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1. Introduction

We study the unique solvability of a 2 × 2 system of boundary integral
equations arising from a single layer potential representation for the bihar-
monic Dirichlet problem. We answer the question “for which curves does
this system have a unique solution ?” as follows: For each curve Γ there are
between 1 and 4 exceptional scale factors ρ such that on the scaled curve ρΓ
there is no unique solvability. We show results of numerical computations
of the exceptional scale factors for several classes of curves.

This paper is a short version of [1], where detailed proofs are given. We
present here some additional numerical results.

2. The biharmonic single layer operator

Let Ω− ⊂ R
2 be a bounded domain with boundary Γ and exterior Ω+ =

R
2 \ Ω−. The biharmonic Dirichlet problem







∆2u = 0 in Ω− (or in Ω+)
u = g0 on Γ

∂nu = g1 on Γ,
(1)

can be solved using the system of integral equations on Γ










∫

Γ

{

G(x, y)ϕ0(y) + ∂n(y)G(x, y)ϕ1(y)
}

ds(y) = g0(x)
∫

Γ

{

∂n(x)G(x, y)ϕ0(y) + ∂n(x)∂n(y)G(x, y)ϕ1(y)
}

ds(y) = g1(x),

(2)
whose solution (ϕ0, ϕ1) provides a couple of densities allowing the repre-
sentation of u as the following “single layer potential”:

u(x) =

∫

Γ

{

G(x, y)ϕ0(y) + ∂n(y)G(x, y)ϕ1(y)
}

ds(y), x ∈ Ω−∪ Ω+. (3)
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In (2) and (3), G is a fundamental solution for ∆2 in R
2. Here, we take the

standard fundamental solution

G(x, y) =
1

8π
|x − y|2 log |x − y|.

We write system (2) in the condensed form VΓϕ = g and we call the integral
operator VΓ “the biharmonic single layer potential operator” on the curve Γ.
This operator appears not only in the solution of the clamped plate problem
by a single layer potential ansatz, as in (2), but also in the solution of that
problem by a direct method and also in discretizations of the Poincaré-
Steklov operator for the bilaplacian, used for example in coupling methods
of finite and boundary elements or in other domain decomposition methods
(see [3]).

In this paper, we exhibit conditions on the curve Γ that guarantee the
invertibility of VΓ. Our results are a generalization to the biharmonic equa-
tion of results well-known for Symm’s integral equation of potential theory:

SΓϕ ≡ −
1

2π

∫

Γ
log |x − y|ϕ(y) ds(y) = g(x).

There, the operator SΓ is invertible if and only if Γ has a logarithmic
capacity cap Γ 6= 1 (i.e. if Γ is not a “Γ contour” in Symm’s language).
Thus for each Γ there is exactly one ρ, namely ρ = 1/ cap Γ, such that SρΓ

is not invertible.

3. The finite dimensional reduction

For f = (f0, f1) in the Sobolev space H3/2(Γ) × H1/2(Γ) and ϕ = (ϕ0, ϕ1)
in its dual H−3/2(Γ)×H−1/2(Γ), the natural product of duality is given by

〈

ϕ, f
〉

=

∫

Γ
ϕ0 f0 ds +

∫

Γ
ϕ1 f1 ds.

Let P0 = 1, P1 = x1 and P2 = x2 be a basis of the space of first degree
polynomials and let pj denote the pair (Pj , ∂nPj). It is known, see [2], that
for ϕ = (ϕ0, ϕ1) in the subspace of codimension 3, defined by 3 equilibrium
conditions,

{

(ϕ0, ϕ1) ∈ H−3/2(Γ) × H−1/2(Γ) |
〈

ϕ, pj
〉

= 0, j = 0, 1, 2
}

(4)

the operator VΓ defines a positive bilinear form:

〈

ϕ, VΓϕ
〉

=

∫

Ω−

∪Ω+

|∆u|2 dx,
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with u defined by (3). From this, one can show that the following augmented
system (with P3 = x2

1 + x2
2 and p3 = (P3, ∂nP3))















VΓϕ =
3

∑

j=0

ωj pj + g

〈

ϕ, pk
〉

= ξk (k = 0, . . . , 3)

(5)

has, for given (g, ~ξ) in H3/2(Γ) × H1/2(Γ) × R
4, always a unique solution

(ϕ, ~ω) in H−3/2(Γ)×H−1/2(Γ)× R
4. For g = 0, this gives a linear relation

between ~ξ and ~ω, written as:

~ω = BΓ
~ξ.

We added the fourth polynomial P3 and the fourth equilibrium condition
in (5) in order to get the simple scaling behavior of BΓ that follows. One
can show

Theorem: (i) For any curve Γ (open, closed, regular or not), the operator
VΓ is invertible if and only if the 4 × 4 matrix BΓ is invertible.
(ii) For ρ > 0 one has

BρΓ = diag(ρ, 1, 1, ρ−1)

(

BΓ +
log ρ

8π
C

)

diag(ρ, 1, 1, ρ−1).

with the matrix

C =







0 0 0 1
0 −2 0 0
0 0 −2 0
1 0 0 0







(iii) ρ is an exceptional scale factor for Γ if and only if

ρ = e−8πλ,

where λ is a real eigenvalue of the matrix C−1BΓ.

4. Numerical results

Analytical results. We have the following:
(i) Unit circle: 1 exceptional scale factor ρ = 1/e
(ii) Unit interval Γ = [0, 1]: 2 exceptional scale factors ρ1 = 4e−1/2 =
2.426... and ρ2 = 4e−3/2 = 0.8925...
Numerical computations. For a given curve Γ, we solve the integral
equation















VΓϕ −
3

∑

j=0

ωj pj = 0

〈

ϕ, pk
〉

= δkl (k = 0, . . . , 3) .

(6)
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For l = 0, . . . , 3, the vectors ~ω ∈ R
4 constitute the columns of the matrix

BΓ whose eigenvalues determine the exceptional scale factors.
For the numerical approximation of (6), we use a very simple method: for

the approximation of ϕ we choose for ϕ0 Dirac delta functions in the mesh
points of some partition of Γ, and for ϕ1 piecewise constant functions with
break points in the same mesh points. If Γ has corners, we use a mesh re-
finement at the corners. The first integral equation in (6) (this corresponds
to the first line of the system (2)), is discretized by a Galerkin method
using as test functions the same delta functions as for the approximation of
ϕ0. This corresponds therefore to nodal collocation. For the second integral
equation we do not test by the piecewise constant functions, but we use the
simpler mid-point collocation.

For the following computations, we chose typically about N = 160 nodes
and a mesh refinement with exponent 2 at the corners of the polygon.

10.90.80.70.60.50.40.30.20.10

2.5

2

1.5

1

0.5

a −→

6

ρ
Rectangle,
side lengths 1
and a ∈ [0, 1].

a

1

10.90.80.70.60.50.40.30.20.10

2.5

2

1.5

1

0.5

a −→

6

ρ
Rectangular
triangle,
side lengths 1
and a ∈ [0, 1].

A
A

AA

a

1



INTEGRAL EQUATIONS FOR CLAMPED PLATES 5

4035302520151050

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

d −→

6

ρ
2 unit squares,
distance
d ∈ [0, 40].

·

1

·

1

d� -

1001010.1

1

0.1

0.01

0.001

d −→

6

ρ
2 unit squares
(log scale)
distance
d ∈ [0.1, 100].

10001001010.1

10

1

0.1

0.01

0.001

d −→

6

ρ
2 rectangles,
height 1,
width 0.1

·1 ·

0.1

d� -

horizontal
distance
d ∈ [0.2, 500].



6 MARTIN COSTABEL & MONIQUE DAUGE

10001001010.10.010.001

10

1

0.1

0.01

0.001

0.0001

d −→

6

ρ
2 “intervals”,
height 1,
width 10−6

horizontal
distance
d ∈ [10−3, 103].

10001010.10.0011e-051e-07

500

100

10

1

0.1

0.01

0.001

ε −→

6

ρ
4 squares,
side lengths
δ = 2 · 10−6,
ε ∈ [2 · 10−8, 103]
θ = 30◦

·
δ

·1

· ·
� -ε+

3
.........................

....
....

......
...θ

The results show that between 1 and 4 values of ρ can appear and that
double or triple points exist. They show also the extraordinary robustness
of this simple boundary element method: One and the same simple program
with the same number of nodes works fine while one of the dimensions of
the domain varies over 10 orders of magnitude!
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