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Abstract

This is the second of 2 papers in which we study the singularities of solutions of second
order linear elliptic boundary value problems at the edges of piecewise analytic domains
in R3. When the opening angle at the edge is variable, there appears the phenomenon
of “crossing” of the exponents of singularities. In Part I, we introduced for the Dirichlet
problem appropriate combinations of the simple tensor product singularities.

In this second part, we extend the results of Part I to general non-homogeneous bound-
ary conditions. Moreover, we show how these combinations of singularities appear in a
natural way as sections of an analytic vector bundle above the edge. In the case when
the interior operator is the Laplacian, we give a simpler expression of the combined singu-
lar functions, involving divided differences of powers of a complex variable describing the
coordinates in the normal plane to the edge.

INTRODUCTION.

We continue in this paper the investigation of asymptotics along analytic edges
which we began in Part I [1]. The results are generalizations of those announced in
[2].

We use “natural” local coordinates to describe these asymptotics : roughly speak-
ing, y denotes a curvilinear abscissa along an edge, r is the distance to the edge and
θ is an angular variable. Coming from corresponding problems in two-dimensional
sectors, the Ansatz for the singularity type is

ϕκ,q(y, θ) r
νκ(y) logq r (0.1)

where the νκ(y) are the singularity exponents at the point y (they are analytic
functions, combinations of integer numbers and of eigenvalues of the Sturm–Liouville
problem My which is associated to the principal conormal part of the operator in y)
and where the functions ϕκ,q are analytic (they arise from eigenfunctions of My and
from the lower parts of the operator).

We proved in Part I that such an Ansatz is correct away from any “crossing
point” of the singularity exponents, i. e. away from any isolated point y0 where two
of the exponents coincide (νκ(y0) = νκ′(y0) with κ 6= κ′). We also proved (and this



was the main point of our work) that in the neighborhood of such a crossing point,
the functions (0.1) have to be replaced by

ψα(y, θ)S[µα
1 (y), . . . , µα

qα
(y); r] (0.2)

where the functions ψα are analytic and the functions S[. . . ; r] are the divided dif-
ferences of the function λ 7→ rλ at the points µα

1 (y), . . . , µα
qα

(y) which are some of
the exponents νκ(y) meeting in y0. Let us recall (compare Part I, § ??) that, when
µ1, . . . , µK are all distinct, the divided difference of w at the K-tuple µ1, . . . , µK is
defined by the classical recursion formula :

w[µ1] = w(µ1) (0.3)

and for j = 2, . . . , K

w[µ1, . . . , µj] =
1

µ1 − µj

(w[µ1, . . . , µj−1] − w[µ2, . . . , µj]) . (0.4)

Moreover for analytic functions w one has for any µ1, . . . , µK not necessarily distinct

w[µ1, . . . , µK] =
1

2iπ

∫

γ

w(λ)
K∏

j=1

(λ− µj)

dλ (0.5)

where γ is a simple curve surrounding all µj. Thus we have

S[µ1, . . . , µK ; r] =
1

2iπ

∫

γ

rλ

K∏

j=1

(λ− µj)

dλ . (0.6)

We see that S[µ1(y), . . . , µK(y); r] with analytic µ1(y), . . . , µK(y) is a linear combi-
nation of terms of the form rµj(y) logq r with coefficients that are meromorphic in y.
If all µj(y) are equal to the same µ(y) then

S[µ, . . . , µ︸ ︷︷ ︸
q+1 times

; r] =
1

q!
rµ logq r . (0.7)

Thus the singular functions of type (0.2) are linear combinations of singular functions
of type (0.1) with coefficients depending meromorphically on y.

We have proved our results for the special case of the Dirichlet problem for
strongly elliptic operators in Part I. In this Part II, we show how all these results
can be extended to more general second order elliptic boundary value problems (§ 1).

Afterwards, we investigate more closely the singularity types (0.1) and (0.2). We
describe algorithms for their construction (§ 2). We show them from a new point
of view, by proving that they can be considered as sections of some analytic vector
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bundles over the edge (§ 3). We will use certain facts about such bundles which we
have gathered in an appendix (§ 5).

In the case when the interior operator is the Laplacian ∆, we show that it is
possible to give simpler and more explicit formulas for the singularity types (0.1)
and (0.2). Such formulas are inspired by the paper by Maz’ya and Rossmann [11]
where they investigate the question of obtaining asymptotics in two-dimensional
cones which smoothly depend on the opening angle. These new formulas are based
on the divided differences of the function

λ 7→ ζλ where ζ = r eiθ ∈ C.

Then the functions corresponding to ϕκ,q(y, θ) and ψα(y, θ) are simply powers of
e−2iθ, see Theorem 4.1 in § 4.

We refer to the equation numbers and statement labels of Part I by the adjunction
of “I.”.

1. GENERAL BOUNDARY CONDITIONS

Just as in Part I, the domains we consider are three-dimensional bounded Lipschitz
domains Ω with piecewise analytic boundary and analytic edges. For such a domain,
there exists an analytic manifold M of dimension 1 and without boundary such that
∂Ω\M is the disjoint union of a finite number of connected components ∂jΩ, which
are analytic manifolds of dimension 2 and with boundary. M is the union of the
edges and the ∂jΩ are the faces. We assume that near any y ∈M , Ω is analytically
diffeomorphic to a dihedral angle.

In each point y of M , let ω(y) be the opening of Ω in y : more precisely, ω(y) is
the angle between the two tangent planes to ∂Ω at y. We also admit some line of
discontinuity for the boundary conditions or the boundary data, where ω(y) ≡ π in
the whole connected component of M which contains such a line.

Let
A(x; ∂x) =

∑

|α|≤2

aα(x)∂α
x

be an elliptic second order operator with complex coefficients, analytic on Ω. On
each face ∂jΩ let be given an operator Aj of order mj ∈ {0, 1} with analytic coeffi-
cients. We assume that each of these operators Aj covers A on ∂jΩ. If mj = 0, we
can assume without restriction that Aj is the identity, thus we have the Dirichlet
condition there. If mj = 1, this is in general an oblique derivative operator with
possibly a term of order 0. Let us set

m = max
j
mj .
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We want to describe the structure of solutions of the following boundary value
problem : {

Au = f in Ω ,
Aju = gj in ∂jΩ .

(1.1)

We assume regularity hypotheses on the right hand sides : for a positive real number
s (with s > 1/2 if m = 1)





f ∈ Hs−1(Ω) ,
gj ∈ Hs−mj+1/2(∂jΩ) ,
∀j, j′ s.t. mj = mj′ = 0, ∀y ∈ ∂jΩ ∩ ∂j′Ω gj(y) = gj′(y) .

(1.2)

This compatibility condition between Dirichlet data insures the existence of u ∈
H1(Ω) such that u = gj in ∂jΩ for any j such that mj = 0.

For any nonnegative s > m − 1
2
, the operator A := (A,Aj) makes sense on

Hs+1(Ω) and it acts continuously from Hs+1(Ω) into the product

Hs−1(Ω) ×
∏

j

Hs−mj+1/2(∂jΩ) =: H
s−1(Ω).

When m = 1 and when a variational formulation is possible on H1 (for instance
for the Laplace operator with Neumann conditions), by the use of duality we change
the definitions of A and Hs−1(Ω) for 0 ≤ s < 1/2 so that A still acts continuously
on Hs+1(Ω). When a “semi-variational” formulation is possible (for instance for
the Laplace operator with oblique derivative conditions), there exist also natural
definitions for 0 < s < 1/2. See for instance [5]. We set :

• in the case of a variational formulation : β0 = −1/2
• in the case of a semi-variational formulation : β0 = 0
• when no such formulation is possible : β0 = m− 1/2.

Now we adopt correct definitions for A and Hs−1 so that for any nonnegative
s > β0, A is continuous from Hs+1 into Hs−1.

In order to define certain principal conormal operators associated to each point
y of an edge E ⊂ M , we need the introduction of special systems of coordinates.
We fix y as a curvilinear abscissa along E. We denote by Πy the orthogonal plane
to E at the point y. An admissible system of coordinates is a local analytic map
x 7→ (y, z) such that

{
x ∈ Πy ∩ U ⇐⇒ y(x) = y and z(x) ∈ Γy ∩ Uy

x ∈ E ∩ U ⇐⇒ z(x) = 0

where Γy is a plane sector, U is a neighborhood of y and Uy is a neighborhood of 0.
To any such admissible system of coordinates (y, z) =: (y, z1, z2) are associated the
cylindrical coordinates (y, r, θ), where

r =
√
z2
1 + z2

2 and θ = Arctan
z2
z1
.
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Let Γω be the plane sector with opening ω. The following two types of choice
are possible for the family of plane sectors Γy :

1. The sector Γy is equal to Γω(y). This choice will be used to obtain more
information about the case when the interior operator is the Laplacian.

2. The sector Γy is equal to Γω, where ω is fixed. It is possible to choose the
same ω for all points y ∈ E. It suffices that ω belongs to the same set as any
of the ω(y), y ∈ E among the three following ones (0, π), {π} and (π, 2π).

Let (y, z) 7→ (ỹ, z̃) be a change of admissible system of coordinates. We have

ỹ(y, z) = y ∀y, z (1.3)

and
z̃(y, 0) = 0 ∀y. (1.4)

Relations (1.3) yield the following properties for the Jacobian matrix J(y, z) which
we write in block form :

J(y, z) =




∂ỹ
∂y

∂z̃
∂y

∂ỹ
∂z

∂z̃
∂z


 =




1 ∂z̃
∂y

0 ∂z̃
∂z


 .

Moreover, relation (1.4) shows that we have on the edge

J(y, 0) =

(
1 0

0 ∂z̃
∂z

)
. (1.5)

Now we are able to introduce the three conormal operators B
±
0 (y; ∂z) and M(y; ∂z)

which have the following role :

1. The two operators B
±
0 (y; ∂z) come from the principal conormal operator val-

ued symbol of A. We will make hypotheses of injectivity on them. Roughly
speaking A is supposed to be injectively elliptic along the edge.

2. The operator M(y; ∂z) generates the analytic family of operators (here Sturm–
Liouville problems) whose eigenvalues are the leading exponents of the singu-
larities.

In the neighborhood of any point y0 ∈ M , we choose an admissible system of
coordinates : y in an interval I ′ and z in a neighborhood of 0 in Γy. The operator
A is transformed into a triple B := (B,B1,B2) where B is the interior operator and
B1,B2 are the boundary operators on the two faces which meet the edge in y0. Let
mj be the order of Bj .

Let B0(y; ∂y, ∂z) denote the principal part of B frozen on the edge :

B0(y; ∂y, ∂z) = (ppB, ppB1, ppB2)(y, 0; ∂y, ∂z)
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where ppB, resp. ppBj is the homogeneous part of degree 2, resp. mj .

We need the following three operators defined on the sector Γy :

B
±
0 (y; ∂z) := B0(y;±i, ∂z). (1.6)

and
M(y; ∂z) := B0(y; 0, ∂z). (1.7)

From the operator M we construct in the standard way (see [6]) the holomorphic
family of operators

My(λ) : H2(0, ωy) −→ L2(0, ωy) × C
2.

where ωy is the opening of the sector Γy. My(λ) consists of an interior operator
My(λ) and two boundary operators in θ = 0 and θ = ωy. The interior operator
is constructed as follows : we write the interior operator My(y; ∂z) in cylindrical
coordinates

r2M(y; ∂z) = M(y, θ; r∂r, ∂θ) (1.8)

and My(λ) is the Mellin symbol of M(y) :

My(λ) = M(y, θ;λ, ∂θ) . (1.9)

The boundary operators are constructed in the same way, taking into account their
order mj .

For each fixed y ∈ I ′, My(λ) is invertible except on a countable set, the spec-
trum, which we denote Sp(My). The set of the real parts of Sp(My) is denoted
by ReSp(My). Later in this section, we are going to give information about the
structure of this spectrum.

For the injectivity conditions, we need the ordinary Sobolev spaces Hs(Γ) and
also the weighted spaces Es

0(Γ) (see (I.??)) :

Es
0(Γ) = {v ∈ Hs(Γ) | r|α|−s∂α

z v ∈ L2(Γ), ∀α ∈ N
2, |α| ≤ s}.

Definition 1.1 Let y ∈ I ′ and β ≥ 0. We say that β satisfies the condition (CV)
in y if there holds :

(CV)





β 6∈ ReSp(My)
β > β0

B
+
0 (y) and B

−
0 (y) are injective on Eβ+1

0 (Γ) .

If β is a nonnegative function on I ⊂ I ′ we say that β satisfies (CV) on I if ∀y ∈ I,
β(y) satisfies the condition (CV) in y.

Definition 1.2 Let y ∈ I and β ≥ 0. We say that β satisfies the condition (CH) in
y if there holds :

(CH)






β 6∈ ReSp(My)
β > β0

B
+
0 (y) and B

−
0 (y) are injective on Hβ+1(Γ) .
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If β is a nonnegative function on I ⊂ I ′ we say that β satisfies (CH) on I if ∀y ∈ I,
β(y) satisfies the condition (CH) in y.

The elements of the kernel of B
±
0 (y) in any weighted Sobolev space are rapidly

decreasing when r → ∞ – cf [8]. Therefore we have

Lemma 1.3

(i) If β satisfies (CH), then β satisfies (CV).
(ii) If β satisfies (CV) and β ′ ≥ β is such that

β ′(y) 6∈ ReSp(My) ∀y ∈ I ′

then β ′ satisfies (CV).

Remark 1.4

(i) Concerning Dirichlet, Neumann or mixed Dirichlet-Neumann problems for strongly
elliptic operators, it follows from results of Agmon (see [13]) that B

±
0 (y) are asso-

ciated to coercive forms on H1(Γ) ; therefore conditions (CV) and (CH) hold for
β = 0. See also [12] for general self-adjoint problems.

(ii) Concerning oblique derivative problems for the Laplace operator, the validity
of condition (CH) depends on the sign of an angle ϑ(y) which is the difference
ϑ2(y)− ϑ1(y) where ϑj(y) is the angle between the oblique derivative direction and
the normal direction (in the normal plane to the edge Πy). When ϑ(y) ≤ 0, condition
(CH) holds for any β > 0 small enough. When ϑ(y) > 0, condition (CH) holds for

β > ϑ(y)
ω(y)

(compare [9], [5]).

(iii) For any (second order) elliptic boundary value problem, there always exists β
large enough so that condition (CV) holds : see [3].

(iv) Conditions (CV) and (CH) are invariant, i. e. they are independent of the choice
of admissible coordinates, as can be seen from the form (1.5) of the Jacobian matrix :
we have

B̃
±
0 (ỹ; ∂z̃) = B

±
0 (y;

(
∂z̃

∂z
(y, 0)

)
· ∂z).

Such injectivity conditions yield some a priori estimates and tangential regularity
for the operator B. Let us note that [8] and [10] use an isomorphism condition for
the operators B

±
0 (y), which is necessary for index results but not for tangential

regularity and expansions results.

We assume now that the coordinates are chosen so that ωy = ω does not depend
on y. The sector of opening ω is simply denoted by Γ and for 0 < ρ < ρ′, Γρ, resp.
Γρ′ denotes the set of the points in Γ with r < ρ, resp. r < ρ′. Let us recall from
Part I the definition (I.??) of the weighted space

V s
0 (I × Γρ) = {v ∈ Hs(I × Γρ) | r

|α|−s∂α
z v ∈ L2(I × Γρ), ∀α ∈ N

2, |α| ≤ s}.
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Theorem 1.5 Let β ≥ 0 be a real number.
(i) If β satisfies (CV) on I ′ then for any u ∈ V β+1

0 (I ′ × Γρ′) there holds

‖u‖
V β+1
0 (I×Γρ)

≤ C (‖Bu‖
V

β−1
0 (I′×Γρ′)

+ ‖u‖
V β
0 (I′×Γρ′)

) .

(ii) If β satisfies (CH) on I ′ then for any u ∈ Hβ+1(I ′ × Γρ′) there holds

‖u‖
Hβ+1(I×Γρ)

≤ C (‖Bu‖
Hβ−1(I′×Γρ′)

+ ‖u‖
Hβ(I′×Γρ′ )

) .

A proof of this theorem can be given using standard techniques, following the
lines of the proofs for the closed range properties in [4], which are similar to the
arguments in [8].

For the tangential regularity, we use the spaces Hs,t and V s,t
0 with additional

regularity t in the direction y which we introduced in Part I, § ??.

Theorem 1.6 Let β ≥ 0 and t > 0 be real numbers.
(i) We assume that β satisfies (CV) on I ′. Let t > 0. If u ∈ V β+1

0 (I ′ × Γρ′) is such

that Bu ∈ V
β−1,t
0 (I ′ × Γρ′) then u ∈ V β+1,t

0 (I × Γρ).

(ii) We assume that β satisfies (CH) on I ′. Let t > 0. If u ∈ Hβ+1(I ′ × Γρ′) is such
that Bu ∈ Hβ−1,t(I ′ × Γρ′) then u ∈ Hβ+1,t(I × Γρ).

The proof is based upon Theorem 1.5 and follows the same steps as the proof of
Proposition I.??. It is known [3] that conditions (CV) and (CH), respectively, are
also necessary for the tangential regularity results (i) and (ii).

This property of tangential regularity is a necessary condition for the existence
of splittings such as the following ones in Theorem 1.8. Before stating it, we fix
some notations for the exponents of singularities. These exponents are constructed
from the spectrum of My.

We show that in our situation the spectrum Sp(My) of My consists of simple
eigenvalues which depend analytically on y. This is seen by explicitly solving the
Sturm-Liouville eigenvalue problem as follows : one can write the interior differential
operator My as a product of first order operators

(∂z2 − a1∂z1) (∂z2 − a2∂z1)

with z = (z1, z2), and a1, a2 complex numbers with Im a1 < 0 and Im a2 > 0.
Therefore, two independent solutions of the differential equation My(λ)K = 0 on
(0, ω) are given by

Kj(λ)(θ) = eλFj(θ), j = 1, 2

when λ 6= 0, with

Fj(θ) =
∫ θ

0
fj(ζ) dζ where fj(θ) =

aj cos θ − sin θ

aj sin θ + cos θ
.
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Calculating the characteristic determinant with the use of boundary conditions we
obtain an equation of the form

λm sinh

(
(λ− γ)

F2(ω) − F1(ω)

2

)
= 0

where m ∈ N and γ depends analytically on a1, a2 and the coefficients of the
boundary operators. We set

ν =
2iπ

F2(ω) − F1(ω)
(1.10)

So Sp(My) is the set of kν + γ, k ∈ Z.

As particular cases we find that
• for the Dirichlet problem γ = 0,
• for the Laplace operator ν = π/ω,
• for ∆ with mixed Dirichlet–Neumann conditions γ = π/(2ω).

Notation 1.7 Let β be a smooth nonnegative function on I ′. We assume that

∀y ∈ I ′, β(y) 6∈ ReSp(My)

For each y ∈ I ′ let ν1(y) be the only element of Sp(My) satisfying

Re ν1(y) > β(y)

and ν1(y) has the least real part satisfying this property in Sp(My). The map y 7→
ν1(y) is analytic on I ′.

The other elements λ of Sp(My) such that Reλ > β have the form

ν1(y) + (k − 1)ν(y) := νk(y), for k ≥ 1.

Their translations by integers are denoted by νkl :

νkl(y) := νk(y) + l, for l ≥ 0.

To have a unique notation we set

ν0l := l, for l ≥ 0.

We can state the main result of this section.

Theorem 1.8 Let β be a nonnegative function as in the previous Notation 1.7. Let
s be a positive number, s > β. We assume that

{
β satisfies condition (CV),

u ∈ V β+1
0 (I ′ × Γρ′) and Bu ∈ Hs−1(I ′ × Γρ′)
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or {
β satisfies condition (CH),

u ∈ Hβ+1(I ′ × Γρ′) and Bu ∈ Hs−1(I ′ × Γρ′).

Let ε0 > 0 be given. Then for all y0 ∈ I ′ there exists I ⊂⊂ I ′ with y0 ∈ I and the
following splitting of u :

u = w +
∑

α

(cα ∗ Φ)(y, r)ψα(y, θ)S[µα
1 (y), . . . , µα

qα
(y); r] (1.11)

with
w ∈ V s+1−ε0

0 (I × Γρ) .

Here µα
j ∈ {νkl | (k, l) ∈ N2; Re νkl < s ∀y ∈ I} and for all α one has

cα ∈ Hs−µα−ε0(I)

with µα(y) = max{Reµα
j (y) | j = 1, . . . , qα}.

The ψα are analytic functions on I × [0, ω] and independent of u.

Proof. Since the proof follows the same lines as that for the Dirichlet problem
(Theorem I.??), we do not repeat all the details, but indicate only the necessary
changes :
• If condition (CH) holds, we want to reduce to the case when u belongs to a weighted
space V s0+1

0 (I ′ × Γρ′). By localization, we can assume that β is constant. If β 6∈ N,
we take s0 = β. If not we choose s0 slightly greater so that s0 6∈ N and

[β, s0] ∩ ReSp(My) = ∅, y ∈ I ′.

Then u ∈ Hs0+1(I × Γρ) – cf [4]. Then we use the Taylor expansion of u according
to Lemma I.??. For |α| < s0 we have the traces

gα(y) :=
1

α!
∂α

z u(y, 0) ∈ Hs0−|α|(I ′) .

Then
u0(y, z) := u(y, z) −

∑

|α|<s0

(gα ∗ Φ)(y, r) zα ∈ V s0+1
0 (I × Γρ) .

Since s0 satisfies condition (CH) too, Theorem 1.6 yields that

u ∈ Hs0+1,s−s0(I × Γρ).

Therefore the trace gα belongs to Hs−|α|(I). This implies that for the lifting of traces
we have : ∑

|α|<s0

(gα ∗ Φ)(y, r) zα ∈ Hs+1(I × Γρ) .

Now we see that u0 ∈ V s0+1
0 (I × Γρ) is such that Bu0 ∈ Hs−1(I ′ × Γρ′). Since s0

satisfies (CV), this reduction is complete.

• We have to perform rather obvious modifications to take into account the different
orders of the operators B, B1 and B2. As an example let us explain the modifications
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in the statements concerning operations about singular functions : Lemmas I.??
and I.?? and Proposition I.??.
In Lemma I.??, B has to be replaced by B and M by M. u is the same and f is
now the triple (f, h1, h2) given by the corresponding formula :

u(x) := (c ∗ Φ)(y, r)ψ(y, θ)S[µ1(y), . . . , µJ(y); r]

and
(f, h1, h2)(x) := (c ∗ Φ)(y, r) M

[
ψ(y, θ)S[µ1(y), . . . , µJ(y); r]

]
.

Then, with the same µ, cl,p, ϕl,p and µl,p
q ,

Bu = f +
L∑

l=1

∑

p

(fl,p, h
1
l,p, h

2
l,p) + (g, g1, g2) ,

where
g ∈ H∞

−β+1−µ+ε(I × Γρ) ∀ε > 0

gj ∈ H∞
−β+mj−1/2−µ+ε(I × ∂jΓρ) ∀ε > 0

and

fl,p(x) := (cl,p ∗ Φ)(y, r)ϕl,p(y, θ)S[µl,p
1 (y) − 2 + l, . . . , µl,p

ql,p
(y) − 2 + l; r] ;

hj
l,p(x) := (cl,p ∗ Φ)(y, r)ϕj

l,p(y)S[µl,p
1 (y) −mj + l, . . . , µl,p

ql,p
(y) −mj + l; r] .

In Lemma I.?? the functions fl,p and g are changed exactly as above. Instead of a
simple function f , we have to consider in Proposition I.?? three sorts of right hand
sides F : (f, 0, 0), (0, h1, 0) and (0, 0, h2) with

f(x) := (c ∗ Φ)(y, r)ϕ(y, θ)S[µ1(y) − 2, . . . , µq(y) − 2; r] ;

and
hj(x) := (c ∗ Φ)(y, r)ϕj(y)S[µ1(y) −mj , . . . , µq(y) −mj ; r] .

Then the solution u has the same form and the remainder Bu − F belongs to
H∞

−β+1−µ+ε0
(I × Γρ) where

H
∞
δ+1(I × Γ) := H∞

δ+1(I × Γ) ×H∞
δ+m1−1/2(I × ∂1Γ) ×H∞

δ+m2−1/2(I × ∂2Γ).

Remark 1.9 A semi-global version of the previous theorem also holds : compare
Theorem I.??.

Remark 1.10 We have to use both conditions (CV) and (CH) for the following
reasons:
• If we want to obtain an expansion for a variational solution in H1, we have to
use condition (CH) for β = 0 for the Neumann problem. Condition (CV) would not
be sufficient because in general a solution of the Neumann problem, even with flat
data, does not belong to the space V 1

0 .
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• On the other hand for Dirichlet or mixed Dirichlet-Neumann problems, the con-
dition (CV) in β = 0 is sufficient, because if the Dirichlet data are zero or even with
a zero Taylor expansion at the edge, the variational solution belongs to V 1

0 .

2. THE STRUCTURE OF THE SINGULARITIES

In this section we take a closer look at the structure of the singular functions that
appear in the decomposition (1.11) and in Part I, (I.??), (I.??) and (I.??). In
particular, we want to describe the procedure, contained in the proof of Theorem 1.8
– which is based on the proof of Theorem I.?? –, that generates the singularity type,
that is the part of the singular functions which depends only on the geometry of the
domain and the differential operators but not on the right hand sides.

Thus we consider singular functions

ψα(y, θ)Sα(y, r) with Sα(y, r) = S[µα
1 (y), . . . , µα

qα
(y); r] (2.1)

that appear in the decomposition (1.11) of Theorem 1.8. The index α spans a finite
set A(s, I). For each α, ψα is analytic in y ∈ I and Sα is the radial part of this
singularity type. Thus the set

{ψα(y, θ)Sα(y, r) | α ∈ A(s, I)}

is a generating set of singular functions, by which we mean any set of functions
ψα(y, θ)Sα(y, r) such that the decomposition (1.11) can be written with the singular
part in the form

using =
∑

α

(cα ∗ Φ)(y, r)ψα(y, θ)Sα(y, r)

with coefficients cα of the appropriate regularity.

Our decomposition Theorem 1.8 merely states the existence of the analytic func-
tions ψα(y, θ), but our proofs contain a certain iterative algorithm that produces
them. The set of the corresponding singularities ψα Sα is not minimal in general,
yet this algorithm still serves its threefold purpose : In the decomposition theorems,
it allowed norm estimates for the coefficients and the regular part of the solution,
and in the next two sections it will be used to reveal the analytic bundle structure of
the singularity type and to describe in a simple way the explicit form of the singular
functions in the case of the Laplace equation.

We will describe at the end of this section another version of this algorithm that
does indeed, for the case of the simple asymptotics, give a minimal set of singular
functions and which is necessarily more complicated.

Let us now begin with the description of the elementary algorithm. We use the
notations of the previous section, in particular M(y; ∂z) for the conormal principal
part of the operator B, and My(λ) for the corresponding family of Sturm–Liouville
operators on [0, ωy] defined by Mellin transformation.
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Proposition 2.1 Let I be an interval where a splitting (1.11) holds. Let α be an
index in A(s, I). Then one of the following three possibilities is verified :

(a) M(y; ∂z) (ψα Sα) = 0,

(b) ψα Sα is a polynomial in the coordinates (z1, z2) with coefficients depending an-
alytically on y ∈ I,

(c) There exist α1, . . . , αm ∈ A(s, I) such that with α0 = α , the radial parts
Sα0 , . . . , Sαm

are independent functions and such that

M(y; ∂z)
( m∑

j=0

ψαj
Sαj

)
= zγ ∂p

y ∂
δ
z (ψβ Sβ) . (2.2)

where |γ| + 1 ≥ |δ|, p+ |δ| ≤ 2, and β ∈ A(s− 1, I).

Indeed all singular functions ψα Sα in the decomposition (1.11) of Theorem 1.8 are
inductively generated by either (a), (b), or repeated application of (c) with a right
hand side ψβ Sβ generated in a previous induction step.

Proof. One only has to inspect the proofs of the decomposition theorems as
given in Part I. In particular, situation (a) corresponds to the case of flat right hand
sides, see Proposition I.??. Situation (b) corresponds to the Taylor expansion of the
solution u at the edge, and situation (c) corresponds to the case of singular right hand
sides, see Proposition I.??. The latter is repeatedly applied in the final induction
proof of Theorem I.??. Note that crossings of exponents are only generated by part
(c) of the algorithm.

In the same way one obtains a certain converse of Proposition 2.1.

Proposition 2.2 Let Ψs = {ψα(y, θ)Sα(y, r) | α ∈ A} be a set of functions of the
form (2.1) that satisfy :

(i) ψα(y, θ) is analytic in y ∈ I, θ ∈ [0, ωy],

(ii) For each y ∈ I, Ψs contains a basis for the solutions of steps (a) and (b), i. e.
for the eigenfunctions and the polynomials of exponents less than s,

(iii) There is an ε > 0 such that for any β ∈ A, Ψs contains ψαj
Sαj

, (j = 0, . . . , m),
such that

∑m
j=0 ψαj

Sαj
is a solution of (2.2) and

min{µ
αj

| j = 0, . . . , m} ≥ µ
β

+ ε

where µ
α

= inf{µα
q (y) | y ∈ I, q = 1, . . . , qα}.

Then Ψs is a generating set of singular functions in the sense defined above.

The smaller is the set {Sα(y, r) | α ∈ A(s, I)} of the radial parts, the better is
the accuracy of the algorithm. In the iterative procedure, the radial parts Sαj

and
Sα in step (c) are related in a way which can be described more precisely. We are
going to do that when the interval I contains no “crossing points” of the exponents
νκ.
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In Part I, we also described the singularities outside of the “crossing points”.
These “simple asymptotics”, see Theorem I.??, are of course also valid in the more
general setting of this Part II. Indeed they are a particular situation of the asymp-
totics in Theorem 1.8 : when there is no crossing point in I, the mixing between
different exponents νκ in the radial part of a singularity type is no more necessary.
So to each α ∈ A(s, I) is associated a triple (κ, q, n) according to the notations of
Theorem I.?? with the following rules





∀j = 1, . . . , qα µα
j = νκ

q = qα − 1
n describes a finite set {1, . . . , nκ,q}.

Now we consider the corresponding singular types ψα Sα :

ψα(y, θ)Sα(y, r) = ϕκ,q,n(y, θ) r
νκ(y) logq r

– compare with (0.7) –, that appear in the decomposition (I.??) of Theorem I.??.
The function ϕκ,q,n is analytic in y and θ for y ∈ I. In this situation, we can write
the elementary algorithm of Proposition 2.1 in a more explicit way.

Proposition 2.3 Let I be an interval without crossing point where a splitting (I.??)
holds. Let α ≡ (κ, q, n) be an index in A(s, I). Then one of the following three
possibilities is verified :

(a) κ = (k, 0), q = 0, n = 1 and M(y; ∂z) (ϕκ,q,n r
νk) = 0,

(b) κ = (0, l), q = 0 and ϕκ,q,n r
l is a polynomial in the coordinates (z1, z2) with

coefficients depending analytically on y ∈ I,

(c) κ = (k, l) with k 6= 0 and l 6= 0, and there exist m ≥ q and n0, . . . , nm such that

M(y; ∂z)
(
ϕκ,q,n(y, θ) r

νκ logq r +
m∑

j=0
j 6=q

ϕκ,j,nj
rνκ logj r

)
= zγ ∂p

y ∂
δ
z (ϕκ̃,q̃,ñ r

νκ̃(y) logq̃ r)

(2.3)
where |γ| + 1 ≥ |δ|, p+ |δ| ≤ 2, and

νκ = νκ̃ + |γ| + 2 − |δ| i. e. k = k̃ and l = l̃ + |γ| + 2 − |δ|.

The situation (a) simply means that ϕ(y, ·) is an eigenfunction of My i. e., a
solution of

My(νk(y))ϕ(y, ·) = 0.

In this case ϕ can be chosen such that it has an analytic extension to any interval
I ′ ⊃ I on which admissible coordinates are defined.

Also in case (b) these coefficients can be chosen in such a way that ϕ has an
analytic extension to such an I ′.

The situation (c) can also be described explicitly.
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Corollary 2.4 Let I be an interval without crossing point where a splitting (I.??)
holds. Let I ′ ⊃ I be an interval on which admissible coordinates are defined. Let
us choose ϕκ,q,n(y, θ) analytic in y and θ for y ∈ I ′ in the initiating steps (a) and
(b) of the above algorithm (i. e. for κ = (k, 0) or (0, l)). Then for any index
α ≡ (κ, q, n) ∈ A(s, I), ϕκ,q,n(y, θ) has an extension to I ′ which is analytic in θ and
meromorphic in y.

Proof. One only has to describe the step (c) of the algorithm explicitly. The right
hand side of (2.3) is of the form

q̃+k∑

j=0

ψj(y, θ) r
µ(y)−2 logj r if µ(y) = µ̃(y) + |γ| − |δ| + 2.

where µ stands for νκ. Now we can construct the solutions ϕl(y, θ), l = 0, . . . , q0 of

M(y; ∂z)
( q0∑

l=0

ϕl(y, θ) r
µ(y) logl r

)
=

q̃+k∑

j=0

ψj(y, θ) r
µ(y)−2 logj r (2.4)

explicitly. Our function ϕκ,q,n(y, θ) is then given by ϕq(y, θ). We solve (2.4) by
Mellin transformation :

q0∑

l=0

ϕl(y, θ) l!

(λ− µ(y))l+1
=

q̃+k∑

j=0

My(λ)−1ψj(y, ·) j!

(λ− µ(y))j+1
. (2.5)

From this it follows that ϕq(y, θ) is given by the coefficients of the Laurent expansion
of My(λ)−1ψj(y, ·) at λ = µ(y) :

ϕq(y, θ) = Res
λ=µ(y)

q̃+k∑

j=0

j!

q!
My(λ)−1ψj(y, ·) · (λ− µ(y))q−j−1 . (2.6)

Now it suffices to check the following lemma.

Lemma 2.5 If y 7→ ψ(y) and y 7→ µ(y) are analytic on I ′ and if m ∈ N, then the
function

y 7→ ϕ(y) := Res
λ=µ(y)

My(λ)−1ψ(y, ·) · (λ− µ(y))−m

is meromorphic on I ′. If ψ is only meromorphic on I ′, then ϕ is still meromorphic
on I ′.

Proof. • If µ ≡ νk,0, then (λ− µ(y))My(λ)−1 is analytic in y and λ for y ∈ I ′ and
λ in a neighborhood of µ(y). Then

m!ϕ(y) = ∂m
λ

(
(λ− µ(y))My(λ)−1

)∣∣∣
λ=µ(y)

· ψ(y)

Then ϕ is analytic if ψ is analytic.

• If there is a crossing in y0, i. e. if µ(y0) = νk(y0) and µ(y) 6= νk(y) for y ∈ I ′ \{y0},
we see that for y 6= y0 (if m ≥ 1)

(m− 1)!ϕ(y) = ∂m−1
λ My(λ)−1

∣∣∣
λ=µ(y)

· ψ(y) .
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As ∂d
λMy(λ)−1 is obtained by composing My(λ)−1 and derivatives ∂d′

λ My(λ) of My(λ),
we obtain the lemma.

Whereas this simple form of the algorithm was sufficient for our purposes, there
is a more precise version for the case of the simple asymptotics which we will describe
now. For simplicity, we consider the Dirichlet problem only.

Proposition 2.6 Let the hypotheses of Theorem I.?? be satisfied. Then for the
singular part of the solution u there exists the following more precise description

using =
∑

|β|<s

(cβ ∗ Φ)
zβ

β!
+

∑

k,l : νk,l<s

l∑

j=0

(dj
yck ∗ Φ) Skl,j (2.7)

where cβ ∈ Hs−|β|−ε(I) and ck ∈ Hs−νk−ε(I) for all ε > 0 and

Skl,j =
∑

q

ϕkl,jq(y, θ) r
νkl logq r

with functions ϕkl,jq(y, θ) analytic in y ∈ I, θ ∈ [0, ωy].

Our algorithm gives a formula of recursion for the singular functions Skl,j. In
order to formulate this, we introduce the following decomposition of the operator B
into homogeneous components : Let bαm be the coefficients of B and bαmβ be their
Taylor expansions according to :

B =
∑

|α|+m≤2

bαm(y, z) ∂α
z ∂

m
y and bαmβ(y) = ∂β

z bαm(y, z)
∣∣∣
z=0

.

Then we set

Bmτ (y, z; ∂z) :=
∑

|β|+2−|α|=τ

bαmβ(y)
zβ

β!
∂α

z . (2.8)

Note that if τ = 0 then m = 0 and that B00 = M .

Proposition 2.7 Let the hypotheses of the previous Proposition 2.6 be satisfied.
Then we have the following recursion formula for any k ∈ N

∗ and l ≥ 1 such that
νkl < s and any j ≤ l :

M(y, ∂z)Skl,j = −
l∑

τ=1

min(2,j)∑

m=0

m∑

n=0

(
m

n

)
Bmτ

(
∂m−n

y Sk,l−τ, j−n

)
. (2.9)

Here M(y, ∂z)S = T means the interior equation M(y, ∂z)S = T and the zero Dirich-
let conditions.

This algorithm corresponds to case (c) of Proposition 2.1. The case (b) obviously
corresponds to the first part of the asymptotics (2.7). The initiation of the algorithm
comes from Sk0,0 which is in the situation (a). We note that the function ϕκ,jq is
a linear combination with analytic coefficients cn(y) in I of the functions ϕκ,q,n in
Proposition(2.3).
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3. SINGULAR FUNCTIONS AS SECTIONS OF

ANALYTIC VECTOR BUNDLES

The singular functions are separated into coefficients c(y) depending on the right
hand sides of the differential equations and functions

ψ(y, θ) S[µ1(y), . . . , µq(y); r]

depending only on the geometry of the domain and the differential operators. This
separation which is by no means unique, can be described by associating invariant
objects, namely a family of analytic vector bundles over the edge, to the geometry
and the differential operators, and regarding the actual singular functions as sections
of these bundles.

This point of view allows a better understanding of the asymptotics in the neigh-
borhood of crossing points. There we have the phenomenon that the number of basis
functions ψα Sα of the form (2.1) needed to describe the singularities of a function
u is, in general, higher than the number of basis functions ϕκqr

νκ logq r needed to
describe the “simple asymptotics” in an interval not containing any crossing point.
This was seen in the simplest example in § I.??. There the simple asymptotics was
described by two basis functions for each y different from the points where the two
corresponding exponents coincide. In the crossing points themselves, the singulari-
ties are still described by two coefficients and two basis functions. Using the form
(2.1) for the singularities, however, one introduces three basis functions. There are,
however, still only two linearly independent coefficients. This situation is a simple
case of that one described in Proposition 3.4, namely that the bundle defined by the
simple asymptotics away from the crossing points (Theorem I.??) is a subbundle
of the bundle defined by the the asymptotics at the crossing points as described in
Theorems 1.8, I.?? and I.??.

The bundles defined by the simple asymptotics outside the crossing points, have
a unique extension as analytic bundles over the whole edge including the crossing
points. The sections of these extensions can be written in terms of the functions
ψ(y, θ) S[µ1(y), . . . , µq(y); r] (Theorem 3.3). Thus these functions, and the larger
bundles generated by them, appear here in a very natural way as function theoretic
objects.

Let us now define the bundles in question. We fix an interval J on the edge
for which an admissible system of coordinates exists. We shall consider two kinds
of vector bundles over J , bundles which are generated by functions of (y, θ) only
and bundles which are generated by functions of (y, r, θ). Thus we consider two
“large” bundles with Hilbert space fibers in which all our analytic vector bundles
with finite fiber dimension will be embedded as subbundles. For the first one, we
require that continuous functions ϕ(y, θ) (y ∈ J, θ ∈ [0, ωy]) are sections of this
bundle X1 with Hilbert space fiber X1(y) which can be taken for instance as X1(y) =
L2(0, ωy). For the second case, we choose the Hilbert space fiber X2(y), for example,

as L2(R+ × [0, ωy]; dµ) with dµ(r, θ) = e−r− 1
r dr dθ, or also as L2([1, 2] × [0, ωy]). In
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any case, for continuous functions ϕ(y, θ) (y ∈ J, θ ∈ [0, ωy]), µ(y) (y ∈ J) and q in
N, the function ϕ(y, θ) rµ(y) logq r will appear as a section of this bundle.

Now we consider a subinterval I ⊂ J . We fix integers k, l and q and set κ = (k, l).
We assume that there is no crossing point for the exponent νκ(y) in I, i. e.

νκ(y) 6= νκ′(y) ∀y ∈ I if κ 6= κ′. (3.1)

We say that an analytic function ϕ rνκ logq r “appears as a singular function” if
the following condition is satisfied :
There exists a finite number of analytic functions ψκ′q′ with (κ′, q′) 6= (κ, q) such
that the function

u(y, r, θ) = ϕ(y, θ)rνκ(y) logq r +
∑

κ′q′
ψκ′q′(y, θ)r

νκ′(y) logq′ r (3.2)

is locally a solution of the boundary value problem with regular right hand side :
For some s > νκ(y) ∀y ∈ I :

Bu ∈ V
s−1
0 := V s−1

0 ×
∏

j

V
s−mj+1/2
0 . (3.3)

Let now Ψκq(I) be the set of all analytic functions ϕ(y, θ) such that the func-
tion ϕ rνκ logq r appears as a singular function. According to our decomposition
Theorem I.??, there is a finite number of analytic functions

ϕκqn for n = 1, . . . , nκq

such that every ϕ ∈ Ψκq(I) can be written as

ϕ(y, θ) =
nκq∑

n=1

cn(y)ϕκqn(y, θ) (3.4)

with analytic coefficients cn(y).

This shows that for any y ∈ I, the space span{ϕ(y, ·) | ϕ ∈ Ψκq(I)} is a subspace
of the finite–dimensional fiber at y of the bundle

span{ϕκqn | n = 1, . . . , nκq}

(see Definition 5.4).

One can therefore select ϕ1, . . . , ϕn ∈ Ψκq(I) such that ϕ1(y), . . . , ϕn(y) span
this subspace for all y except for a finite number of points. It is easy to see that
the subbundle span{ϕ1, . . . , ϕn} is the unique analytic bundle that extends span{ϕ |
ϕ ∈ Ψκq(I)}. In this sense we define

Definition 3.1 Bκq(I) = span{Ψκq(I)}.
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Remark 3.2 By definition, the analytic sections of Bκq(I) contain the functions
necessary to describe the edge asymptotics in the case where the coefficients ck are
analytic. The precise version of the algorithm for the construction of the singularity
types given in Proposition 2.7 shows that these same functions suffice to describe
the (“simple”) edge asymptotics also in the case where the coefficients have a finite
regularity. The bundles Bκq are minimal in this sense. Note, however, that the fiber
dimension of the Bκq does, in general, not give the right number of independent
coefficients. Namely, it is impossible to capture, in the framework of vector bundles,
the dependence among the coefficients that is given by differential operators, see
Proposition 2.6.

Now we use Corollary 2.4 which implies that the generating sections ϕ1, . . . , ϕn

of Bκq(I) can be chosen in such a way that they have a meromorphic extension on
the whole interval J . By Remark 5.3, this defines a unique extension of Bκq(I) to
an analytic vector bundle over J which we denote by Bκq(J).

These bundles Bκq(J) and their sums contain now a description of the singular
functions also at the crossing points in J , and this in a minimal way. We will now
show how this description is related to that one given in our decomposition theorems.

To this purpose we define first some more bundles. Firstly, we reattach the
functions rνκ(y) logq r to the bundles Bκq(J) and look at this in the neighborhood
of a crossing point. Thus let now the interval I contain one crossing point y0 with
the corresponding exponents µ0

1, . . . , µ
0
j0

– see Section I.?? in Part I. We recall the
notations of this § I.??, in particular Ky0,j for the indices of the exponents νκ that
satisfy νκ(y0) = µ0

j , and Ky0 =
⋃j0

j=1 Ky0,j. We define

Bj = span
{
rνκ(y) logq r · ϕ(y, θ) | κ ∈ Ky0,j, q ∈ N, (3.5)

ϕ is an analytic section of Bκq(I)
}

= span
{
rνκ(y) logq r · Bκq(y) | κ ∈ Ky0,j, q ∈ N

}
.

Next, we repeat the above constructions where we replace now the simple asymp-
totics by the asymptotics as we described them for the crossing points in Theo-
rems 1.8, I.??, I.??. Since we do not strive for minimality here, we can simply
define the bundles Dj as follows :
Let Σj be the set of all functions ψα Sα for α ∈ A(s, I) – see § 2 where they are
constructed according to the algorithm in Proposition 2.1 – and such that

Sα = S[µα
1 , . . . , µ

α
qα

; r] with µα
1 (y0), . . . , µ

α
qα

(y0) = µ0
j .

We consider these functions as sections of the bundle X2, and we define

Dj := span{Σj} . (3.6)

The relation between the bundles Bj and Dj is given by the following description
of the sections of Bj .
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Theorem 3.3 Let Cκq be analytic subbundles of X1 over I with finite fiber dimen-
sions and define the subbundle of X2

Cj := span
{
rνκ(y) logq r · Cκq(y) | κ ∈ Ky0,j , q = 1, . . . , q0

}
. (3.7)

Then any analytic section of Cj is of the form

v(y, r, θ) =
K∑

l=1

S[νκ1, . . . , νκl
; r] · ψl(y, θ) (3.8)

with κl ∈ Ky0,j for l = 1, . . . , K and the functions ψl are analytic sections of

span
{
Cκq(y) | κ ∈ Ky0,j, q = 1, . . . , q0

}
.

Proof. Let v be such a section. Then v is an analytic function in the variables r,
y, θ. For y 6= y0, v is of the form :

v(y, r, θ) =
∑

κ,q

rνκ(y) logq r · ϕκq(y, θ) (3.9)

with analytic sections ϕκq of Cκq(I \{y0}). This follows from the linear independence
of the functions

(r, θ) 7→ rνκ(y) logq r · ϕκq(y, θ)

for different (κ, q) if y ∈ I \ {y0}.

Now let

w(y, λ, θ) =
∫ 1

0
r−λ−1 v(y, r, θ) dr (3.10)

be the Mellin transform of χ[0,1](r) · v(y, r, θ). Then w(y, λ, θ) is analytic for y ∈ I,
θ ∈ [0, ωy], Reλ < 0. From (3.9) follows that for a differential operator D of the
form

D =
∏

κ

(
r
d

dr
− νκ(y)

)qκ+1

there holds Dv = 0, first for y 6= y0, and then by analyticity for all y ∈ I. It follows
that D(χ[0,1](r) · v) is a distribution supported in r = 1, depending analytically on
y ∈ I, θ ∈ [0, ωy]. Mellin transformation gives a function η(y, λ, θ), analytic in
y ∈ I , θ ∈ [0, ωy] and holomorphic for all λ ∈ C, such that

w(y, λ, θ) =
η(y, λ, θ)

∏

κ

(λ− νκ(y))
qκ+1

. (3.11)

Inverse Mellin transformation gives for r ∈ (0, 1),

v(y, r, θ) =
1

2iπ

∫

γ
rλw(y, λ, θ) dλ (3.12)

=
1

2iπ

∫

γ
rλ η(y, λ, θ)

(λ− νκ1(y)) · · · (λ− νκK
(y))

dλ .
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Now we use the Leibniz rule for the divided differences which gives

v(y, r, θ) =
K∑

l=1

S[νκ1(y), . . . , νκl
(y); r]ψl(y, θ) , (3.13)

where ψl(y, θ) are the divided differences of the function λ 7→ η(y, λ, θ) at the points
λ = νκ1(y), . . . , νκl

(y) .

Comparison of (3.9) and (3.11) shows that for y 6= y0,

η(y, λ, θ) =
∑

κ,q

q! (λ− νκ(y))
qκ−q ϕκq(y, θ) .

Hence the functions ψl(y, θ) are, over I \ {y0}, analytic sections of

span
{
Cκq(y) | κ ∈ Ky0,j, q = 1, . . . , q0

}
.

Since they are analytic in y0, they are sections of this bundle over all of I.

Corollary 3.4 The analytic vector bundles Bj are subbundles of the bundles Dj .

Remark 3.5 The individual terms in the representation (3.8) of the section v are,
in general, not themselves sections of the bundle Bj . Taking the bundle generated
by all these functions S[νκ1(y), . . . , νκl

(y); r]ψl(y, θ), one obtains therefore a larger

bundle B̂j . These bundles B̂j are minimal possible choices for the bundles Dj

whose sections produce the asymptotics near crossing points in the form we chose
for our decomposition theorems. There is, however, no canonical construction for
B̂j . In our proof of Proposition 3.3, the construction depends on the arbitrary
choice of an order of the elements of Ky0,j when applying the Leibniz rule for the
divided differences. All this can be clearly seen in the example in § I.??.

4. A SIMPLE COMPLEX VARIABLE FORM OF THE

SINGULAR FUNCTIONS

If the conormal principal part M(y; ∂z) is the two-dimensional Laplace operator,
we can use a complex coordinate in the normal plane to give a simple and explicit
description for the singular functions (2.1) at crossing points. This formulation
was inspired by a recent paper by Maz’ya and Rossmann [11] where a different but
related problem was treated, namely the problem of writing the corner singularities
of a two-dimensional Dirichlet problem for the Laplacian in a form that is stable
with respect to variations of the corner angle. It is in fact not hard to see that our
formulation is equivalent to that one given by Maz’ya and Rossmann, if we consider
the angle ω(y) as independent unknown instead of the edge variable y. Thus we
have an equivalent and, in some respect, simpler solution also for this problem of
stable asymptotics in two dimensions.

The restriction to the case of the Laplace operator as conormal principal part
is actually not as serious a limitation as it may look: If the coefficients of our

21



operator A are real , we can always achieve this form locally by the choice of suitable
admissible coordinates. In general, we will then have a variable opening angle ωy .

Thus we assume that the coefficients of A are real and we fix an admissible
system of coordinates such that M(y; ∂z) = ∆z for y ∈ I . We will consider Dirichlet,
Neumann and mixed Dirichlet-Neumann boundary conditions. In these cases, the
exponents νκ(y) are well known (see (1.10)): For κ = (k, l) ∈ N2 we have

νκ(y) = k π
ωy

+ l for Dirichlet and for Neumann conditions, (4.1)

νκ(y) = k π
ωy

+ π
2ωy

+ l for mixed boundary conditions. (4.2)

The corresponding eigenfunctions of the Sturm-Liouville problem are also well known.
They are

either rνk(y) sin(νk(y)θ) or rνk(y) cos(νk(y)θ) ,

depending on the boundary conditions.

We introduce the complex variable

ζ := r eiθ (4.3)

and we can then write these simplest singular functions as

real or imaginary parts of ζνk(y) . (4.4)

In order to describe the singular functions near crossing points, we fix a regularity
index s > 0 and consider, as in Theorems 1.8 and I.??, the situation of an interval
I that contains exactly one crossing point y0 (or no crossing point at all, in which
case y0 ∈ I is arbitrary). We use the notations introduced above, such as µ0

1, . . . , µ
0
j0

for the different exponents less than s at y0 and Ky0,j for the set of indices κ such
that νκ(y0) = µ0

j .

We define furthermore

ℓj := max{l ∈ N | ∃k ∈ N : νkl(y0) = µ0
j} . (4.5)

As we have seen, the singular functions come in “clusters” corresponding to the
clusters Ky0,j of exponents that coincide at y0 .We will describe a generating set of
singular functions (see § 2) for each cluster.

We introduce the divided differences of the function λ 7→ ζλ :

S[µ1, . . . , µK ; ζ ] =
1

2iπ

∫

γ

ζλ

K∏

j=1

(λ− µj)

dλ (4.6)

where γ is a simple closed curve around the complex numbers µ1, . . . , µK.
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Theorem 4.1 A generating set of singular functions is given by the real and imag-
inary parts of

Sn;κ1,...,κK
(y, z) := e−2inθ S[νκ1(y), . . . , νκK

(y); ζ ] , (4.7)

where n ∈ {0, 1, . . . , 2ℓj} and κ1, . . . , κK ∈ Ky0,j, j = 1, . . . , j0 .

Proof. We use the construction of the singular functions as given in the proofs of
our decompositions theorems and as summarized in § 2, Propositions 2.1 and 2.2.

Thus we have to consider three cases (a), (b), (c):

(a) Solutions of M(y; ∂z)S = 0 . As we have seen, these are of the form:

Re or Im of ζνk = S[νk; ζ ] = S0;(k0) .

(b) Polynomials of degree l < s . These are generated by monomials of the form

ζmζm′

= e−2im′θ ζm+m′

= Sm′; (0l)(y, z)

with m+m′ ≤ l < s .

Thus in cases (a) and (b) we find the form (4.7).

(c) Here we have to consider solutions S ′ of the two-dimensional boundary value
problem

M(y; ∂z)S
′ = zγ ∂p

y ∂
δ
z S (4.8)

with
|γ| + 1 ≥ |δ| , p+ |δ| ≤ 2 , (4.9)

and where S has been constructed previously.

We are looking for solutions of (4.8) that are, for y = y0, sums of terms of the form

rµ0
j logq r ψ(y0, θ) . Homogeneity and condition (4.9) show that the exponent µ0

j in
S ′ is at least one plus the corresponding exponent in S. Therefore we can consider
(4.8) as an induction on this exponent.

Since all coefficients are real, we can write (4.8) using the complex variable ζ . By
induction, we can assume that S has the form (4.7). We have then to show that S ′

is composed of terms of this form, too. Now derivatives with respect to y do not
change this form, they increase only the multiplicity of some of the exponents νκr

and introduce analytic coefficients coming from the derivatives of νκr
. Therefore we

can omit ∂p
y and we can simplify (4.8) to the form

∆z S
′(y, z) = ζmζm′

∂d
ζ∂

d′

ζ

{(
ζ

ζ

)n

S[νκ1(y), . . . , νκK
(y); ζ ]

}
(4.10)

with
m+m′ + 1 ≥ d+ d′ (4.11)

with the appropriate boundary conditions for θ = 0 and θ = ω(y) .
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The right hand side of (4.10) is given by
∫

γ

F (ζ, ζ, λ)
K∏

j=1

(λ− νκj
(y))

dλ ,

where (up to a constant)

F (ζ, ζ, λ) = ζm′+n−d′ ζm+λ−n−d (4.12)

= rτ−2 eiσθ

with
τ = λ+m+m′ + 2 − d− d′ =: λ + l ,
σ = λ+m−m′ − d+ d′ − 2n .

(4.13)

We keep now y fixed and set ω := ω(y) . We have to solve

∆ v = rτ−2 eiσθ (4.14)

for 0 < θ < ω with the appropriate boundary conditions for θ = 0 and θ = ω . The
solution we look for is of the form

v = rτ w(θ) .

For v we obtain the Sturm-Liouville problem

(∂2
θ + τ 2)w = eiσθ + boundary conditions. (4.15)

It is, of course, very easy to write the solution w explicitly. The solution is unique
and meromorphic in τ with simple poles at τ = νk(y), k ∈ N . The form of the
solution is particularly simple outside the two resonance points τ = ±σ . Now
τ = σ does not appear since this is equivalent to m′ +n+2 = d′ which is impossible
since d′ ≤ n . The other resonance τ = −σ appears for λ = n + d −m − 1 , which
can be avoided for λ ∈ γ by a slight deformation of γ . Thus for λ ∈ γ we can write
the solution w of (4.15) as

w(θ) =
1

τ 2 − σ2

(
eiσθ + a(y, τ) eiτθ + b(y, τ) e−iτθ

)
. (4.16)

Here the coefficients a and b have simple poles at most at τ = νk(y), k ∈ N , and

are otherwise holomorphic. (For the Dirichlet problem we have a = e−iτω−e−iσω

2i sin τω
,

b = −eiτω+e−iσω

2i sin τω
).

Now we can choose the contour γ in such a way that there is at most one k ∈ N

such that the curve νk(y) − l, y ∈ I, meets the interior of γ, with the integer l as
defined in (4.13). In the interior of γ, there might be a pole related to τ = −σ ,
i. e., λ = n+ d−m− 1 . This is relevant only if this integer coincides with µ0

j , the
exponent at y0, common value of νκ1(y0), . . . , νκK

(y0) .

Therefore if we define

G := (λ− µ0
j)(λ+ l − νk(y)) v ,
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we have
G = g1(y, τ) r

τ eiσθ + g2(y, τ) r
τ eiτθ + g3(y, τ) r

τ e−iτθ (4.17)

with functions gi(y, τ) that are analytic in y ∈ I and in τ in the interior of the
shifted contour γ + l .

The solution S ′ of (4.10)is given by

S ′ =
∫

γ

v dλ
K∏

j=1

(λ− νκj
(y))

=
∫

γ

Gdλ
K ′∏

j=1

(λ− νκj
(y))

(4.18)

where K ≤ K ′ ≤ K + 2, since at most two poles are added as we have seen, and by
a slight abuse of notation, we have set νκK+1

= νk − l .

Now we consider the three terms of G in (4.17) separately.

The simplest one is
g2(y, τ) r

τ eiτθ = g2(y, τ) ζ
τ :

The integral
∫

γ

g2(y, τ) ζ
τ

K ′∏

j=1

(λ− νκj
(y))

dλ =
∫

γ + l

g2(y, τ) ζ
τ

K ′∏

j=1

(τ − (νκj
(y) + l))

dτ

can be decomposed, by the use of the Leibniz formula (I.??) for divided differences,
as a sum

K ′∑

q=1

g2q(y)S[νκ1(y) + l, . . . , νκq
(y) + l; ζ ]

with analytic coefficients g2q(y) . Here we have therefore the desired form (4.7), even
with n = 0 .

Secondly, the term
g3(y, τ) r

τ e−iτθ = g3(y, τ) ζ
τ

leads to the complex conjugates of the basis functions just considered. Again n = 0
here.

Finally, we consider the term

g1(y, τ) r
τ eiσθ = g1(y, τ) e

−2in′θ ζτ

with
n′ = (τ − σ)/2 = n+m′ + 1 − d′ . (4.19)

Using again the Leibniz formula, we obtain terms of the form (4.7) with the increased
value of n′ =: n+ l′ .

It remains to prove the bound on n: 0 ≤ n ≤ 2ℓj . To this purpose we show that in
the last part of the above induction step we have always

l′ ≤ 2l . (4.20)

25



This will suffice, since l is the increment in the exponent µ0
j , and l′ is the increment

in n , and for the beginning of the induction, namely (a) and (b) above, one has
obviously 0 ≤ n ≤ 2ℓj (namely n = 0 in (a) and n = m′ ≤ m+m′ = ℓj in (b)).

We have, according to (4.13) and (4.19),

l′ = m′ + 1 − d′ and l = m+m′ + 2 − d− d′ .

Hence l′ = l − m − 1 + d , and since d + d′ ≤ 2 , the only case where l′ > l can
appear is for m = 0 and d = 2 .

In this case necessarily d′ = 0 and m′ ≥ 1 , hence

l′ = m′ + 1 ≤ 2m′ = 2l .

Thus (4.20) is shown and the proof is complete.

Remark 4.2 For every fixed y ∈ I, the singular function (4.7) is a linear combina-
tion of terms of the form

ζn ζνκ(y)−n logq ζ . (4.21)

This is the classical complex-variable form of the singularities for Laplace’s equation
on a two-dimensional sector [7]. Note, however, that logarithmic terms show up in
the edge singularities not only, as in the two-dimensional case, together with integer
exponents νκ (that is, at crossing points), but generally for any exponent νkl with
l ≥ 1. This is due to the presence of tangential derivatives in the differential operator
A .

Remark 4.3 If y and the multiplicities in (4.7) are such that all νκ1 , . . . , νκK
are

different, then one can write the singular function (4.7) as

Sn;κ1,...,κK
:= ζn ζ−n

K∑

q=1

aq(y) ζ
νκq(y) (4.22)

with the coefficients

aq(y) =
K∏

r=1
r 6=q

1

νκq
(y) − νκr

(y)
. (4.23)

5. APPENDIX :

SOME FACTS ON ANALYTIC VECTOR BUNDLES

We will consider real analytic vector bundles on a compact interval J ⊂ R. In fact,
we will need subbundles of finite fiber dimension of some fixed analytic vector bundle
X on J , whose fibers we assume to be Hilbert spaces.

Since J is contractible, there exists a global trivialization of X. The structure of
X can therefore be described as follows : there is a Hilbert space X (whose inner
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product we denote by < ·, ·>) and for each y ∈ J one has a Hilbert space X(y) and
an isomorphism

T (y) : X(y) −→ X.

An analytic section ϕ : J → X is then defined by a mapping y 7→ ϕ(y) ∈ X(y)
such that the associated section ϕT of the trivial bundle J ×X is analytic, i. e. the
function

ϕT = (y 7→ ϕT (y) = T (y)ϕ(y)) : J −→ X

is analytic. (Analytic functions on J with values in the Hilbert space X can be
defined in a variety of equivalent ways. One possible definition is : ψ : J → X is
analytic if for any w ∈ X the function y 7→<w,ψ(y)> : J → C is real analytic).

An analytic subbundle of X of finite fiber dimension n is given by a set {ϕ1, . . . , ϕn}
of analytic sections of X such that for each y ∈ J , the vectors {ϕ1(y), . . . , ϕn(y)}
are linearly independent in X(y). We denote such a subbundle B by

B = span{ϕ1, . . . , ϕn}.

Since every analytic vector bundle over J is trivial, we obtain every subbundle
of X of finite dimension in this way. More precisely, let {B(y)}y∈J be a family of
finite dimensional subspaces of X(y) with the property that to every point in J there

exists a neighborhood U and a set {ϕU
1 , . . . , ϕ

U
n} of analytic sections of X

∣∣∣
U

such that

{ϕU
1 (y), . . . , ϕU

n (y)} is a basis of B(y) for any y ∈ U . In this case there exists a global
basis {ϕ1, . . . , ϕn} of analytic sections of X on J such that B = span{ϕ1, . . . , ϕn}.

Our first result concerns the span of a finite number of analytic sections of X.
This is not a subbundle of X, in general, since its dimension can collapse in a finite
number of points, but it determines in fact a unique subbundle.

Lemma 5.1 Let {ψ1, . . . , ψn} be not identically vanishing analytic sections of X

over J . Then there exist analytic sections {ϕ1, . . . , ϕm} such that ϕ1(y),. . . , ϕm(y)
are linearly independent for all y ∈ J and a finite set {y1, . . . , yk} ⊂ J such that

span{ψ1(y), . . . , ψn(y)} = span{ϕ1(y), . . . , ϕm(y)}

for all y ∈ J \ {y1, . . . , yk}. That is, the subset span{ψ1, . . . , ψn} of X coincides on
J \ {y1, . . . , yk} with the subbundle B := span{ϕ1, . . . , ϕm}.

Proof. By application of the global trivialization T of X, we can assume that X

is trivial, i. e., X(y) = X for all y ∈ J . The proof uses induction on n.

For n = 1, the number of zeros of ψ1 is finite and there exists a polynomial p1

vanishing at these zeros with the appropriate multiplicity such that

ϕ1(y) :=
ψ1(y)

p1(y)

is an analytic section on all of J that vanishes nowhere.
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Now suppose {ψ1, . . . , ψn} were given and {ϕ1, . . . , ϕm} have been constructed ap-
propriately. Let ψn+1 be given and consider the Gram determinant of the vectors
ϕ1, . . . , ϕm, ψn+1 :

D(y) = det
(
<ϕ̃i(y), ϕ̃j(y)>i,j=1,...,m+1

)

where ϕ̃j = ϕj for j = 1, . . . , m and ϕ̃m+1 = ψn+1.
If D(y) vanishes identically, the bundle Bm = span{ϕ1, . . . , ϕm} is already suitable
for {ψ1, . . . , ψn+1}.
Otherwise, the analytic function D(y) vanishes at most on a finite set of points in
J . Let y0 be such a point and let k be the order of the zero y0. Thus

(y − y0)
−kD(y) is analytic and different from 0 in y0.

We construct ϕm+1 by induction on k.
Since D(y0) = 0, there exist λ1, . . . , λm ∈ C such that

ψn+1(y0) =
m∑

j=1

λj ϕj(y0) .

If we set

ϕ
(1)
m+1(y) :=

1

y − y0

(
ψn+1(y) −

m∑

j=1

λj ϕj(y)
)
,

then D(1)(y), the Gram determinant of ϕ1(y), . . . , ϕm(y), ϕ
(1)
m+1(y) satisfies

D(1)(y) =
1

y − y0

D(y) .

Thus the order of the zero has decreased by one. We construct ϕ
(j)
m+1 (for j = 1 . . . , k)

analogously. For
ϕm+1 := ϕ

(k)
m+1

we have then

D(k)(y) = det
(
<ϕi(y), ϕj(y)>i,j=1,...,m+1

)
= (y − y0)

−kD(y) .

This means that {ϕ1(y), . . . , ϕm+1(y)} are linearly independent for y in a neighbor-
hood of y0. By construction we have also

span{ψ1(y), . . . , ψn+1(y)} = span{ϕ1(y), . . . , ϕm+1(y)}

for y in a neighborhood of y0, y 6= y0.
Thus we have constructed the bundle Bm+1 locally. By the above remark, there
exists also a global basis.

Remark 5.2 If we replace “analytic” by “C∞”, the corresponding result does not
hold, as the following example shows. The space R3 is taken as space X and J =
[−1, 1]. We set

ψ1(y) = (1, 0, 0)

ψ2(y) = (1, e−1/y2

cos
1

y
, e−1/y2

sin
1

y
) .
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When y 6= 0, the dimension of Ψ(y) := span{ψ1(y), ψ2(y)} is 2. In y = 0 this
dimension is 1. But in a certain sense the bidimensional space Ψ(y) tends to R3

when y → 0, because

∀x ∈ R
3, ∀ε > 0 ∃y, |y| < ε : x ∈ Ψ(y) .

No smooth functions ϕ1 and ϕ2 exist such that Ψ(y) = span{ϕ1(y), ϕ2(y)} in a
neighborhood of 0.

Remark 5.3 Lemma 5.1 remains true if the given sections ψ1, . . . , ψn are only mero-
morphic on J . This means that the ψj are analytic sections outside of a finite num-
ber of points (“poles”) and that there exist non identically vanishing polynomials
pj : J → C such that pj(y) · ψj(y) are analytic sections on J .

Definition 5.4 In the situation of Lemma 5.1 and Remark 5.3, we will also say
that the bundle

span{ψ1, . . . , ψn}
∣∣∣
J\{y1,...,yk}

can be extended as an analytic bundle B = span{ϕ1, . . . , ϕm} on J and we write

B = span{ψ1, . . . , ψn}.

Corollary 5.5 Let B1 and B2 be two analytic subbundles of X with finite fiber
dimensions. Then their sum B1+B2 can be extended to a unique analytic subbundle
of X, denoted by

span{B1,B2}.

Proof. Consider trivializations {ϕj
1, . . . , ϕ

j
mj
} of Bj , i. e. analytic sections such

that for each y ∈ J , ϕj
1(y), . . . , ϕ

j
mj

(y) are a basis of Bj(y). Then with Lemma 5.1
and Definition 5.4 we can simply define

span{B1,B2} := span{ϕ1
1, . . . , ϕ

1
m1
, ϕ2

1, . . . , ϕ
2
m2

}.

We end this section by a result which shows a relation between the sum of
analytic vector bundles and divided differences. We consider special bundles which
are “generated” by an analytic function w in the sense we explain below.

So let D be a domain in C and X a Hilbert space. Let w : D → X be a holo-
morphic function. Let us denote by w(k) the k-th derivative of w. Let µ1, . . . , µn be
analytic functions from a compact interval J into D. We assume that the functions
µj for j = 1, . . . , n are all distinct i. e. :

µi ≡ µj on J =⇒ i = j .

Let q1, . . . , qn be positive integers. According to Lemma 5.1

span{w(µj(y)), . . . , w
(qj−1)(µj(y))}
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defines for each j = 1, . . . , n an analytic vector bundle Bj over J and the sum

span{B1, . . . ,Bn} := B

is an analytic vector bundle.

We want to find analytic sections of B. We assume the following hypothesis.

Hypothesis 5.6 Let N be the sum
∑n

j=1 qj. For any finite set of distinct points

{λ1, . . . , λn} in D, the nN vectors w(k)(λj) for k = 0, . . . , N − 1 and j = 1, . . . , n
are linearly independent.

Proposition 5.7 We assume Hypothesis 5.6. Then a trivialization of B is given
by

w[µ̃1(y)], w[µ̃1(y), µ̃2(y)], . . . , w[µ̃1(y), . . . , µ̃N(y)]

where
µ̃k = µj for q1 + · · ·+ qj−1︸ ︷︷ ︸

=0 if j=1

< k ≤ q1 + · · ·+ qj

(this is the repetition according to the multiplicity).

Remark 5.8 Compare with Theorems 3.3 and 4.1 where the generating function
is, respectively, w(λ) = rλ and w(λ) = ζλ.

The proof of Proposition 5.7 relies upon the following lemma.

Lemma 5.9 Let w : D → X be holomorphic and ν1, . . . , νN be elements of D (not
necessarily distinct). Let k1, . . . , kn be distinct integers in {1, . . . , N}. Then

w[νk1 , . . . , νkn
]

is a linear combination of

w[ν1], . . . , w[ν1, . . . , νN ] .

Proof. Let γ be a contour around ν1, . . . , νN . We have according to (0.5)

w[νk1, . . . , νkn
] =

1

2iπ

∫

γ

w(λ)
n∏

j=1

(λ− νkj
)

dλ

=
1

2iπ

∫

γ

Q(λ)w(λ)

P (λ)
dλ

where P (λ) =
∏N

j=1(λ− νj) and Q(λ) is the polynomial

Q(λ) =
P (λ)

n∏

j=1

(λ− νkj
)

.
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The Lemma is then a consequence of the Leibniz formula (I.??).

Proof of Proposition 5.7. A first application of the Lemma 5.9 proves that for
any y ∈ J the space C(y) generated by

w[µ̃1(y)], . . . , w[µ̃1(y), . . . , µ̃N(y)]

contains all the w(k)(µj) for j = 1, . . . , n and k = 0, . . . , qj . Now it suffices to prove
that the dimension of C(y) is equal to N in every point y ∈ J . Let us fix y0 ∈ J
and let {ν1, . . . , νm} be the distinct values of {µ̃1(y0), . . . , µ̃N(y0)} and pj be the
multiplicity of νj for j = 1, . . . , m. As a consequence of Lemma 5.9,

w(p−1)(νj) ∈ C(y0) ∀j = 1, . . . , m 1, . . . , pj.

Hypothesis 5.6 implies that these N vectors are independent.
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