SOLVABILITY OF A SYSTEM OF INTEGRAL EQUATIONS FOR CLAMPED PLATES

MARTIN COSTABEL & MONIQUE DAUGE U.R.A. 305 du C.N.R.S. – IRMAR – Université de Rennes 1 Campus de Beaulieu – 35042 Rennes Cedex 03, France

1. Introduction

We study the unique solvability of a 2×2 system of boundary integral equations arising from a single layer potential representation for the biharmonic Dirichlet problem. We answer the question "for which curves does this system have a unique solution ?" as follows: For each curve Γ there are between 1 and 4 exceptional scale factors ρ such that on the scaled curve $\rho\Gamma$ there is no unique solvability. We show results of numerical computations of the exceptional scale factors for several classes of curves.

This paper is a short version of [1], where detailed proofs are given. We present here some additional numerical results.

2. The biharmonic single layer operator

Let $\Omega^- \subset \mathbb{R}^2$ be a bounded domain with boundary Γ and exterior $\Omega^+ = \mathbb{R}^2 \setminus \overline{\Omega^-}$. The biharmonic Dirichlet problem

$$\begin{cases} \Delta^2 u = 0 & \text{in } \Omega^- \text{ (or in } \Omega^+) \\ u = g_0 & \text{on } \Gamma \\ \partial_n u = g_1 & \text{on } \Gamma, \end{cases}$$
(1)

can be solved using the system of integral equations on Γ

$$\begin{cases} \int_{\Gamma} \left\{ G(x,y) \varphi_0(y) + \partial_{n(y)} G(x,y) \varphi_1(y) \right\} ds(y) &= g_0(x) \\ \int_{\Gamma} \left\{ \partial_{n(x)} G(x,y) \varphi_0(y) + \partial_{n(x)} \partial_{n(y)} G(x,y) \varphi_1(y) \right\} ds(y) &= g_1(x), \end{cases}$$

$$(2)$$

whose solution (φ_0, φ_1) provides a couple of densities allowing the representation of u as the following "single layer potential":

$$u(x) = \int_{\Gamma} \left\{ G(x,y) \,\varphi_0(y) + \partial_{n(y)} G(x,y) \,\varphi_1(y) \right\} ds(y), \quad x \in \Omega^- \cup \Omega^+.$$
(3)

In (2) and (3), G is a fundamental solution for Δ^2 in \mathbb{R}^2 . Here, we take the standard fundamental solution

$$G(x,y) = \frac{1}{8\pi} |x - y|^2 \log |x - y|.$$

We write system (2) in the condensed form $V_{\Gamma}\varphi = g$ and we call the integral operator V_{Γ} "the biharmonic single layer potential operator" on the curve Γ . This operator appears not only in the solution of the clamped plate problem by a single layer potential ansatz, as in (2), but also in the solution of that problem by a direct method and also in discretizations of the Poincaré-Steklov operator for the bilaplacian, used for example in coupling methods of finite and boundary elements or in other domain decomposition methods (see [3]).

In this paper, we exhibit conditions on the curve Γ that guarantee the invertibility of V_{Γ} . Our results are a generalization to the biharmonic equation of results well-known for Symm's integral equation of potential theory:

$$S_{\Gamma}\varphi \equiv -\frac{1}{2\pi} \int_{\Gamma} \log |x-y| \varphi(y) \ ds(y) = g(x).$$

There, the operator S_{Γ} is invertible if and only if Γ has a logarithmic capacity cap $\Gamma \neq 1$ (i.e. if Γ is not a " Γ contour" in Symm's language). Thus for each Γ there is exactly one ρ , namely $\rho = 1/\operatorname{cap} \Gamma$, such that $S_{\rho\Gamma}$ is not invertible.

3. The finite dimensional reduction

For $\mathbf{f} = (f_0, f_1)$ in the Sobolev space $H^{3/2}(\Gamma) \times H^{1/2}(\Gamma)$ and $\boldsymbol{\varphi} = (\varphi_0, \varphi_1)$ in its dual $H^{-3/2}(\Gamma) \times H^{-1/2}(\Gamma)$, the natural product of duality is given by

$$\langle \boldsymbol{\varphi}, \boldsymbol{f} \rangle = \int_{\Gamma} \varphi_0 f_0 \, ds + \int_{\Gamma} \varphi_1 f_1 \, ds.$$

Let $P_0 = 1$, $P_1 = x_1$ and $P_2 = x_2$ be a basis of the space of first degree polynomials and let \mathbf{p}_j denote the pair $(P_j, \partial_n P_j)$. It is known, see [2], that for $\boldsymbol{\varphi} = (\varphi_0, \varphi_1)$ in the subspace of codimension 3, defined by 3 equilibrium conditions,

$$\left\{ (\varphi_0, \varphi_1) \in H^{-3/2}(\Gamma) \times H^{-1/2}(\Gamma) \mid \langle \boldsymbol{\varphi}, \boldsymbol{p}_j \rangle = 0, \ j = 0, 1, 2 \right\}$$
(4)

the operator V_{Γ} defines a positive bilinear form:

$$\langle \boldsymbol{\varphi}, V_{\Gamma} \boldsymbol{\varphi} \rangle = \int_{\Omega^- \cup \Omega^+} |\Delta u|^2 \, dx,$$

with u defined by (3). From this, one can show that the following augmented system (with $P_3 = x_1^2 + x_2^2$ and $p_3 = (P_3, \partial_n P_3)$)

$$\begin{cases} V_{\Gamma}\boldsymbol{\varphi} = \sum_{j=0}^{3} \omega_{j} \boldsymbol{p}_{j} + \boldsymbol{g} \\ \langle \boldsymbol{\varphi}, \boldsymbol{p}_{k} \rangle = \xi_{k} \quad (k = 0, \dots, 3) \end{cases}$$
(5)

has, for given $(\boldsymbol{g}, \vec{\xi})$ in $H^{3/2}(\Gamma) \times H^{1/2}(\Gamma) \times \mathbb{R}^4$, always a unique solution $(\boldsymbol{\varphi}, \vec{\omega})$ in $H^{-3/2}(\Gamma) \times H^{-1/2}(\Gamma) \times \mathbb{R}^4$. For $\boldsymbol{g} = 0$, this gives a linear relation between $\vec{\xi}$ and $\vec{\omega}$, written as:

$$\vec{\omega} = B_{\Gamma} \xi$$
.

We added the fourth polynomial P_3 and the fourth equilibrium condition in (5) in order to get the simple scaling behavior of B_{Γ} that follows. One can show

Theorem: (i) For any curve Γ (open, closed, regular or not), the operator V_{Γ} is invertible if and only if the 4×4 matrix B_{Γ} is invertible. (ii) For $\rho > 0$ one has

$$B_{\rho\Gamma} = \text{diag}(\rho, 1, 1, \rho^{-1}) \left(B_{\Gamma} + \frac{\log \rho}{8\pi} C \right) \text{diag}(\rho, 1, 1, \rho^{-1}).$$

with the matrix

$$C = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

(iii) ρ is an exceptional scale factor for Γ if and only if

 $\rho = e^{-8\pi\lambda},$

where λ is a real eigenvalue of the matrix $C^{-1}B_{\Gamma}$.

4. Numerical results

ANALYTICAL RESULTS. We have the following:

(i) Unit circle: 1 exceptional scale factor $\rho = 1/e$

(*ii*) Unit interval $\Gamma = [0, 1]$: 2 exceptional scale factors $\rho_1 = 4e^{-1/2} = 2.426...$ and $\rho_2 = 4e^{-3/2} = 0.8925...$

NUMERICAL COMPUTATIONS. For a given curve Γ , we solve the integral equation

$$\begin{cases} V_{\Gamma}\boldsymbol{\varphi} - \sum_{j=0}^{3} \omega_{j} \boldsymbol{p}_{j} = 0 \\ \langle \boldsymbol{\varphi}, \boldsymbol{p}_{k} \rangle = \delta_{kl} \quad (k = 0, \dots, 3) \,. \end{cases}$$
(6)

For l = 0, ..., 3, the vectors $\vec{\omega} \in \mathbb{R}^4$ constitute the columns of the matrix B_{Γ} whose eigenvalues determine the exceptional scale factors.

For the numerical approximation of (6), we use a very simple method: for the approximation of φ we choose for φ_0 Dirac delta functions in the mesh points of some partition of Γ , and for φ_1 piecewise constant functions with break points in the same mesh points. If Γ has corners, we use a mesh refinement at the corners. The first integral equation in (6) (this corresponds to the first line of the system (2)), is discretized by a Galerkin method using as test functions the same delta functions as for the approximation of φ_0 . This corresponds therefore to nodal collocation. For the second integral equation we do not test by the piecewise constant functions, but we use the simpler mid-point collocation.

For the following computations, we chose typically about N = 160 nodes and a mesh refinement with exponent 2 at the corners of the polygon.

The results show that between 1 and 4 values of ρ can appear and that double or triple points exist. They show also the extraordinary robustness of this simple boundary element method: One and the same simple program with the same number of nodes works fine while one of the dimensions of the domain varies over 10 orders of magnitude!

References

- 1. M. COSTABEL, M. DAUGE. Invertibility of the biharmonic single layer potential operator. Preprint 95-13, IRMAR, Rennes 1995. To appear in *Integral Equations Oper. Theory.*
- 2. J. GIROIRE. Etude de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Thèse d'Etat, Université Pierre et Marie Curie, 1987.
- 3. G. SCHMIDT, B. N. KHOROMSKIJ. Boundary integral equations for the biharmonic Dirichlet problem on non smooth domains. Preprint 129, WIAAS, Berlin 1994.