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Note: This presentation is mainly based on our paper [9]. It is also related with
the survey (in preparation) “About the inf-sup constant of the divergence” by C.
BERNARDI, V. GIRAULT and the authors.

1. THE CONSTANT OF INTEREST AND SOME ELEMENTARY PROPERTIES

Here we only consider bounded connected domains  of R%, d > 1. Elements of
R? are denoted by & = (z1,...,24). For such a domain €, the inf-sup constant
of the divergence associated with Dirichlet boundary conditions, also called LBB
constant after LADYZHENSKAYA, BABUSKA [2] and BREZzZI [5], is defined as
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Here L2?(Q) stands for the space of square integrable scalar functions ¢ with
zero mean value in 2 endowed with its natural norm || - || ., and natural scalar

product (-,-), and Hg(Q)? is the standard H' Sobolev space of vector functions
v = (v1,...,vq) with square integrable gradients and zero traces on the boundary,
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endowed with its natural semi-norm [v| , defined as (Zizl 2?21 10, vell, Q)1/2.

Since 2 is bounded, by virtue of the Poincaré inequality, the above semi-norm is
equivalent to the usual norm in H'(2)4.
We list some elementary properties of 5(2):
(a) In any dimension d > 1, 8(Q2) > 0,
(b) In any dimension d > 1, 5(2) < 1, because of the identity
2
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(¢) If d =1, Q is a finite interval and B(Q2) = 1,

(d) In any dimension d > 1, using a Piola transform it is easy to show that
B(9) is invariant by translations, dilations, symmetries and rotations. In
other words, 5(£2) depends only on the shape of .
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2. POSITIVENESS OF THE LBB CONSTANT

The constant 5(f2) is positive for Lipschitz domains [20], weakly Lipschitz do-
mains (see [17, §1.2.1] for the distinction between Lipschitz and weakly Lipschitz),
and John domains [1] (which include some domains with a fractal boundary). The
proof is based on various constructions of a right inverse for the divergence op-
erator, see [4, 15, 1]. In contrast, domains with an external cusp (or thin peak)
satisfy B(Q) = 0, see [24].



3. RELATION WITH THE SCHUR COMPLEMENT OF THE STOKES OPERATOR

The Schur complement S of the Stokes operator is defined as
S: L%Q) — L%(Q)
q — div A7l Vq.
Here A~ is the inverse of the Dirichlet vector Laplacian A acting from H{(Q)?
onto H~1(Q)?. The operator S is bounded self-adjoint, non-negative. But it is
not compact, nor its resolvent. It is of order 0. Let o(2) be the bottom of its
spectrum. There holds

(2) a(2) = B
The associated eigenvalue problem can be phrased as a spectral Stokes problem—
with v € H}(Q)? and p € L2(Q),
-Av+Vp = 0,
) { v

divo = op.
Let G(S) and Gess(S) be the spectrum and the essential spectrum of S.

4. RELATION WITH THE COSSERAT SPECTRUM

Let us introduce the family of operators o — L,
L: HYY? — H-1(Q)?
v — ocAv —Vdivy
The Cosserat spectrum (after COSSERAT brothers [7, 8]) &(L) [essential spectrum

Gess(L)] is the set of o € R such that £, is not invertible [£, is not Fredholm].
There holds

(4) S(L)=6(S) U0} and Ges(L) = Gess(S) U {0}

The operator £ has non empty essential spectrum: The points 0, % and 1 always

belong to Gess(L£) [19]. If the domain 2 has a smooth boundary, these are the only

elements of Gegs(L). If Q is a polygonal domain of R?, Gegs(L) is an interval of the

form [+ — b, 3 + b] with a positive b depending on the corner openings of 2 [10].
A consequence is that for any domain

1
B(Q)? < 5

Explicit calculations show that 5(Q)% = % for the disc Q C R?, and more generally
B(Q2)? = L if Q is a ball in R? [10].

5. RELATION WITH THE FRIEDRICHS CONSTANT (DIMENSION d = 2)

Let §(©) denote the space of complex valued L?(£2) holomorphic functions and
let §o(£2) be its subspace of functions with mean value 0. After [14] the Friedrichs
constant T'(Q) € RU{oo} is the smallest constant I" such that for all h+ig € Fo(2)
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Theorem 1 ([18], hypotheses fixed in [9]). Let £ be any bounded connected domain
in R%2. The LBB constant B(f)) is positive if and only if T'(2) is finite and
_L
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6. RELATION WITH THE HORGAN-PAYNE ANGLE (DIMENSION d = 2)

rQ)+1=

Let Q be strictly star-shaped, which means that there is an open ball B C 2 such
that any segment with one end in B and the other in €2, is contained in 2. Let O
be the center of B and (r,#) be polar coordinates centered at O. Let 0 — r = f(6)
be the polar parametrization of the boundary 99, defined on R/277Z =: T. Since
() is strictly star-shaped, f belongs to W1°°(T). We assume without restriction
that maxger f(0) = 1. After [18], we introduce the function P of §# € T and of a
parameter « € (0,1) aimed at optimizing an upper bound for IT'(£2)

f'(0)?
77 (7 e
We denote by m(2) the original bound of [18]

(0,1) x T > (v, 0) — P(a,0) =

(5) m(Q) = sup{ inf  P(a, 9)}
O€T * ac (O’f(;)Z)
and by M(£2) our modified Horgan-Payne like bound
(6) M(Q) = inf { sup P(a,@)}
a€e(0,1) 0eT

The quantity M () is always larger than m().
Let w(€2) be the “Horgan-Payne angle” introduced by [23]
Q)-1
w(§2) = arccos (%) .
This angle has a simple geometrical interpretation as the minimal angle between
radius [OA] and tangent along 92 at A, for A running in 9. It is easy to see
that sin@ = (m(Q) 4+ 1)~/2. Then, by virtue of Theorem 1, T'(Q) < m(9Q) if

and only if 8(Q) > sin me

Theorem 2 ([9]). Any strictly star-shaped domain ) satisfies the bounds
1
M(Q)+1°
If Q is an ellipse, a triangle, a rectangle or a regular polygon, then m(§2) coincides
with M (). Therefore

(7) Q) < M(Q) and B(Q) >

(8) Q) <m(Q) and B(Q) > ———= =sin

As a matter of fact, there exist strictly star-shaped domains such that m < M.
And even more:
3



Theorem 3 ([9]). There exists a strictly star-shaped domain Q@ C R? such that
Q
(9) I'(Q) >m(Q) ie A(Q)<sin # .

Counterexamples are provided by symmetric domains with a narrow pass for
which we have proved an upper bound for 5(£2) (this can be related to the fact
that elongated domains have a small 5 [6, 21, 11, 12]). This proves that the
original result of [18] stating that (8) is valid for any strictly star-shaped domains
is erroneous. Nevertheless our positive result of Theorem 2 is still in the spirit of
[18] and allows to prove a general simple bound from below for 5(€2) that realizes
an improvement of [13] for strictly star-shaped two-dimensional domains.

Though related, discrete inf-sup conditions are a rather different story. Now
the choice of distinct discrete spaces for scalar and vector unknowns comes into
play, see [16, 3, 22] among many others...
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