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1. POSITION OF THE PROBLEM

1.a Origin. This problem was posed as a question to the first author by I. Babuška
(Maryland).

It is well known that singularities of the domain give rise to a loss of regularity
for the solutions of any elliptic boundary value problem. The situation is rather
well understood when the singularities are isolated points of the boundary and are of
conical type (see [4], [8]).

When a conical singularity is tensorized with an affine space, one gets an edge.
Regularity results are rather complete in that case [6], [11]. If the operator is trans-
lation invariant along the edge, the asymptotics can be derived in a direct way from
the asymptotics on the corresponding conical domain [1].

But for physical examples in the ordinary three-dimensional space, when a bounded
domain has edges and no corners, then the edges are necessarily curved. The simplest
example is a cylinder with circular basis, cut orthogonally to its generating lines. But
this example is very particular: The opening of the edge is everywhere π/2 and the
curvature of the edge is constant. If one cuts the cylinder by a plane which is skew
with respect to the generating lines, then the edge is elliptic and the opening angle is
varying. This gives rise to difficulties for the precise analysis of the structure of the
solution, due to the fact that the asymptotics in the corresponding two-dimensional
domains depend in a discontinuous way on the opening parameter. In particular,
the coefficients of the singular functions along the edge (stress intensity factors etc.)
will blow up at certain points. Such a behavior causes difficulties also for numerical
approximations.

1.b Geometry of the domain. Let B be an analytic bounded domain in IR2.
Let Ψ be an affine function (x2, x3) 7→ x1 = Ψ(x2, x3). We assume that

for all (x2, x3) ∈ B, Ψ(x2, x3) > 0.



We introduce

Ω =
{

(x1, x2, x3) ∈ IR3 | (x2, x3) ∈ B, 0 < x1 < Ψ(x2, x3)
}

.

This is our skew cylinder. We denote by M the top edge and by ∂1Ω the side of the
cylinder:

∂1Ω =
{

(x1, x2, x3) ∈ IR3 | (x2, x3) ∈ ∂B, 0 < x1 < Ψ(x2, x3)
}

.

The union of the top and the bottom of the cylinder is denoted by ∂2Ω.

For what we are going to do, a more general class of domains is admissible: The
piecewise analytic domains with edges with the property that in each point of an
edge, the domain is locally analytically diffeomorphic to a straight wedge.

For instance, if Ψ1 and Ψ2 are analytic on IR2 and such that

∀(x2, x3) ∈ B, Ψ1(x2, x3) < Ψ2(x2, x3),

we get a cylinder with curved ends:

Ω =
{

(x1, x2, x3) ∈ IR3 | (x2, x3) ∈ B, Ψ1(x2, x3) < x1 < Ψ2(x2, x3)
}

.

Such a situation is useful in reaction-diffusion, for instance.

Interesting extensions could be:

1. Include the situation where an isolated point on the edge has an opening angle
equal to π. Such a situation appears for instance when two isometric skew
cylinders are glued together along their skew tops.

2. Include piecewise C∞ manifolds with edges.

3. Include higher order singularities (corners of any dimension).

1.c Boundary value problems. We choose two simple examples: a mixed prob-
lem and the Neumann problem for the Laplace operator. Let us denote by (PI), resp.
(PII) these two problems. We write

(PI)

{

∆u = f on Ω
u = 0 on ∂1Ω,

∂u
∂n

= h2 on ∂2Ω.

(PII)

{

∆u = f on Ω
∂u
∂n

= h1 on ∂1Ω,
∂u
∂n

= h2 on ∂2Ω.

We take the Laplace operator because it is the simplest possible example of an elliptic
operator. Moreover, it is physically relevant. We choose the mixed Dirichlet-Neumann
problem because the singularities appear at a low regularity level (in a generic way,
u 6∈ H2(Ω)). We also consider the Neumann problem, because it does not satisfy the
isomorphism condition in weighted Sobolev spaces which is used in [6], [9]. Lastly,
the behavior of such problems in a two-dimensional angle is well known [2].



Other boundary value problems behave in a similar way as (PI) and (PII). As
interior operator, we can take any elliptic second order operator with real analytic
coefficients. With such operators, we would in a natural way consider any Dirichlet-
Neumann boundary problems (including pure Dirichlet and pure Neumann problems),
the Neumann condition being defined using the conormal derivative associated with
the interior operator. In this way we obtain, with our above class of piecewise ana-
lytic domains, a class of boundary value problems which is invariant with respect to
analytic diffeomorphisms.

It is also possible for us to consider mixed oblique derivative problems (semi-
variational problems) in a framework related to that in [7].

1.d Exponents of the singularities. Let us first recall the result in a two-
dimensional angle G with opening ω. We use polar coordinates (r, θ) so that G
corresponds to r > 0, 0 < θ < ω. For any integer j ≥ 1, we set

νj =















(2j − 1)
π

2ω
for the mixed problem

jπ

ω
for the Neumann problem

σj(r, θ) = rνj cos νjθ

Sj(r, θ) = rνj(log r cos νjθ − θ sin νjθ) if νj ∈ IN.

Proposition 1.1 Let s ∈ IR, s > 1/2. Let us assume that the interior datum in G

has Hs−1 regularity and that the Neumann data have Hs− 1

2 regularity. Then the vari-
ational solution w of the mixed Neumann-Dirichlet problem, resp. Neumann problem
on G, admits the following decomposition,

w = wreg + wsing

where
wreg ∈ Hs+1−ε(G) ∀ε > 0

wsing =
∑

1≤νj<s, νj 6∈IN

cjσj +
∑

1≤νj<s, νj∈IN

cjSj.

Remark 1.2 If ∀j ∈ IN there holds νj 6= s, then wreg ∈ Hs+1(G). On the other
hand, if ∃j ∈ IN such that νj = s, then wreg does not belong to Hs+1(G), in general.
If we remain in the scale of ordinary Sobolev spaces, it is impossible to remove this
ε. If one characterizes the preimage, one finds a space in which Hs+1 is not closed.
Conversely, the image of Hs+1 is not closed in Hs−1(G) ×Hs− 1

2 (∂G).

Let us return now to our skew cylinder. We assume that for a fixed real s > 1/2

f ∈ Hs−1(Ω)

hj ∈ Hs− 1

2 (∂jΩ), j = 1, 2



with the usual compatibility condition for the Neumann problem. Then there exists
a variational solution u ∈ H1(Ω).

For any x ∈M , let ω(x) be the opening angle of Ω in x. We set

ν(x) =















π

2ω(x)
for (PI)

π

ω(x)
for (PII)

If s < min
x∈M

ν(x), then u ∈ Hs+1(Ω). Since, anyway, min
x∈M

ν(x) > 1/2, we have u ∈
H

3

2
+ε(Ω) and the Neumann conditions make sense. From now on we assume that

min
x∈M

ν(x) < s.

Then u can be split into two parts for any ε > 0,

u = ureg + using

where ureg ∈ Hs+1−ε(Ω) and using is an asymptotics. Such a decomposition generally
depends on ε > 0. Our aim is to describe the structure of such splittings. In particular,
we want to separate as much as possible the roles of the different variables, the abscissa
y along the edge, the distance r from the edge and the angular variable θ. More
precisely, we intend to separate what comes from the geometrical framework (domain
and boundary value problem) and what comes from the data (f, hj). The part that
comes from the geometrical framework will be described as an analytic bundle. The
part that comes from the data will be described as Hs−ε sections of this bundle.
Only the second notion depends on ε. By contrast, the bundle is an object which is
associated to the pair (domain, boundary value problem) in a canonical way.

2. SIMPLE ASYMPTOTICS

2.a A simple result. The exponents of the singularities which appear in the
asymptotics along the edge depend on the edge parameter y. They are the same as
in a two-dimensional problem for the Laplace operator with lower order terms and
the opening ω(y), which is the opening of Ω at the point y. We can enumerate them
using a double index k = (k1, k2), where k1, k2 ∈ IN and

ν(0,k2)(y) = k2

and for k1 ≥ 1,

νk(y) =



















(2k1 − 1)
π

2ω(y)
+ k2 for (PI)

k1π

ω(y)
+ k2 for (PII).



We have to include all positive integers in those exponents due to the possible inter-
action between polynomials and singularities.

What can be expected as asymptotics along the edge is

∑

k,q,β

ck,q,β(y) r
νk(y) logq r ϕk,q,β(y, θ) (2.1)

where only the ck,q,β depend on the data (f, hj). Actually, such an asymptotics in
tensor product form is not convenient in general, since the ck,q,β are not regular
enough: The best which can be expected is Hs−νk(y). Such an asymptotics could be
valid only if s = ∞, or if the ‘regular part’ has only half the regularity of the data.
Therefore we introduce a function Φ(y, r) such that its partial Fourier transform
satisfies

Fy→ξΦ(ξ, r) = φ(r|ξ|)
where φ is a rapidly decreasing function, has a Fourier transform with compact sup-
port, and satisfies for a sufficiently large N

φ(0) = 1,
dl

dsl
φ(0) = 0 (l = 1, . . . , N).

We define the convolution with respect to y,

(Φ ∗ c)(y, r) :=
∫

Φ(y − y′, r) c(y′) dy′.

The following theorem describes our result on the simple edge asymptotics.

Theorem 2.1 Let J be an open segment in M and J̃ any open set in M such that
J ⊂ J̃ holds and let UJ be a sufficiently small neighborhood of J in Ω. Let χ be an
analytic diffeomorphism which defines on UJ local cylindrical coordinates (y, r, θ) with
0 < θ < ω(y). In local coordinates, we write I and Ĩ for J and J̃ . We assume that
for some ε0 ≥ 0 there holds

for all k we have ∀y ∈ Ĩ, νk(y) < s or ∀y ∈ Ĩ , νk(y) ≥ s− ε0 (2.2)

for all y ∈ Ĩ , if νk(y) = νk′(y) < s then k = k′. (2.3)

To each k there exists a finite set of indices (q, β) and analytic functions ϕk,q,β(y, θ)
such that any solution u of problem (PI) or (PII) can be decomposed into

u = ureg + using.

Here ureg ∈ Hs+1−ε(UJ) ∀ε > ε0 and

using = χ−1





∑

k,q,β

(Φ ∗ ck,q,β)(y, r) r
νk(y) logq r ϕk,q,β(y, θ)



 . (2.4)

The coefficients ck,q,β(y) are defined on Ĩ and satisfy ck,q,β ∈ Hs−νk(y)−ε(I) for all
ε > 0. The sum extends over those k for which νk < s holds on Ĩ.



Remark 2.2 If k1 = 0 then the logarithmic terms are absent and for any fixed
y ∈ M , the function rνk(y) ϕk,0,β(y, θ) is a polynomial in cartesian variables. The
corresponding term in the asymptotics can be put into the regular part. We include
such terms in our asymptotics as a preparation for the study of crossing points.

Remark 2.3 Assume that k2 = 0 and νk 6∈ IN. Then q = 0 and β has only one value.
We have

ϕk,0,1(y, θ) = cos νk(y)θ.

Remark 2.4 Only the first terms (with k2 = 0) arise directly from the conormal
principal symbol of the operator. The other terms come from other parts of the
operator and there exists no simple relation between the symbol of the operator and
the singularities. For instance, one obtains a logarithmic term by differentiating rνk(y)

with respect to y.

2.b The question of optimality. Results related to Theorem 2.1 have been
proven for the Dirichlet problem by Kondratev [5] concerning the first singularity,
Nikishkin [10] for all singularities, Maz’ya and Roßmann [9] for more general opera-
tors. We have to mention some differences between our result and those of the above
authors: The first one (but not essential) is our use of spaces with non-integer expo-
nents. The second one is that our results do not need the isomorphism assumption
in weighted Sobolev spaces; such an assumption excludes the Neumann problem, for
instance.

The third difference lies in our localization. All the above authors make the
following assumption

∀k, ∀y ∈M, νk(y) 6= s. (2.5)

In such a case ε0 may be taken as 0 in our theorem. It is interesting to realize that such
an assumption means a severe restriction on the possible range for the couple (α, s)
where α describes the slope of the top of the skew cylinder: 0 < α < 1 and β = απ/2
is the angle between the top of the cylinder and the horizontal (x2, x3)-plane.

Let us illustrate this restriction. The maximal opening is (1 + α)π/2 and the
minimal one is (1 − α)π/2. It is easy to check that if

ν(1,0)

(

(1 − α)
π

2

)

≥ ν(1,1)

(

(1 + α)
π

2

)

(2.6)

then the union of the numerical ranges of all the νk’s on M is a full half axis. The
condition (2.6) is fulfilled in the example of the Neumann problem (PII) if

2

1 − α
≥ 2

1 + α
+ 1,

i. e., if α ≥
√

5 − 2 ≃ 0.236.



As we already explained for two-dimensional problems, if the condition (2.5) does
not hold, there is no optimal regularity for the regular part (see Remark 1.2). Even
if condition (2.5) holds, it is still difficult to obtain the optimality. Only [9] claim
the optimality when there is no logarithmic term is the asymptotics and moreover
s− ν(1,0) < 1.

Concerning the regularity of the coefficients, even in the straight edge case with
a translation invariant operator, when logarithmic terms appear, there also appear
coefficients with less regularity than Hs−νk. Such coefficients have the property that
for a certain number Q > 0

F−1
ξ→yĉ(ξ) log−Q(|ξ|+ 2) ∈ Hs−νk.

We think that this problem of optimality has a similar level of complexity as the
considerations about the localization of coefficients in §16 of [1].

2.c The crossing of exponents. In Theorem 2.1 we made the assumption (see
(2.3)) that there is no crossing of exponents, i.e., there are no points y such that
for some k, k′ with k 6= k′ there holds νk(y) = νk′(y). All the authors quoted above
also require this condition. We will see that such a crossing of exponents in general
induces the blowing up of coefficients in the expansion (2.4).

For our problem of the skew cylinder, it is impossible to avoid such crossings. For
y0 such that ω(y0) = π/2 (there always exist two such points), we have νk(y0) = νk′(y0)
for

k = (1, 0) and k′ = (0, 1) for (PI)
k = (1, 0) and k′ = (0, 2) for (PII).

The points where crossing of exponents will eventually appear (for large s) are dense
in M , so this phenomenon occurs in a generic way.

Our situation has one special feature, however: It is possible to choose the expo-
nents as analytic functions; here this choice νk(y) is obvious, as it is also obvious for
the oblique derivative problems. There are other cases where such an analytic choice
is not obvious but still possible. Here is an example.

Let us consider a domain Γ ⊂ IR × IRn with an edge and such that

Γ = {(y, z) ∈ IR × IRn | z ∈ K(y)}

where for each y, K(y) is a cone. Let G(y) denote K(y)∩Sn−1. We suppose that the
family (G(y))y is analytic. And we consider, for instance, the Neumann problem for
∆ on Γ. Then the exponents will be

ν(k1,k2)(y) = 1 − n

2
+

√

(1 − n

2
)2 + λk1

(y) + k2

where k1, k2 ∈ IN and (λk1
(y))k1∈IN is the increasing sequence of eigenvalues of the

Neumann problem for the (positive) Laplace-Beltrami operator on G(y). As a con-
sequence of a result of [3], there exists an analytic choice for the eigenvalues , i. e.,



analytic functions λ̃k1
such that for any y, the sequence (λ̃k1

(y))k1∈IN is an enumeration
of the eigenvalues with repetition according to the multiplicities. In general, this does
not coincide with the enumeration in increasing order. Let us quote as an example
the case when the G(y) are spherical caps with opening α(y) where 0 < α(y) < π
(see §18 of [1]).

Our results can be applied to such a geometrical situation, with the corresponding
appropriate choice of the exponents.

2.d Motivations. In Section 3, we will present the main results of this paper.
Our motivations for their presentation are the following.

1. To give an asymptotics in the neighborhood of crossing points which is as explicit
and as simple as possible

2. To eliminate as many technical hypotheses as possible.

To achieve these aims, we have chosen to treat in a first stage a class of problems
which is restricted by the following two requirements:

1. Analyticity for the coefficients and the faces of the domain

2. No bifurcation points (see below).

This class of problems is sufficiently large to contain the examples described above,
in particular the skew cylinder problems.

As already said, for second order operators with real coefficients, there exist an-
alytic choices for the exponents. Indeed, this is also true for general elliptic second
order operators with complex coefficients, because the poles of the resolvent of the
associated operator pencil are always simple (see [1], §14 for instance). But such
an analytic choice is generically impossible for fourth order operators such as the
bilaplacian. The basic problem is the expression of the roots of a polynomial whose
coefficients depend analytically on a parameter. The roots are algebraic but, in gen-
eral, non-analytic functions of the parameter.

Such situations of bifurcations are studied in [12]. It would be interesting to give
the actual structure of asymptotics for general elliptic boundary value problems. In
the general case there appear combinations of both crossings and bifurcations. We
think that even then it will be possible to reach the aims we described at the end of
the first section, i. e., to separate all that can be separated.

3. ASYMPTOTICS AT CROSSING POINTS

3.a Ordering the exponents. Let y0 be a crossing point, i. e., a point where
there exist distinct k and k′ such that

νk(y0) = νk′(y0) < s. (3.1)



Since we assume that our cylinder is actually skew, crossing points are isolated, so
there exist open intervals I and Ĩ with y0 ∈ I, I ⊂ Ĩ, and there is no other crossing

point in Ĩ.

If the opening angle along the edge is constant (as it happens for the base of our
cylinder or as it would be in the case of a plane circular crack), then if condition (3.1)
is satisfied, it holds along the entire edge. In such a case we have a superposition and
not a crossing, and the simple asymptotics of Theorem 2.1 is valid.

Let Ky0
be the set of indices,

Ky0
:= {k = (k1, k2) | νk(y0) < s} .

We denote by µ1, . . . , µj0 the distinct elements of the set

{νk(y0) | k ∈ Ky0
} .

Since y0 is a crossing point, the cardinality of Ky0
is strictly larger than j0. For each

j, let Ky0,j be the subset of Ky0
,

Ky0,j := {k ∈ Ky0
| νk(y0) = µj} .

The µj are either crossing exponents (if #Ky0,j > 1) or simple exponents (if #Ky0,j =
1).

For each k, we call multiplicity of νk the maximal power of log r which appears in
the asymptotics (2.4) along with the term rνk(y) for y ∈ I \ {y0}. Then we denote by
(kq

j )1≤q≤qj
an enumeration of Ky0,j , repeating each term according to its multiplicity.

Finally, we set for y ∈ Ĩ:

µj(y) := max
k∈Ky0,j

νk(y). (3.2)

3.b Direct formulation of asymptotics. What essentially changes from the
simple asymptotics (2.4) is the behavior of the functions of r. Instead of having
separately the terms rνl(y) logp r, we have now special combinations of these terms
which cannot be separated. Let us introduce these combinations.

Definition 3.1 Let q ≥ 1 an integer and ν1, . . . , νq be complex numbers, not nec-
essarily distinct. Let γ be any simple curve surrounding ν1, . . . , νq in the complex
plane. Then we define

S[ν1, . . . , νq; r] =
1

2πi

∫

γ

rλ

(λ− ν1) · · · (λ− νq)
dλ.

Here are some examples. We assume that ν1 is different from ν2.

S[ν1; r] = rν1 (3.3)

S[ν1, ν1; r] = rν1 log r (3.4)

S[ν1, ν2; r] =
rν1 − rν2

ν1 − ν2
(3.5)

S[ν1, ν1, ν2; r] =
rν1 log r

ν1 − ν2
− rν1 − rν2

(ν1 − ν2)2
(3.6)



When all the νl are distinct, we obtain

S[ν1, . . . , νq; r] =
q
∑

l=1

rνl

q
∏

k=1
k 6=l

(νl − νk)

. (3.7)

Remark 3.2 Example (3.5) gives (3.4) as a limit case for ν2 → ν1. More generally,
the function S is analytic in all its arguments on C/ q × (0,∞). On the other hand,
example (3.7) shows that the coefficients of the powers rνl blow up near the points
where two νl’s coincide.

Theorem 3.3 Let J, J̃, I and Ĩ be defined as in Section 3.a and in Theorem 2.1. Let
also UJ and χ be as in Theorem 2.1. We still assume that for some ε0 ≥ 0 condition
(2.2) holds. To each j = 1, . . . , j0 and to each q = 1, . . . , qj, there exists a finite set of
indices γ and analytic functions ψj,q,γ(y, θ) such that any solution u of problem (PI)
or (PII) can be decomposed into

u = ureg + using.

Here ureg ∈ Hs+1−ε(UJ) ∀ε > ε0 and

using =
j0
∑

j=1

vj

with

vj = χ−1

(

∑

q,γ

(Φ ∗ dj,q,γ)(y, r)S[νk1

j
(y), . . . , νkq

j
(y); r]ψj,q,γ(y, θ)

)

. (3.8)

The coefficients dj,q,γ(y) are defined on Ĩ and satisfy dj,q,γ ∈ Hs−µj(y)−ε(I) for all
ε > 0.

Remark 3.4 If there is no crossing in Ĩ, then this statement yields the same result as
Theorem 2.1. Indeed, the sets Ky0,j are all reduced to one element and the functions
in r are all of the form S[ν, . . . , ν; r], i. e. rν logq r.

Remark 3.5 In a generic way, the coefficients dj,k,γ do not vanish at y0 (see the
example in Subsection 3.d below). As a consequence, if Ky0,j has more than one
element, the coefficients ck,q,β for k ∈ Ky0,j tend to infinity at y0, in general.

3.c Bundle formulation of asymptotics. As in Subsection 3.a, we denote by
I a neighborhood of the crossing point y0. For any y ∈ I \ {y0} and k ∈ Ky0

, let
Bk(y) be the vector space spanned by the functions of (r, θ) which occur in the simple
asymptotics (2.4) in the terms corresponding to the exponents νk(y):

Bk(y) := span
{

rνk(y) logq r ϕk,q,β(y, θ)
}

.

The y 7→ Bk(y) define analytic bundles over I \ {y0}. The following theorems give
another description of what happens at the crossing points.



Theorem 3.6 The sum
y 7→

⊕

k∈Ky0

Bk(y)

which is defined on I \ {y0}, extends as an analytic bundle on I.

It is possible to consider smaller sums, each of which corresponds to a single
crossing exponent µj: Define Cj by

Cj(y) :=
⊕

k∈Ky0,j

Bk(y).

Theorem 3.7 For any j = 1, . . . , j0, the bundle y 7→ Cj(y) extends as an analytic
bundle on I.

Remark 3.8 It is an open problem whether the bundles Bk themselves extend to
analytic bundles on I. We have solved this problem in one special case: Let Bk1

and
Bk2

be one-dimensional bundles over I \ {y0}, given by

Bkl
(y) = span

{

rνkl
(y)ϕkl

(y, θ)
}

(l = 1, 2).

If their sum extends to an analytic bundle on I, then both Bk1
and Bk2

are analytic
on I.

Even if we knew that the bundles Bk extend to analytic bundles on I, the state-
ments of the Theorems 3.6 and 3.7 would not be trivial: The sum of two analytic
bundles is not always an analytic bundle. There may occur a collapse in dimen-
sion. For instance, if B1(y) is generated by rν1(y)ϕ(θ) and B2(y) by rν2(y)ϕ(θ), and if
ν1(y) = ν2(y) only in y = y0, then B1 +B2 collapses in y0. But a sum of analytic bun-
dles can always be extended as an analytic bundle. In our example, B1(y0) + B2(y0)

has to be replaced by span
{

rν1(y)ϕ(θ), rν1(y) log r ϕ(θ)
}

. A trivialization of this ex-
tension is given by

{

rν1(y)ϕ(θ),
rν1(y) − rν2(y)

ν1(y) − ν2(y)
ϕ(θ)

}

.

This extension property does not hold, in general, for C∞-bundles. Let us give a
simple example of bundles with values in IR3:

B(y) = span {(1, 0, 0)}

B′(y) = span

{

(1, e−1/y2

cos
1

y
, e−1/y2

sin
1

y
)

}

.

The sum B(y) +B′(y) cannot be extended to a C∞-bundle in y = 0.

We start now from the analytic extension C̃j(y) of Cj. Let y 7→ Xj,α(y, ·, ·) for
α = 1, . . . , Aj define a trivialization of C̃j.

As a consequence of the form of the Bk’s, we get the following lemma.



Lemma 3.9 There exist analytic functions ψj,α
q,γ(y, θ) such that

Xj,α(y, r, θ) =
∑

q,γ

S[νk1

j
(y), . . . , νkq

j
(y); r]ψj,α

q,γ(y, θ).

All the objects discussed in this subsection up to now are only linked with the
geometrical framework (domain and boundary value problem). The singular parts
vj in Theorem 3.3 can now be written as a kind of regularized Hs−ε-sections of the
bundles C̃j :

vj = χ−1





Aj
∑

α=1

(Φ ∗ bj,α)(y, r)Xj,α(y, r, θ)





with bj,α(y) ∈ Hs−µj(y)−ε(I).

3.d An example. Let us illustrate our statements by a simple example. We con-
sider the mixed problem (PI). We take s ∈ (1, 2/(1 + α)), where α is the “obliquity”
of the skew cylinder (see Section 2.b). Since there is one zero Dirichlet condition,
ν(0,0) does not appear. With that choice of s, only ν(1,0) and ν(0,1) are relevant. For
simplicity, let us denote

ν1(y) := ν(1,0)(y) =
π

2ω(y)

ν2(y) := ν(0,1)(y) = 1.

There are exactly two points y ∈M where ν1(y) = ν2(y) holds. These are the two
points y0, y

′
0 where ω(y) = π/2. On M \ {y0, y

′
0}, the simple asymptotics (2.4) holds.

Here q = 0 and only one value of β is required. We write l instead of (l, 0, 1). Then
we can choose

ϕ1(y, θ) = cos ν1(y)θ

ϕ2(y, θ) = sin(ω(y) − θ).

Here it is possible to compute c2(y) since it depends only on the pointwise value
of the boundary datum h2 on the edge:

c2(y) =
h2(y, 0)

cosω(y)
.

We have the precise regularity result c2 ∈ Hs−1
loc (M \ {y0, y

′
0}).

Concernig the bundle representation of the asymptotics, we observe the following
facts.

B1(y) is generated by rν1(y) cos ν1(y)θ.

B2(y) is generated by r sin(ω(y) − θ).

When y = y0 or y′0, then B1(y) = B2(y).



A basis of the analytic extension of B1 +B2 is given by

X1(y, r, θ) = rν1(y) cos ν1(y)θ.

X2(y, r, θ) =
r sin(ω(y) − θ) − rν1(y) cos ν1(y)θ

1 − ν1(y)

=
r − rν1(y)

1 − ν1(y)
sin(ω(y)− θ)

+ rν1(y) sin(ω(y)− θ) − cos ν1(y)θ

1 − ν1(y)

=
r − rν1(y)

1 − ν1(y)
cos ν1(y)θ

+ r
sin(ω(y)− θ) − cos ν1(y)θ

1 − ν1(y)
.

The different forms of X2 correspond to different possible orders of enumeration in
the representation of Lemma 3.9.

If we want to get the direct representation of Theorem 3.3, we need 3 basis func-
tions, for instance:

S[ν1(y); r]ψ1,1(y, θ) = X1(y, r, θ)

S[ν1(y); r]ψ1,2(y, θ) = rν1(y) sin(ω(y)− θ) − cos ν1(y)θ

1 − ν1(y)

S[ν1(y), ν2(y); r]ψ2,1(y, θ) =
r − rν1(y)

1 − ν1(y)
sin(ω(y) − θ).

Now we can compare the three representations of a singular part, namely the
“simple asymptotics” of Theorem 2.1, the “direct representation” of Theorem 3.3,
and the “bundle representation” with the basis X1, X2. Assume that we have

c1 r
ν1ϕ1 + c2 r

ν2ϕ2 = d1,1 S[ν1; r]ψ1,1 + d1,2 S[ν1; r]ψ1,2 + d2,1 S[ν1, ν2; r]ψ2,1

= b1X1 + b2X2.

Then there hold the following relations between the coefficients.

b1 = c1 + c2

b2 = c2(1 − ν1)

c1 = b1 − b2/(1 − ν1)

c2 = b2/(1 − ν1)

d1,1 = b1

d1,2 = d2,1 = b2.

These relations clearly display the blow-up of the coefficients in the simple asymptotics
at the points y0, y

′
0 and also the necessity for the introduction of the exponents µj(y)

in (3.2).



Acknowledgement. This work was done while both authors were supported
by the DFG Forschergruppe KO 634/32-1 at the TH Darmstadt and the Unité de
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