radiation condition

(∂|x| − ik)u(x) = O

(

|x|−(n−1)/2
)

as |x| → ∞ (7.4)
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is equivalent to the condition (RG+
) for the fundamental solution

G+(x, y) =
1

4i

(

k

2π|x − y|

)
n
2
−1

H
(1)
n
2
−1(k|x − y|). (7.5)

To see this, one first has to show that (7.4) implies
∫

Γρ
|u|2 ds = O (1) as ρ → ∞ ,

see [2].

Thus in R3 , the standard outgoing and incoming fundamental solutions

G
−
+ (x, y) =

1

4π|x − y|
e −

+ ik|x−y|

correspond to the outgoing and incoming Sommerfeld conditions

(∂|x| +− ik)u(x) = O

(

|x|−1
)

.

On the other hand, the fundamental solution

G(x, y) =
1

2

(

G+(x, y) + G−(x, y)
)

=
cos k|x − y|

4π|x− y|

for ∆ + k2 in R3 does not allow a simple description of the asymptotic behavior
of the functions u satisfying (RG) , or so it appears.

7.e Bilaplacian

For the operator L = ∆2 in R2 , we look at the fundamental solution

G(x, y) =
1

8π
|x − y|2 log |x − y|.

The condition (RG) is given by

∃ a, b, b′, c, d, d′ ∈ C,

u(x) = a|x|2 log |x| + (bx + b′x̄)(2 log |x| + 1)

+ c(log |x| + 1) +
1

|x|2
(dx2 + d′x̄2) + O (1) , as |x| → ∞.

Here we used the complex variable x ∈ C ≡ R2 .

For the operator L = ∆2 −k4 , k > 0 , in Rn , a fundamental solution is given
by

G =
1

2k2
(G1 − G2),
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where G1 is a fundamental solution for ∆−k2 and G2 is a fundamental solution
for ∆ + k2 . This follows from ∆2 − k4 = (∆ − k2)(∆ + k2) . If we choose G1

exponentially decaying and G2 as the standard outgoing fundamental solution
G+ (7.5), then the radiation condition is the same as for the Helmholtz equation:

(∂|x| − ik)u(x) = O

(

|x|−(n−1)/2
)

as |x| → ∞. (7.6)

To see that (7.6) is sufficient, suppose u ∈ D ′(Rn) satisfies Lu = f ∈ E ′(Rn)
and (7.6). From (7.6) it follows that u ∈ S ′(Rn) , hence u1 = (∆ + k2)u and
u2 = (∆ − k2)u = u1 − 2k2u satisfy

u1 ∈ S ′(Rn) and (∆ − k2)u1 = f,

hence u1 satisfies (RG1
) , is representable by G1 and is therefore exponentially

decreasing (see §7.a). Hence u2 satisfies (∆+k2)u2 = f and (7.6) and is therefore
representable by G2 . Thus u1 = G1f and u2 = G2f , hence u = Gf .
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les Sciences et les Techniques. Masson, Paris 1988.
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Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques,
chapter XI, XIII. Masson, Paris 1988.

24


