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Note: This presentation is mainly based on our paper [9]. It is also related with
the survey (in preparation) “About the inf-sup constant of the divergence” by C.
Bernardi, V. Girault and the authors.

1. The constant of interest and some elementary properties

Here we only consider bounded connected domains Ω of Rd, d ≥ 1. Elements of
R

d are denoted by x = (x1, . . . , xd). For such a domain Ω, the inf-sup constant
of the divergence associated with Dirichlet boundary conditions, also called LBB
constant after Ladyzhenskaya, Babuška [2] and Brezzi [5], is defined as

(1) β(Ω) = inf
q∈L2

◦
(Ω)

sup
v∈H1

0 (Ω)d

〈

div v, q
〉

Ω

|v|
1,Ω

‖q‖
0,Ω

.

Here L2
◦
(Ω) stands for the space of square integrable scalar functions q with

zero mean value in Ω endowed with its natural norm ‖ · ‖
0,Ω

and natural scalar

product 〈·, ·〉, and H1
0 (Ω)

d is the standard H1 Sobolev space of vector functions
v = (v1, . . . , vd) with square integrable gradients and zero traces on the boundary,

endowed with its natural semi-norm |v|
1,Ω

defined as (
∑d

k=1

∑d
j=1 ‖∂xj

vk‖
2

0,Ω
)1/2.

Since Ω is bounded, by virtue of the Poincaré inequality, the above semi-norm is
equivalent to the usual norm in H1(Ω)d.

We list some elementary properties of β(Ω):

(a) In any dimension d ≥ 1, β(Ω) ≥ 0,
(b) In any dimension d ≥ 1, β(Ω) ≤ 1, because of the identity

∀v ∈ H1
0 (Ω)

d, |v|
2

1,Ω
= ‖ curlv‖

2

0,Ω
+ ‖ divv‖

2

0,Ω

(c) If d = 1, Ω is a finite interval and β(Ω) = 1,
(d) In any dimension d ≥ 1, using a Piola transform it is easy to show that

β(Ω) is invariant by translations, dilations, symmetries and rotations. In
other words, β(Ω) depends only on the shape of Ω.

2. Positiveness of the LBB constant

The constant β(Ω) is positive for Lipschitz domains [20], weakly Lipschitz do-
mains (see [17, §1.2.1] for the distinction between Lipschitz and weakly Lipschitz),
and John domains [1] (which include some domains with a fractal boundary). The
proof is based on various constructions of a right inverse for the divergence op-
erator, see [4, 15, 1]. In contrast, domains with an external cusp (or thin peak)
satisfy β(Ω) = 0, see [24].
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3. Relation with the Schur complement of the Stokes operator

The Schur complement S of the Stokes operator is defined as

S : L2
◦
(Ω) −→ L2

◦
(Ω)

q 7−→ div ∆−1 ∇q .

Here ∆−1 is the inverse of the Dirichlet vector Laplacian ∆ acting from H1
0 (Ω)

d

onto H−1(Ω)d. The operator S is bounded self-adjoint, non-negative. But it is
not compact, nor its resolvent. It is of order 0. Let σ(Ω) be the bottom of its
spectrum. There holds

(2) σ(Ω) = β(Ω)2.

The associated eigenvalue problem can be phrased as a spectral Stokes problem—
with v ∈ H1

0 (Ω)
d and p ∈ L2

◦
(Ω),

(3)

{

−∆v +∇p = 0 ,
div v = σp .

Let S(S) and Sess(S) be the spectrum and the essential spectrum of S.

4. Relation with the Cosserat spectrum

Let us introduce the family of operators σ 7→ Lσ

L : H1
0 (Ω)

d −→ H−1(Ω)d

v 7−→ σ∆v −∇ div v

The Cosserat spectrum (after Cosserat brothers [7, 8]) S(L) [essential spectrum
Sess(L)] is the set of σ ∈ R such that Lσ is not invertible [Lσ is not Fredholm].
There holds

(4) S(L) = S(S) ∪ {0} and Sess(L) = Sess(S) ∪ {0}.

The operator L has non empty essential spectrum: The points 0, 1
2 and 1 always

belong to Sess(L) [19]. If the domain Ω has a smooth boundary, these are the only
elements of Sess(L). If Ω is a polygonal domain of R2, Sess(L) is an interval of the
form [ 12 − b, 12 + b] with a positive b depending on the corner openings of Ω [10].

A consequence is that for any domain Ω

β(Ω)2 ≤
1

2
.

Explicit calculations show that β(Ω)2 = 1
2 for the disc Ω ⊂ R

2, and more generally

β(Ω)2 = 1
d if Ω is a ball in R

d [10].

5. Relation with the Friedrichs constant (dimension d = 2)

Let F(Ω) denote the space of complex valued L2(Ω) holomorphic functions and
let F◦(Ω) be its subspace of functions with mean value 0. After [14] the Friedrichs
constant Γ(Ω) ∈ R∪{∞} is the smallest constant Γ such that for all h+ig ∈ F◦(Ω)

‖h‖
2

L2(Ω)
≤ Γ‖g‖

2

L2(Ω)
.
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Theorem 1 ([18], hypotheses fixed in [9]). Let Ω be any bounded connected domain

in R
2. The LBB constant β(Ω) is positive if and only if Γ(Ω) is finite and

Γ(Ω) + 1 =
1

β(Ω)2
.

6. Relation with the Horgan-Payne angle (dimension d = 2)

Let Ω be strictly star-shaped, which means that there is an open ball B ⊂ Ω such
that any segment with one end in B and the other in Ω, is contained in Ω. Let O
be the center of B and (r, θ) be polar coordinates centered at O. Let θ 7→ r = f(θ)
be the polar parametrization of the boundary ∂Ω, defined on R/2πZ =: T. Since
Ω is strictly star-shaped, f belongs to W 1,∞(T). We assume without restriction
that maxθ∈T f(θ) = 1. After [18], we introduce the function P of θ ∈ T and of a
parameter α ∈ (0, 1) aimed at optimizing an upper bound for Γ(Ω)

(0, 1)× T ∋ (α, θ) 7−→ P (α, θ) =
1

αf(θ)2

(

1 +
f ′(θ)2

f(θ)2 − αf(θ)4

)

.

We denote by m(Ω) the original bound of [18]

(5) m(Ω) = sup
θ∈T

{

inf
α∈

(

0, 1
f(θ)2

)

P (α, θ)
}

and by M(Ω) our modified Horgan-Payne like bound

(6) M(Ω) = inf
α∈(0,1)

{

sup
θ∈T

P (α, θ)
}

The quantity M(Ω) is always larger than m(Ω).
Let ω(Ω) be the “Horgan-Payne angle” introduced by [23]

ω(Ω) = arccos

(

m(Ω)− 1

m(Ω) + 1

)

.

This angle has a simple geometrical interpretation as the minimal angle between
radius [OA] and tangent along ∂Ω at A, for A running in ∂Ω. It is easy to see

that sin ω(Ω)
2 = (m(Ω) + 1)−1/2. Then, by virtue of Theorem 1, Γ(Ω) ≤ m(Ω) if

and only if β(Ω) ≥ sin ω(Ω)
2 .

Theorem 2 ([9]). Any strictly star-shaped domain Ω satisfies the bounds

(7) Γ(Ω) ≤ M(Ω) and β(Ω) ≥
1

√

M(Ω) + 1
.

If Ω is an ellipse, a triangle, a rectangle or a regular polygon, then m(Ω) coincides
with M(Ω). Therefore

(8) Γ(Ω) ≤ m(Ω) and β(Ω) ≥
1

√

m(Ω) + 1
= sin

ω(Ω)

2
.

As a matter of fact, there exist strictly star-shaped domains such that m < M .
And even more:

3



Theorem 3 ([9]). There exists a strictly star-shaped domain Ω ⊂ R
2 such that

(9) Γ(Ω) > m(Ω) i.e. β(Ω) < sin
ω(Ω)

2
.

Counterexamples are provided by symmetric domains with a narrow pass for
which we have proved an upper bound for β(Ω) (this can be related to the fact
that elongated domains have a small β [6, 21, 11, 12]). This proves that the
original result of [18] stating that (8) is valid for any strictly star-shaped domains
is erroneous. Nevertheless our positive result of Theorem 2 is still in the spirit of
[18] and allows to prove a general simple bound from below for β(Ω) that realizes
an improvement of [13] for strictly star-shaped two-dimensional domains.

Though related, discrete inf-sup conditions are a rather different story. Now
the choice of distinct discrete spaces for scalar and vector unknowns comes into
play, see [16, 3, 22] among many others...

References

[1] G. Acosta, R.G. Durán, M.A. Muschietti, Solutions of the divergence operator on John

domains, Adv. Math. 206 (2006), 373–401.
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