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Abstract. We present a method for the computation of the coefficients of singularities
along the edges of a polyhedron for second order elliptic boundary value problems. The
class of problems considered includes problems of stress concentration along edges or
crack fronts in general linear three-dimensional elasticity. Our method uses an incom-
plete construction of 3D dual singular functions, based on explicitly known dual singular
functions of 2D problems tensorized by test functions along the edge and combined with
complementary terms improving their orthogonality properties with respect to the edge
singularities. Our method is aimed at the numerical computation of the stress intensity
functions. It is suitable for a post-processing procedure in the finite element approxima-
tion of the solution of the boundary value problem.

1 THE PROBLEM

1.A INTRODUCTION

The solutions of elliptic boundary problems, for example those arising from linear elas-
ticity, when posed and solved in non-smooth domains like polygons and polyhedra, have
non-smooth parts. It is well known how to describe these singularities in terms of special
singular functions depending on the geometry and the differential operators on one hand,
and of unknown coefficients depending on the given right hand sides (for example volume
forces and surface tractions or displacements) on the other hand.

Concerning the singular functions, they are extensively covered in the literature. In
many cases like corners in two dimensions or edges in three dimensions, they can be
written analytically (see for example [18, 3, 29]) or semi-analytically [12]. In other cases
like polyhedral corners, there exist well-known numerical methods for their computation
(see for example [1, 35, 33, 36]).

Concerning the coefficients, there are two cases to distinguish, corners and edges:

1. In the case of a corner in two or three dimensions, i. e. the vertex of a cone,
the space of singular functions up to a given regularity is finite-dimensional. Therefore



only finitely many numbers have to be computed, and there exist several well-established
methods to do this. Let us mention some of them:

In the “singular function method”, in the finite element literature also known as Fix
method, singular basis functions are added to the space of trial functions, so that their
coefficients are computed immediately as a part of the numerical solution of the boundary
value problem (see [4, 6, 8, 17, 28, 32]).

In the “dual singular function method”, one uses the fact that the coefficients depend
linearly on the solution and therefore also on the right hand side, see [21, 23] where this
was first developped. There exist several different ways to express these linear functionals
that extract the coefficients. One can use functionals acting on the solution of the bound-
ary value problem and these can then have a simple explicit form and can be localized.
Or one can write them as functionals acting directly on the right hand side. These are
the dual singular functions properly speaking, and they are solutions of a boundary value
problem themselves (see [5, 15, 16, 7, 2, 34]).

2. In the case of an edge in three dimensions, the space of singular functions is
infinite-dimensional. Theoretical formulas for the extraction of coefficients then involve
an infinite number of dual singular functions in general, see [22, 26]. The coefficients can
be understood as functions defined on the edge, and their computation now requires ap-
proximation of function spaces on the edge. There exist some papers describing versions
of the singular function method in this case. In [13], the case of a half-space crack in
three-dimensional elasticity is considered. An algorithm is proposed and analyzed con-
sisting of boundary elements on the crack surface combined with singular elements that
are parametrized by one-dimensional finite elements on the crack front. This method and
the corresponding error analysis is described for smooth curved cracks in three dimen-
sions in [31]. In [19], the simple case of a circular edge is treated with Fourier expansion,
error estimates are given, and results of numerical computations are shown.

Every linear functional acting on the edge coefficient functions now gives rise to a
dual singular function. Such linear functionals can be the point evaluation at each point
of the edge or, more regularly, moments, i. e. scalar products with some polynomial basis
functions. Computing a finite number of such point values or moments, one obtains an
approximation of the coefficient function. Such a procedure has been studied in [20] for
the simple case of the Laplace equation at a flat crack. In [30] the coefficients are given
by convolution integrals which contain the dual singular functions, and examples for the
Lamé system are provided.

With the exception of the computations in the case of the simple geometries and op-
erators of [19] and [20], the formulas and theoretical algorithms for the extraction of edge
coefficients mentioned above have not lead to numerical implementations or serious com-
putational results. A first step towards an algorithm suitable for implementation in an
engineering stress analysis code is described in [36], where point values of edge coeffi-
cients are computed in the case of the Laplace equation near a straight edge. Very special
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orthogonality conditions of the Laplace edge singular functions are used to construct ex-
traction formulas that are essentially two-dimensional.

Whereas this idea cannot be extended directly to more general geometrical and phys-
ical situations like Lamé equations in a polyhedral domain, our paper is an extension of
[36] to such situations in the practical sense of suitability for implementation in engineer-
ing codes.

1.B OUTLINE

In the present paper we construct an algorithm for the approximate computation of mo-
ments of the edge coefficient functions. The algorithm has a twofold purpose: It is
sufficiently general to be applicable to real-life three-dimensional boundary value prob-
lems and their singularities near polyhedral edges, and it is simple enough to be imple-
mented in the framework of professional finite element codes. In a forthcoming paper we
will show practical applications in the computation of stress concentration coefficients in
three-dimensional anisotropic elasticity.

Our paper is organized as follows:

After a more detailed description of the idea of our algorithm in this first section,
we recall in Section 2 the structure of edge singularities for second order linear Dirichlet
boundary value problems in three dimensions. We describe how the leading term in each
singular function is obtained from a two-dimensional problem in a sector and can be
computed from the principal Mellin symbol of the partial differential operator. For a
complete description of the singular function one has to construct higher order “shadow
terms” for which we also give formulas involving Mellin symbols of the operator.

In Section 3, the structure of dual singular functions is described first in two dimen-
sions and then for the case of the three-dimensional edge. The dual singular functions
have an asymptotic expansion in terms that have tensor product form in cylindrical coor-
dinates and are homogeneous with respect to the distance to the edge. This form allows
us to prove a certain approximate duality between finite partial sums of these asymptotic
expansions. These sums can be constructed explicitly from the Mellin symbols of the
operator, and the duality holds approximately on cylindrical domains in the sense that the
error is of the order of an arbitrarily high power of the radius of the cylinder.

In Section 4, we construct the extraction algorithm for moments of the coefficients
of the edge singularities. The algorithm requires the integration of the solution of the
boundary value problem against a smooth function on a cylindrical surface of distance R
to the edge, and it is exact modulo a given arbitrarily high power of R .

In Section 5, we discuss generalizations to more general domains and boundary con-
ditions, and the special case of a crack.

In Section 6, we compare our algorithm with possible alternatives based on other
formulas for the extraction of coefficients.
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Figure 1. The domain of interest Ω .

1.C THE MAIN FRAMEWORK

Any three-dimensional elliptic boundary value problem posed on a polyhedron defines
infinite dimensional singularity spaces corresponding to each of the edges. Each singu-
larity along an edge E is characterized:
• by an exponent α which is a complex number depending only on the geometry and
the operator, and which determines the level of non-smoothness of the singularity,
• and by a coefficient aα which is a function along the edge E .

Of great interest are the coefficients aα when Reα is less than 1 , corresponding to
non H2 solutions. In many situations, Reα < 1 when the opening at the edge is non-
convex. For example α can be equal to 1

2
in elasticity problems in presence of cracks.

Sometimes in such a situation the coefficients are called stress intensity factors. Herein
we propose a method for the computation of these coefficients, which can be applied to
any edge (including crack front) of any polyhedron.

For the exposition of the method we use a model domain Ω where only one edge E
is of interest (in particular, E will be the only possible non-convex edge). Nevertheless
this method applies, almost without alteration, to any polyhedron, see Section 5.

As model domain, we take the tensor product Ω = G×I where I is an interval, let us
say [−1, 1] , and G is a plane bounded sector of opening ω ∈ (0, 2π] and radius 1 (the
case of a crack, ω = 2π , is included). See Figure 1. The variables are (x, y) in G and z
in I , and we denote the coordinates (x, y, z) by x . Let (r, θ) be the polar coordinates
centered at the vertex of G so that G = {(x, y) ∈ R

2 | r ∈ (0, 1), θ ∈ (0, ω)} . The
domain Ω has an edge E which is the set {(x, y, z) ∈ R

3 | r = 0, z ∈ I} .
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The operator L is a homogeneous second order partial differential N × N system
with constant real coefficients which means that

L =
3∑
j=1

3∑
i=1

Lij∂i∂j with ∂1 =
∂

∂x
, ∂2 =

∂

∂y
, ∂3 =

∂

∂z
,

with coefficient matrices Lij in R
N×N . We moreover assume that the matrices Lij are

symmetric. Therefore L is formally self-adjoint.

We assume moreover that L is associated with an elliptic bilinear form B , i.e. that
for any u and v in H2(Ω)N and any subdomain Ω′ ⊂ Ω there holds∫

Ω′
Lu · v dx = B(u, v) +

∫
Γ′
TΓ′u · v dσ

=

∫
Ω′

u · Lv dx +

∫
Γ′

(
TΓ′u · v − u · TΓ′v

)
dσ,

(1.1)

where TΓ′ is the Neumann trace operator associated with L via B on the boundary
Γ′ of Ω′ . Our aim is the determination of the edge structure of any solution u of the
problem

u ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω), B(u, v) =

∫
Ω

f · v dx, (1.2)

where f is a smooth vector function in C∞(Ω)N . Away from the end points of the
edge, the solution u can be expanded in edge singularities S[α ; aα] associated with the
exponents α and the coefficients aα . These singularities S[α ; aα] are the sums of terms
in tensor product form ∂jzaα(z) Φj[α](x, y) , where only the generating coefficients aα
depend on the right hand side f of problem (1.2).

1.D THE EXTRACTION METHOD

In this paper, we construct for each exponent α a set of quasidual singular functions
Km[α ; b] where m is a natural integer, which is the order of the quasidual function, and
b a test coefficient. We then extract, not the pointwise values of aα , but its scalar product
versus b on E with the help of the following anti-symmetric internal boundary integrals
J [R] , over the surface

ΓR :=
{
x ∈ R

3 | r = R, θ ∈ (0, ω), z ∈ I
}
,

depending on the radius R :

J [R](u, v) :=

∫
ΓR

(
TΓR

u · v − u · TΓR
v
)
dσ. (1.3)

Roughly, and with certain limitations, see Theorem 4.3 and its extensions in §5, we find
that for the lowest values of Reα , there holds

J [R](u,Km[α ; b]) =

∫
I

aα(z) b̄(z) dz + O
(
Rm+1

)
, as R → 0, (1.4)

5



which allows a precise determination of
∫
I
aα b̄ by extrapolation in R and a reconstruc-

tion of aα by the choice of a suitable set of test coefficients b .

One of the fundamental tools for the proof of (1.4) consists of algebraic relations
based on integration by parts in the domains Ωε,R , where for any ε and R with 0 <
ε < R we denote by Gε,R the annulus

Gε,R := {(x, y) ∈ R
2 | r ∈ (ε, R), θ ∈ (0, ω)},

and by Ωε,R the tensor domain Gε,R × I . We note that

∂Ωε,R = Γε ∪ ΓR ∪ (Gε,R × ∂I).

Finally we also denote by G∞ the infinite sector of opening ω and by Ω∞ the infinite
wedge G∞ × I .

2 EDGE SINGULARITIES

Edge singularities are investigated in several works. Let us quote MAZ’YA, PLAME-
NEVSKII, ROSSMANN [24, 27], DAUGE, COSTABEL [14, 9]. Here as a model problem,
we concentrate on the simplest case of a homogeneous operator with constant coefficients.

The structure and the expansion of edge singularities rely on the splitting of the oper-
ator L in three parts

L = M0(∂x, ∂y) + M1(∂x, ∂y) ∂z + M2 ∂
2
z ,

where M0 is a N × N matrix of second order partial differential operators in (x, y) ,
M1 is a N ×N matrix of first order partial differential operators in (x, y) , and M2 is a
scalar N ×N matrix.

We can check that for any smooth function a(z) in I and any sequence (Φj) j≥0 of
functions of (x, y) satisfying the relations


M0Φ0 = 0,
M0Φ1 + M1Φ0 = 0,
M0Φj + M1Φj−1 + M2Φj−2 = 0, j ≥ 2,

in G∞ , (2.1)

the series
u ∼

∑
j≥0

∂jza(z) Φj(x, y)

formally satisfies the equation Lu ∼ 0 in Ω∞ . If moreover all derivatives of a are zero
in −+1 and if the Φj satisfy the Dirichlet conditions on ∂G∞ , then u ∼ 0 on ∂Ω∞ . In
order to provide a more precise meaning we need a description of solutions of the system
of equations (2.1).
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2.A TWO-DIMENSIONAL LEADING SINGULARITIES

The first terms Φ0 are the solutions of the Dirichlet problem in the infinite sector{
M0Φ0 = 0 in G∞

Φ0 = 0 on ∂G∞.
(2.2)

From the general theory we know that the solutions of problem (2.2) are generated by
functions having the particular form in polar coordinates (r, θ)

Φ0 = rαϕ0(θ), α ∈ C. (2.3)

Since it is homogeneous of degree 2 , the system M0 can be written in polar coordinates
in the form

M0(∂x, ∂y) = r−2
M0(θ; r∂r, ∂θ).

With the Ansatz (2.3), the system (2.2) becomes{
M0(θ;α, ∂θ)ϕ0 = 0 in (0, ω)

ϕ0 = 0 on 0 and ω.
(2.4)

The operator ϕ �→ M0(θ;α, ∂θ)ϕ acting from H1
0 (0, ω) into H−1(0, ω) is the Mellin

symbol of M0 , and we denote it by M0(α) .

The system (2.4) has nonzero solutions, i.e. M0(α) is not invertible, only for a dis-
crete subset A = A(M0) of C . We call the numbers α ∈ A the edge exponents.

The ellipticity of L implies the ellipticity of M0 and as a consequence, any strip
Reα ∈ (ξ1, ξ2) contains at most a finite number of elements of A . As the coefficients
of M0 are real, if α belongs to A , then ᾱ also belongs to A . Moreover we have the
general property that

M0(α)∗ = M∗
0(−ᾱ),

where M0(α)∗ is the adjoint of M0(α) and M∗
0 denotes the Mellin symbol of the

adjoint M∗
0 of M0 . Now M0 is formally selfadjoint: M∗

0 = M0 , and there holds

M0(α)∗ = M0(−ᾱ).

By the Fredholm alternative, this implies that if α belongs to A , then −ᾱ also belongs
to A .

The operator valued function α �→ M0(α)−1 is meromorphic on C . If

(H1) ∀α ∈ A, α is a pole of degree 1 of M
−1
0

then any solution of (2.2) is a linear combination of solutions of type (2.3) with α ∈ A

and ϕ0 a nonzero solution of (2.4). For simplicity we assume hypothesis (H1) and will
explain in the sequel the implications if it does not hold.
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2.B FURTHER TWO-DIMENSIONAL GENERATORS FOR SINGULARITIES

The second equation of system (2.1) with Dirichlet conditions reduces to finding Φ1 such
that {

M0Φ1 = −M1Φ0 in G∞
Φ1 = 0 on ∂G∞,

(2.5)

where Φ0 = rαϕ0(θ) as determined in the previous subsection. Since it is homogeneous
of degree 1 , the system M1 can be written in polar coordinates in the form

M1(∂x, ∂y) = r−1
M1(θ; r∂r, ∂θ).

Therefore, M1Φ0 = rα−1
M1(θ;α, ∂θ)ϕ0 and an Ansatz like (2.3) for the solution of

problem (2.5) is
Φ1 = rα+1ϕ1(θ), (2.6)

with ϕ1 solution of the Dirichlet problem{
M0(θ;α + 1, ∂θ)ϕ1 = −M1(θ;α, ∂θ)ϕ0 in (0, ω)

ϕ1 = 0 on 0 and ω,
(2.7)

in other words, ϕ1 solves M0(α + 1)ϕ1 = −M1(α)ϕ0 . Therefore, if α + 1 does
not belong to A , the previous problem has a unique solution. That is why we assume
hypothesis (H2) :

(H2) ∀α ∈ A, ∀j ∈ N, j ≥ 1, α + j �∈ A.

If (H2) holds, then for each solution Φ0 = rαϕ0 of problem (2.4), we obtain by
induction a unique sequence (Φj) j≥0 solution of (2.1) with Dirichlet conditions in the
form

Φj = rα+jϕj(θ)

where ϕj solves

M0(α + j)ϕj = −M1(α + j − 1)ϕj−1 −M2ϕj−2 . (2.8)

We recall that M2 , being a scalar matrix, has the same expression in Cartesian coordi-
nates as in polar coordinates (viz M2 =M2 ).

2.C THREE-DIMENSIONAL SINGULARITIES

Assuming hypotheses (H1) and (H2) , for any α ∈ A with Reα > 0 , let pα denote
the dimension of the kernel of M0(α) and let Φ0[α, p] , for p = 1, . . . , pα , be a basis of
ker M0(α) ; Moreover, for any j ≥ 1 let Φj[α, p] be the solution of (2.7) or (2.8) (also
called “shadow singularities”) generated by Φ0[α, p] .
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For any integer n ≥ 0 we call “singularity at the order n ” any expression of the
form

Sn[α, p ; a] :=
n∑
j=0

∂jza(z) Φj[α, p](x, y) (2.9)

where a belongs to C n+2(I) .

By construction, there holds

LSn[α, p ; a] = ∂n+1
z a (M1Φn + M2Φn−1) + ∂n+2

z aM2Φn. (2.10)

Whence

Lemma 2.1 For any α ∈ A , Reα > 0 , and a ∈ C n+2(I) we have

LSn[α, p ; a] = O
(
rReα+n−1

)
(2.11)

i.e. r−Reα−n+1LSn[α, p ; a] is bounded in Ω . Moreover Sn[α, p ; a] = 0 on ∂G∞× I .

3 DUAL SINGULAR FUNCTIONS

We first recall and reformulate well known facts about the dual singular functions
for two-dimensional problems, cf MAZ’YA, PLAMENEVSKII [21, 23, 25], BABUŠKA,
MILLER [2], BOURLARD, DAUGE, LUBUMA, NICAISE [15, 16] and then extend these
notions in the framework of our edge problem, so that we obtain what we call “quasidual
singular functions” (compare with extraction functions in [1] by ANDERSSON, FALK,
BABUŠKA) as opposed to exact dual singular functions cf MAZ’YA, PLAMENEVSKII,
ROSSMANN [22, 26] (pointwise duality) and LENCZNER [20] (Sobolev duality).

3.A TWO-DIMENSIONAL DUAL SINGULAR FUNCTIONS

The two-dimensional operator is the homogeneous second order operator M0 with real
coefficients. We develop its symbol M0(α) in powers of α (of degree 2 ):

M0(θ;α, ∂θ) = N0(θ; ∂θ) + αN1(θ; ∂θ) + α2
N2(θ). (3.1)

Since M0 is self-adjoint, we can deduce that

N0 and N2 are self-adjoint and N1 is anti self-adjoint. (3.2)

Lemma 3.1 Let α , β in A and ϕ , ψ in the kernels of M0(α) , M0(β) , respectively.
Then there holds the identity

(α + β̄)

∫ ω

0

(
N1 + (α− β̄)N2

)
ϕ · ψ dθ = 0. (3.3)
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PROOF. We start with the duality relation:

0 =

∫ ω

0

ϕ · M0(β)ψ =

∫ ω

0

M0(β)∗ϕ · ψ =

∫ ω

0

M0(−β̄)ϕ · ψ.

Then we use the identity

M0(−β̄) = M0(α) − (β̄ + α)N1 + (β̄2 − α2)N2.

From M0(α)ϕ = 0 , we obtain

0 =

∫ ω

0

M0(−β̄)ϕ · ψ =

∫ ω

0

(
− (β̄ + α)N1 + (β̄2 − α2)N2

)
ϕ · ψ

= −(α + β̄)

∫ ω

0

(
N1 + (α− β̄)N2

)
ϕ · ψ.

Lemma 3.2 Let α , β , ϕ and ψ be as in Lemma 3.1.
(i) If −β̄ �= α , then ∫ ω

0

(
N1 + (α− β̄)N2

)
ϕ · ψ = 0. (3.4)

(ii) If −β̄ = α then the left hand side of (3.4) becomes∫ ω

0

(
N1 + 2αN2

)
ϕ · ψ =

∫ ω

0

( d

dα
M0(α)

)
ϕ · ψ, (3.5)

and, if we moreover assume hypothesis (H1) , then for any basis
(
ϕ[α, p]

)
p

of ker M0(α)

there exists a unique dual basis
(
ψ[α, p]

)
p

of ker M0(−ᾱ) such that∫ ω

0

(
N1 + 2αN2

)
ϕ[α, p] · ψ[α, q] = δp,q. (3.6)

PROOF. (i) is a straightforward consequence of Lemma 3.1.

(ii) Identity (3.5) is clear. Concerning (3.6), we first note that since M0(α)∗ = M0(−ᾱ) ,
the dimension of the kernel of M0(α) is equal to the codimension of the closure of the
range of M0(−ᾱ) . On the other hand, as for any α′ ∈ C \ A , M0(α

′) is invertible and
since M0(α) − M0(α

′) is a compact operator, M0(α) is a Fredholm operator of index
0 . As a consequence,

dim ker M0(α) = dim ker M0(−ᾱ).

In order to obtain (3.6) it suffices now to prove that if ϕ ∈ ker M0(α) satisfies

∀ψ ∈ ker M0(−ᾱ),

∫ ω

0

(
N1 + 2αN2

)
ϕ · ψ = 0,
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then ϕ = 0 . If this does not hold, thanks to (3.5) there exists ϕ ∈ ker M0(α) such that

∀ψ ∈ ker M0(−ᾱ),

∫ ω

0

( d

dα
M0(α)

)
ϕ · ψ = 0.

By the Fredholm alternative, there exists ϕ′ such that

M0(α)ϕ′ +
d

dα
M0(α)ϕ = 0.

As a consequence the function

α′ �−→ (α′ − α)−2 M0(α
′)
(
ϕ + (α′ − α)ϕ′)

has an analytic extension in α . This contradicts hypothesis (H1) according to which
M

−1
0 has a pole of order 1 in α .

We end this subsection with a relation between the expression in the left hand sides
of (3.4) and (3.6) and a trace obtained by integration by parts.

Considering the Green formula (1.1) in the domain Ωε,R for functions u and v
which are zero on the two faces θ = 0 and θ = ω of Ω , we have contributions on the
parts ΓR and Γε of the boundary of Ωε,R , where r = R and r = ε respectively. We
denote by T (r) the Neumann trace operator on Γr . It has the form

T (r) = T (r, θ; ∂r, ∂θ, ∂z) = r−1T0(θ; r∂r, ∂θ) + T1(θ) ∂z . (3.7)

We also have contributions of the lateral sides Gε,R×∂I . Denoting by T∂I the Neumann
trace on these sides, we have the Green formula:∫

Ωε,R

Lu · v − u · Lv dx =

∫
I

∫ ω

0

T (R)u · v − u · T (R)v R dθ dz

−
∫
I

∫ ω

0

T (ε)u · v − u · T (ε)v ε dθ dz

+

∫
Gε,R×∂I

T∂I u · v − u · T∂I v dσ.

(3.8)

Applying the above identity to functions u and v independent of z (and zero on the two
sides θ = 0 and θ = ω ), we note that the contributions on the two sides Gε,R × {−+1}
cancel out because the two Neumann operators T−+1 which compose T∂I are opposite to
each other. Thus we obtain∫

Gε,R

M0u · v − u ·M0v dx dy =

∫ ω

0

T0(R)u · v − u · T0(R)v dθ

−
∫ ω

0

T0(ε)u · v − u · T0(ε)v dθ,
(3.9)

where T0(R) denotes T0(θ;R∂r, ∂θ) .
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Lemma 3.3 Let α and β be complex numbers and ϕ and ψ belong to H1
0 (0, ω)N . Set

Φ := rαϕ(θ) and Ψ := r−β̄ψ(θ) . For any R > 0 there holds∫ ω

0

T0(R)Φ · Ψ − Φ · T0(R)Ψ dθ = Rα−β
∫ ω

0

(
N1 + (α + β)N2

)
ϕ · ψ dθ . (3.10)

PROOF. Formula (3.9) and the splitting (3.1) of M0 = r2M0 yield for any ε < R∫
Gε,R

((
N0 + r∂rN1 + (r∂r)

2
N2

)
Φ · Ψ − Φ ·

(
N0 + r∂rN1 + (r∂r)

2
N2

)
Ψ

)
1
r
dr dθ

=

∫ ω

0

T0(R)Φ · Ψ − Φ · T0(R)Ψ dθ

−
∫ ω

0

T0(ε)Φ · Ψ − Φ · T0(ε)Ψ dθ.

Since N0 is self-adjoint, integration by parts gives∫ R

ε

((
N0 + r∂rN1 + (r∂r)

2
N2

)
Φ · Ψ − Φ ·

(
N0 + r∂rN1 + (r∂r)

2
N2

)
Ψ

)
1
r
dr

=
[
N1Φ · Ψ + (r∂r)N2Φ · Ψ − Φ · (r∂r)N2Ψ

]R
ε
.

We have

N1Φ · Ψ + (r∂r)N2Φ · Ψ −N2Φ · (r∂r)Ψ = rα−β
(
N1ϕ · ψ + αN2ϕ · ψ + ϕ · βN2ψ

)
and as N2 is self-adjoint, cf (3.2), we finally obtain

(
N1ϕ · ψ + (α + β)N2ϕ · ψ

)(
Rα−β − εα−β

)
=

∫ ω

0

T0(R)Φ · Ψ − Φ · T0(R)Ψ dθ

−
∫ ω

0

T0(ε)Φ · Ψ − Φ · T0(ε)Ψ dθ.

Now the right hand side of the above equality has also the form c(α, β)(Rα−β − εα−β) ,
and we deduce (3.10) for any α �= β . Since for fixed β , ϕ , ψ and R , both members
of (3.10) depend continuously on α , we deduce (3.10) for α = β by continuity.

3.B THREE-DIMENSIONAL DUAL SINGULAR FUNCTIONS

We assume hypotheses (H1) and (H2) , and for any α ∈ A , Reα > 0 , we choose a
basis ϕ[α, p] , p = 1, . . . , pα of ker M0(α) . Then we denote by ψ[α, p] , p = 1, . . . , pα ,
the corresponding dual basis according to Lemma 3.2. We recall that we have denoted
rαϕ[α, p] by Φ0[α, p] and that associated singularities at the order n are defined in (2.9).

Following the same lines, we set

Ψ0[α, p] := r−ᾱψ[α, p]
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and for any integer n ≥ 0 , we define the “quasidual singular function at the order n ”
by

Kn[α, p ; b] :=
n∑
j=0

∂jzb(z) Ψj[α, p](x, y) (3.11)

where b belongs to C
n+2(I) and the sequence (Ψj) j≥0 is defined by induction as

solution of (2.1) in the form
Ψj = r−ᾱ+jψj(θ)

where ψj solves

M0(−ᾱ + j)ψj = −M1(−ᾱ + j − 1)ψj−1 −M2ψj−2. (3.12)

Of course, Kn[α, p ; b] is but Sn[−ᾱ, p ; b] (generated by Ψ0 ). Therefore by (2.11)
there holds for any α ∈ A , Reα > 0 , and b ∈ C n+2(I) :

LKn[α, p ; b] = O
(
r−Reα+n−1

)
. (3.13)

In the next Proposition we state that the singularities Sn[α, p ; a] and the quasidual sin-
gular functions Kn[β, q ; b] are in duality with each other (modulo a remainder) if linked
by the following antisymmetric sesquilinear form

J [R](u, v) :=

∫
ΓR

(
Tu · v − u · Tv

)
dσ =

∫
I

∫ ω

0

(
Tu · v − u · Tv

)∣∣
r=R

R dθ dz, (3.14)

where T = T (R) is the radial Neumann trace operator (3.7).

Proposition 3.4 Let α, β ∈ A with Reα, Re β > 0 . We assume that hypotheses (H1)
and (H2) hold. For an integer n ≥ 0 , let the coefficients a and b be in C n+2(I) . We
assume moreover that ∂jzb = 0 for j = 0, . . . , n− 1 on ∂I . Then for any R > 0 there
holds

J [R]
(
Sn[α, p ; a] , Kn[β, q ; b]

)
= δα,β δp,q

∫
I

a(z) b̄(z) dz +O
(
RReα−Reβ+n+1

)
. (3.15)

PROOF. We use the Green formula (3.8) on Gε,R for

u = Sn[α, p ; a] and v = Kn[α, q ; b].

Since u = O
(
rReα

)
and v = O

(
r−Reβ

)
, (2.11) and (3.13) imply∫

Ωε,R

Lu · v − u · Lv dx = O

(∫ R

ε

rReα−Reβ+n−1 rdr

)
.

With formula (2.10), we even obtain the more precise expression:

∫
Ωε,R

Lu · v − u · Lv dx =
2n∑

k=n−1

γk

∫ R

ε

rα−β+k rdr ,

13



with coefficients γk independent of R and ε . As a consequence of hypothesis (H2) we
know that α− β + k is different from −1 for k = n, . . . , 2n + 1 . Thus∫

Ωε,R

Lu · v − u · Lv dx =
2n+2∑
k=n+1

λk
(
Rα−β+k − εα−β+k

)
,

with coefficients λk independent of R and ε . For the boundary integral J [r](u, v)
(3.14), we omit the mention of (u, v) . Thus the Green formula (3.8) gives

J [R] − J [ε] +

∫
Gε,R×∂I

T∂Iu · v − u · T∂Iv rdr dθ =
2n+2∑
k=n+1

λk
(
Rα−β+k − εα−β+k

)
.

As T∂I is of the form r−1T∂I,0(θ; r∂r, ∂θ)+T∂I,1(θ) ∂z , cf (3.7), and as the ends ∂I are
zeros of order n of b , we are left with

T∂Iu ·v−u ·T∂Iv = T∂Iu ·∂nz bΨn−u ·∂nz b
(
r−1T∂I,0Ψn+T∂I,1Ψn−1

)
−u ·∂n+1

z b T∂I,1Ψn.

Integrating on Gε,R × ∂I and using the structure of Ψj , we obtain as before

T∂Iu · v − u · T∂Iv =
2n+2∑
k=n+1

λ′
k

(
Rα−β+k − εα−β+k

)
.

From the last three equalities we obtain

J [R] − J [ε] =
2n+2∑
k=n+1

λ′′
k

(
Rα−β+k − εα−β+k

)
. (3.16)

It remains to expand J [r] in homogeneous parts: we have

J [r] =
2n+1∑
k=0

Jkr
α−β+k (3.17)

with, cf (3.7),

Jk =
∑
j+�=k

∫
I

∫ ω

0

∂jza ∂
�
z b̄

(
T0(θ;α + j, ∂θ)ϕj · ψ� − ϕj · T0(θ;−β + 1, ∂θ)ψ�

)
dθdz

(3.18)

+
∑

j+�=k−1

∫
I

∫ ω

0

(
∂j+1
z a ∂�z b̄ T1(θ)ϕj · ψ� − ∂jza ∂

�+1
z b̄ ϕj · T1(θ)ψ�

)
dθdz.

Combining (3.16) with (3.17) we obtain

2n+1∑
k=0

Jk(R
α−β+k − εα−β+k) =

2n+2∑
k=n+1

λ′′
k

(
Rα−β+k − εα−β+k

)
.

14



By identification of terms, we immediately deduce that

∀k ≤ n, Jk(R
α−β+k − εα−β+k) = 0.

Therefore
∀k ≤ n such that α− β + k �= 0, Jk = 0.

By hypothesis (H2) , the number α− β + k can be 0 only if k = 0 . Therefore

∀k, 1 ≤ k ≤ n, Jk = 0 and ∀α, β ∈ A, α �= β, J0 = 0.

In order to obtain (3.15), it remains to study J0 when α = β . Formula (3.18) yields for
J0 :

J0 =

∫
I

∫ ω

0

a b̄
(
T0(θ;α, ∂θ)ϕ0[α, p] · ψ0[α, q] − ϕj[α, p] · T0(θ;−β, ∂θ)ψ0[α, q]

)
dθdz

Applying Lemma 3.3 for α = β we have

J0 =
( ∫

I

a b̄ dz
)( ∫ ω

0

(
N1 + 2αN2

)
ϕ[α, p] · ψ[α, q] dθ

)
and with the orthogonality relation (3.6) we deduce that

J0 = δp,q

∫
I

a b̄ dz.

Note that in formula (3.18), we can integrate by parts in z without any boundary
contribution for k ≤ n , because ∂jzb = 0 for j = 0, . . . , n− 1 on ∂I . Therefore

Jk =
( ∫

I

a ∂kz b̄ dz
)
Hk[α, p ; β, q] (3.19)

where

Hk[α, p ; β, q] =
∑
j+�=k

∫ ω

0

(−1)j
(
T0(θ;α + j, ∂θ)ϕj · ψ� − ϕj · T0(θ;−β + 1, ∂θ)ψ�

)
dθ

(3.20)

−
∑

j+�=k−1

∫ ω

0

(−1)j
(
T1(θ)ϕj · ψ� + ϕj · T1(θ)ψ�

)
dθ.

As a consequence of the proof of Proposition 3.4 we have

∀α, β ∈ A, ∀p, q, ∀k ∈ N, Hk[α, p ; β, q] = δk,0 δα,β δp,q. (3.21)

Later on, we will use formula (3.21), and not Proposition 3.4, to extract the singularity
coefficients of a true solution of problem (1.2).
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4 EXTRACTION OF SINGULARITY COEFFICIENTS

In this section, we first describe asymptotic expansions of the solution u of problem
(1.2). The right hand side f is C∞(Ω) and we suppose in a preliminary step that f ≡ 0
in a neighborhood of the edge E . The expansions of u show edge singularity coefficients
aα,p along the edge E . We propose a method based on the duality formula (3.15) to
determine these coefficients.

4.A EXPANSION OF THE SOLUTION ALONG THE EDGE

The edge expansions are only valid away from the sides G× ∂I . This is the reason why
we introduce for any δ ∈ (0, 1) the subinterval

Iδ = (−1 + δ, 1 − δ),

and consider the subdomains G × Iδ . We need the introduction of weighted spaces to
describe the remainders in the expansions. For ξ ∈ R , let

Vη(G× Iδ) :=
{
v ∈ C∞(G× Iδ) | ∀m ∈ N

3, r−η+|m|∂m
x v ∈ L∞(G× Iδ)

}
.

There holds, cf [27]

Theorem 4.1 Let δ ∈ (0, 1) and η > 0 be given. Then for any α ∈ A such that Reα ∈
(0, η) and for any p ∈ {1, . . . , pα} , there exists a unique coefficient aα,p ∈ C∞(Iδ) such
that

u−
∑

α, 0<Reα<η

∑
p

Sn
[
α, p ; aα,p

]
∈ Vη(G× Iδ), (4.1)

where n = n(α) is the smallest integer such that Reα + n > η .

Letting δ tend to 0 , this clearly defines unique coefficients aα,p in C∞(I) such
that for any δ (4.1) holds with aα,p

∣∣
Iδ

. But this does not imply that (4.1) holds in Ω ,
because in general the remainders on G × Iδ depend on δ and their norms blow up as
δ → 0 . This is due to the presence of corner singularities at the corners c−+ := (0, 0,−+1) .
We have to analyze these corner singularities in order to obtain uniform estimates in Ω .

4.B CORNER EXPONENTS

We describe the situation in a neighborhood of the corner c+ and particularize the nota-
tions by the superscript + . A similar situation holds for the other corner c− . Let K+ be
the infinite cone coinciding with Ω in a neighborhood of c+ . Let S

+ denote the sphere
of radius 1 centered at c+ , ρ+ the distance to c+ and ϑ+ coordinates on S

+ . Thus
(ρ+, ϑ+) are spherical coordinates centered at c+ . Let finally S+ denote the intersection
S

+ ∩K+ . The operator L can be written in these spherical coordinates as

L = (ρ+)−2
L

+(ϑ+; ρ+∂ρ+ , ∂ϑ+),
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which defines the Mellin symbol γ �→ L+(γ) of L at c+ , where L+(γ) is the operator
φ �→ L

+(ϑ+; γ, ∂ϑ+)φ acting from H1
0 (S+) into H−1(S+) . We denote by G+ the set

of γ ∈ C such that L+(γ) is not invertible. We call these γ the corner exponents. We
introduce the analogue of hypothesis (H1) for L+ :

(H3) ∀γ ∈ G+, γ is a pole of degree 1 of (L+)−1 .

For each γ ∈ G+ , we denote by φ[γ, q] , q = 1, . . . , qγ , a basis of ker L+(γ) .

We need a new family of weighted spaces: Let us introduce r+ on S+ as the distance
to the corner (r = 0, z = 0) of S+ corresponding to the edge E and extend it by
homogeneity: r+(x) = r+

(
ϑ+(x)

)
. Note that we have the equivalence

r+(x) � r(x)/ρ+(x). (4.2)

In the same way we define r̃+ on S+ as the distance to the two other corners of S+ :
(r = 1, θ = 0, z = 1) and (r = 1, θ = ω, z = 1) and extend r̃+ by homogeneity. We
define for ξ > −1

2
and η > 0 :

Vξ, η(Ω
+) :=

{
v ∈ C∞(Ω+) |
∀m ∈ N

3, (ρ+)−ξ+|m| (r+)−η+|m| (r̃+)|m|∂m
x v ∈ L∞(Ω+)

}
,

with Ω+ = G× (0, 1) . There holds the corner expansion for any fixed ξ > −1
2

:

u−
∑

γ, −1/2<Re γ<ξ

∑
q

cγ,q (ρ+)γφ[γ, q](ϑ+) ∈ Vξ, 0(Ω+), (4.3)

where the coefficients cγ,q are complex numbers. Note that the remainder in (4.3) is
flat with respect to the “distance” ρ+ to the corner c+ and not with respect to the edge
E . Thus, the expansions (4.1) and (4.3) give complementary and seemingly independent
information about the structure of u .

In fact, we will only use this result to obtain the optimal corner regularity of u with-
out splitting u into regular and singular parts at this corner. We define the set of exponents
G− attached to the corner c− in a similar way as G+ . We define ξ−+

1 as

ξ−+

1 = min
{

Re γ | γ ∈ G−+ and Re γ > −1
2

}
. (4.4)

The choice ξ = ξ+
1 is the best possible so that the corner expansion in (4.3) is empty.

There holds
u ∈ Vξ+1 , 0(Ω

+) and u ∈ Vξ−1 , 0(Ω
−). (4.5)
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4.C EDGE EXPANSION UP TO THE CORNER

Relying on [14, Ch.17] we can expand u along the edge E while taking its corner
regularity into account. Near c+ the edge coefficients will themselves belong to weighted
spaces of the type Vξ(0, 1) on the half-edge {z ∈ (0, 1)} (here ρ+ coincides with 1−z )

Vξ(0, 1) :=
{
a ∈ C∞(0, 1) | ∀m ∈ N, (ρ+)−ξ+m ∂mρ+a ∈ L∞(0, 1)

}
,

and near c− the coefficients will belong to a space Vξ(−1, 0) where the weight function
is ρ−(z) = 1 + z instead of ρ+ .

Theorem 4.2 Let η > 0 be given. Then for any α ∈ A such that Reα ∈ (0, η)
and any p = 1, . . . , pα , the coefficient aα,p appearing in the splitting (4.1) belongs to
Vξ+1−Reα(0, 1) and there holds

u−
∑

α, 0<Reα<η

∑
p

χ(r+)Sn
[
α, p ; aα,p

]
=: u+

reg,η ∈ Vξ+1 , η(Ω
+), (4.6)

where χ is a smooth cut-off function which is 1 in a neighborhood of 0 , r+ = r+(x) is
defined in (4.2) and n = n(α) is the smallest integer such that Reα+ n > η . Similarly,
aα,p

∣∣
(−1,0)

belongs to Vξ−1−Reα(−1, 0) and there holds

u−
∑

α, 0<Reα<η

∑
p

χ(r−)Sn
[
α, p ; aα,p

]
=: u−

reg,η ∈ Vξ−1 , η(Ω
−). (4.7)

4.D EXTRACTION OF EDGE COEFFICIENTS

Our main goal is the determination and the computation of the edge coefficients aα,p , at
least those corresponding to the smallest values of Reα . These coefficients are defined
via the expansion (4.1) and a sharp estimate of both the coefficients and the remainder is
given in Theorem 4.2. The method for extracting them is based on the use of the anti-
symmetric bilinear form J [R](u, v) defined in (3.14) where v is chosen as Kn[β, p ; b]
for a certain range of β ∈ A and of test edge coefficients b . The choice of the order n
will determine the order of the error, which is a positive power of R . We introduce a last
technical hypothesis

(H4) ∀α ∈ A, Reα ≥ 0, ξ+
1 − Reα �∈ N, ξ−1 − Reα �∈ N.

The main result of our work is the following

Theorem 4.3 Let u be the solution of problem (1.2) with a smooth right hand side f
which is zero in a neighborhood of the edge E . We assume the hypotheses (H1)− (H4) .
The function u admits the edge expansion (4.1) for all δ > 0 . Let β ∈ A with Re β >
0 . We fix an integer n ≥ 0 such that

n ≥ Re β − ξ1 − 1 with ξ1 = min{ξ+
1 , ξ−1 } , (4.8)
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where we recall that ξ+
1 defined in (4.4) is attached to the corner c+ and ξ−1 is its

analogue for the corner c− . Let m be an integer m ≥ n and let finally b ∈ Cm(I) be
such that ∂jzb(−+1) = 0 for all j = 0, . . . , n− 1 . Then there holds

J [R]
(
u,Km[β, p ; b]

)
=

∫
I

aβ,p(z) b̄(z) dz + O
(
Rmin{n+ξ1 ,m+η1}−Reβ+1

)
, (4.9)

as R → 0 , where

η1 = min
{

Reα | α ∈ A and Reα > 0
}
. (4.10)

Before starting the proof, we give a corollary of identity (3.21). For this, we first
introduce the decomposition of the bilinear form J [R] according to the splitting (3.7) of
the radial traction T :

J0[R](u, v) :=

∫
ΓR

(
T0u · v − u · T0v

)
R−1dσ =

∫
I

∫ ω

0

(
T0u · v − u · T0v

)∣∣
r=R

dθ dz

and

J1[R](u, v) :=

∫
ΓR

(
T1u · v − u · T1v

)
dσ =

∫
I

∫ ω

0

(
T1u · v − u · T1v

)∣∣
r=R

R dθ dz.

Lemma 4.4 Let α, β ∈ A . Let m ∈ N and integers 0 ≤ n ≤ m , 0 ≤ k ≤ m . Let
b ∈ Cm(I) such that ∂jzb(−+1) = 0 for all j = 0, . . . , n − 1 . Let a ∈ Vξ(0, 1) . If
ξ + n− k + 1 > 0 then∑

j+�=k

J0[R]
(
∂jzaΦj[α, q] , ∂

�
zbΨ�[β, p]

)
+

∑
j+�=k−1

J1[R]
(
∂jzaΦj[α, q] , ∂

�
zbΨ�[β, p]

)
= δk,0 δα,β δp,q

∫
I

a(z) b̄(z) dz.

This Lemma is merely a consequence of identity (3.21). Indeed, the assumptions
about a and b ensure that (i) all integrals in z are convergent, (ii) integrations by parts
in z (to have all derivatives on b ) do not produce any boundary contribution. Therefore
we can separate the integrals over I and (0, ω) like in (3.19). The integrals over (0, ω)
are zero (or 1 ) thanks to (3.21), which correspondingly yields the Lemma.

PROOF OF Theorem 4.3. Relying on the decompositions (4.6)-(4.7) of u , we split the
integral J [R]

(
u,Km[β, p ; b]

)
into several pieces I0 + I+

1 + I+
2 + I−1 + I−2 + I3 and

estimate each of them.

• We first assume that m > n + ξ1 − η1 .
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A) We define I0 as

I0 =
∑
α, q, k

ξ1−Reα+n−k+1>0

( ∑
j+�=k

J0[R]
(
∂jzaα,q Φj[α, q] , ∂

�
zbΨ�[β, p]

)

+
∑

j+�=k−1

J1[R]
(
∂jzaα,q Φj[α, q] , ∂

�
zbΨ�[β, p]

))
,

where the coefficients aα,q are those of expansion (4.6). The assumptions of Lemma 4.4
are fulfilled because

(a) The inequality ξ1 −Reα+n− k +1 > 0 implies that k < ξ1 −Reα+n+1 which
is ≤ n + ξ1 − η1 ; since we have assumed that m > n + ξ1 − η1 , then k ≤ m .

(b) By Theorem 4.2, aα,q belongs to the weighted space Vξ+1 −Reα(0, 1) in the part of the
edge which belongs to Ω+ and similarly in Ω− , and therefore the inequality ξ1−Reα+
n− k + 1 > 0 is the assumption η + n− k + 1 > 0 of Lemma 4.4.

Moreover, the assumption n ≥ Re β−ξ1−1 implies that the triple (α = β, q = p, k = 0)
belongs to the sum defining I0 . Therefore:

I0 =

∫
I

aβ,p(z) b̄(z) dz.

B) We define I+
1 as

I+
1 =

∑
α, q, k

ξ+1 −Reα+n−k+1>0

( ∑
j+�=k

J0[R]
(
(χ(r+) − 1)∂jzaα,q Φj[α, q] , ∂

�
zbΨ�[β, p]

)

+
∑

j+�=k−1

J1[R]
(
(χ(r+) − 1)∂jzaα,q Φj[α, q] , ∂

�
zbΨ�[β, p]

))
.

Let us define z+ as 1 − z . The domain of integration of the terms in I+
1 is ΓR ∩

supp(χ(r+) − 1) and is contained in a set of the form{
x ∈ R

3 | r = R, θ ∈ (0, ω), z+ ∈ (0, cR)
}
,

where c is a positive constant.

Each term in I+
1 can be estimated by a product of three terms:

(i) an integral in z+ over (0, cR) of a function depending on z+ but not on R nor θ ,
(ii) an integral in θ over (0, ω) of a function depending on θ but not R nor on z+ ,
(iii) a power of R corresponding to the restriction on ΓR of a power of r .

(i) The integral over (0, cR) is
∫ cR

0
(z+)ξ

1
+−Reα+n−k dz+ which is O

(
Rξ

1
+−Reα+n−k+1

)
since ξ1

+ − Reα + n− k + 1 > 0 .

(ii) The integral over (0, ω) does not depend on R .

(iii) The power of R is RReα−Reβ+k .
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Therefore
I+
1 = O

(
Rξ

1
++n−Reβ+1

)
.

The corresponding part I−1 in the neighborhood of c− has a similar bound.

C) We define I+
2 as

I+
2 =

∑
α, q, j, �

ξ+1 −Reα+n−j−�+1<0

�≤m, Reα+j<n+ξ+1 +1

( ∑
j+�=k

J0
+[R]

(
χ(r+) ∂jzaα,q Φj[α, q] , ∂

�
zbΨ�[β, p]

)

+
∑

j+�=k−1

J1
+[R]

(
χ(r+) ∂jzaα,q Φj[α, q] , ∂

�
zbΨ�[β, p]

))
,

where J0
+ and J1

+ are the contributions over Ω+ of J0 and J1 .

Like for I+
1 , each term of I+

2 can be estimated by the product of three terms (i)-(iii). The
only difference is that the integral (i) in z+ is over (cR, 1) instead of (0, cR) and is equal
to

∫ 1

cR
(z+)ξ

1
+−Reα+n−k dz+ which is still O

(
Rξ

1
+−Reα+n−k+1

)
since ξ1

+−Reα+n−k+1
is < 0 . The power (iii) of R is the same, thus we obtain like above that

I+
2 = O

(
Rξ

1
++n−Reβ+1

)
.

D) We set η := n + ξ+
1 + 1 . We check that

I0 + I+
1 + I−1 + I+

2 + I−2 =
∑
α, q, j

Reα+j<η

J [R]
(
χ(r+) ∂jzaα,q Φj[α, q] , K

m[β, p ; b]
)
.

But according to Theorem 4.2

u+
reg,η := u−

∑
α, q, j

Reα+j<η

χ(r+) ∂jzaα,q Φj[α, q] ∈ Vξ+1 , η(Ω
+)

and similarly for the other corner. Therefore it remains to estimate

I3 := J [R]
(
u+

reg,η , K
m[β, p ; b]

)
and more precisely, each contribution J [R]

(
u+

reg,η, ∂
�
zbΨ�

)
for 1 = 0, . . . ,m . Since

u+
reg,η belongs to Vξ+1 , η(Ω

+) ,

u+
reg,η = O

(
(ρ+)ξ

+
1 (r+)η

)
= O

(
(ρ+)ξ

+
1 −η rη

)
and ∇u+

reg,η = O
(
(ρ+)ξ

+
1 −η rη−1

)
.

For the bounding of J [R]
(
u+

reg,η , ∂
�
zbΨ�

)
, we split the integral over ΓR into (a) the

contribution on z+ ∈ (0, R) , and (b) the contribution on z+ ∈ (R, 1) and we estimate
each piece by a product of three terms as we did before.
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(a) When z+ ∈ (0, R) , the distance ρ+ is equivalent to R on ΓR . Therefore the
weight over u+

reg,η is equivalent to Rξ
+
1 in that region. The part (i) is the integral∫ R

0
(z+)n−� dz+ = O

(
Rn−�+1

)
and the power (iii) of R is Rξ

+
1 −Reβ+� . Their product is

Rn+ξ
+
1 −Reβ+1 .

(b) When z+ ∈ (R, 1) , the distance ρ+ is equivalent to z+ on ΓR . Therefore the
weight over u+

reg,η is equivalent to (z+)ξ
+
1 −η rη in that region. The part (i) is the integral∫ 1

R
(z+)ξ

+
1 −η+n−� dz+ = O

(
Rξ

+
1 −η+n−�+1

)
(since ξ+

1 − η +n− 1+1 < 0 ) and the power

(iii) of R is Rη−Reβ+� . The product of both is Rξ
+
1 +n+1−Reβ .

Gathering all the previous results of parts A) - D), we obtain formula (4.9) in the case
m > n + ξ1 − η1 .

• When m < n + ξ1 − η1 , we follow the same lines with the corresponding changes:
For I0 we reduce the sum by the extra condition that k ≤ m , and the same for I−+

1 .
The conclusions are still the same. For I+

2 the sum is augmented by the set of (α, q, j, 1)
such that ξ+

1 − Reα + n− j − 1 + 1 > 0 and j + 1 > m . The new terms do not satisfy
the same estimates as the old ones since the corresponding contribution (i) in z+ is now
O (1) . As the power (iii) of R is still RReα−Reβ+j+� we obtain that

I+
2 = min

{
O

(
Rξ

1
++n−Reβ+1

)
,O

(
RReα−Reβ+j+�

) }
,

where the min is taken over (α, j, 1) such that ξ+
1 − Reα + n − j − 1 + 1 > 0 and

j + 1 > m . The minimum of Reα + j + 1 is attained for α = β1 and j + 1 = m + 1 .
Whence

I+
2 = O

(
Rη1−Reβ+m+1

)
.

We have proved formula (4.9) in the case m < n + ξ1 − η1 .

Remark 4.5
(i) Formula (4.9) is, of course, still valid if hypotheses (H1) − (H4) are only assumed to
hold for the exponents which are used in the proof, namely Re β < η = n + ξ1 + 1 for
(H1) − (H2) , (H4) and Re γ = ξ+

1 for (H3) .

(ii) If we discard hypotheses (H3) and (H4) , we can still prove a formula like (4.9), up
to the possible multiplication of the remainder by | logMR| for some integer M .

(iii) We still obtain formula (4.9) if we relax the assumption on the right hand side so that
f is no more supposed to be zero in the neighborhood of the edge, but only flat up to
a specified order, in relation with what is needed in the proof of (4.9): it suffices that f
belongs to the weighted spaces Vξ1−2 , η−2(Ω

+) and Vξ1−2 , η−2(Ω
−) , with ξ1 defined in

(4.8) and η = n+ ξ1 + 1 . Then the edge expansion up to the corner (4.6) still holds with
such a right hand side, which makes part D) the proof of (4.9) still valid.
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Remark 4.6 The assumptions about the test edge coefficients b can be slightly relaxed.

(i) Instead of the boundary conditions ∂jzb(−+1) = 0 for any j = 0, . . . , n − 1 , we may
assume that (1 − z)−n+j(z + 1)−n+j∂jzb ∈ L∞(I) for j ≤ m , and the statement of
Theorem 4.3 can be extended to non integer n .

(ii) We may assume that b is only Cm−1(I) globally, and piecewise Cm on a finite
partition of I .

5 A WIDER RANGE OF APPLICATIONS FOR QUASIDUAL METHODS

We extend the results of Theorem 4.3 to any edge of a general polyhedron and discuss
the case of cracks (where ω = 2π ). We also evaluate the limitation of the convergence
rate in R when the right hand side is not flat along the edge.

5.A THE DOMAIN

By a slight modification we can adapt our method to the determination of edge singular-
ities along any edge of a three-dimensional polyhedron, that is a domain Ω with plane
faces and, therefore, straight edges.

Let E be an edge of Ω . E is an open segment whose end points c+ and c− are
corners of Ω . We choose cylindrical coordinates (r, θ, z) adapted to Ω around E :

E =
{
x ∼ (r, θ, z) | r = 0, z ∈ (−h

2
, h

2
)
}
,

where h is the length of E . There exists a conical neighborhood (1) Θ of E such that

Ω ∩ Θ =
{
x ∼ (r, θ, z) | r = (0, 1), ω ∈ (0, ω), z ∈ (−h

2
, h

2
)
}
∩ Θ,

where ω is the opening of Ω along the edge E .

We still define, for any R < 1 , the internal cylinder ΓR as

ΓR =
{
x ∼ (r, θ, z) | r = R, ω ∈ (0, ω), z ∈ (−h

2
, h

2
)
}
.

But it may happen that even for small R , ΓR is not included in Ω . Then we define the
reduced internal cylinder Γ̆R as

Γ̆R =
{
x ∼ (r, θ, z) | r = R, ω ∈ (0, ω), z ∈ (−h

2
+ kR, h

2
− kR)

}
,

(1) In cylindrical coordinates, Θ has the form

Θ =
{
x ∼ (r, θ, z) | r = (0, R0), ω ∈ (0, ω), z ∈ (−h

2 + kr, h
2 − kr)

}
,

with a k > 0 and R0 > 0 .
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where k > 0 defines the conical neighborhood Θ . In other words, for any R ≤ R0 ,
Γ̆R = ΓR ∩ Θ .

On the same model as (3.14), we define

J̆ [R](u, v) :=

∫
Γ̆R

(
Tu·v−u·Tv

)
dσ =

∫ h
2
−kR

−h
2
+kR

∫ ω

0

(
Tu·v−u·Tv

)∣∣
r=R

R dθ dz. (5.1)

Then defining the sets G−+ of corner exponents at c−+ like before, but now on the polyhe-
dral cones K−+ coinciding with Ω in neighborhoods of c−+ , and defining ξ−+

1 in the same
way, we have expansions (2) (4.6)-(4.7), and there holds with the same assumptions as in
Theorem 4.3

J̆ [R]
(
u,Km[β, p ; b]

)
=

∫ h
2

−h
2

aβ,p(z) b̄(z) dz + O
(
Rmin{n+ξ1 ,m+η1}−Reβ+1

)
. (5.2)

The proof follows exactly the same steps as the proof of (4.9). The parts I0 , I−+

1 and I−+

2

are still defined by integrals over ΓR . We only modify part D), noting that, thanks to the
condition on the support of χ , the expansion (4.6) now gives

J̆ [R](u,Km[β, p ; b]) = J̆ [R](u+
reg,η, K

m[β, p ; b]) + I0 + I+
1 + I−1 + I+

2 + I−2 .

The conclusion follows by the same arguments as before.

5.B IN THE PRESENCE OF CRACKS

We now consider the case where the opening ω is equal to 2π . This means that the
model domain Ω is the cylinder of radius 1 with an internal boundary formed by the
plane rectangle

Σ = {x ∈ R
3 | x ∈ (0, 1), y = 0, z ∈ I}.

This case is in principle included in our analysis. But the special situation of the singu-
larity exponents prevents hypothesis (H2) to be satisfied: By the result of [10], the set A

of singular exponents is included in the set of half-integers and moreover

∀j̄ ∈ N, dim ker M0(
1
2

+ j̄) = N, (5.3)

where we recall that N is the size of the system L . But our method can still be applied
in this case! We are going to explain why.

The first place where we use (H2) is for the definition of the shadow singularities
Φj[α, p] . The general theory gives that Φj[α, p] can be found in the form of a finite sum

(2) With the cut-off function χ chosen so that in the cylinder r ≤ R0 , the support of x �→ χ(r−+) is
contained in the conical neighborhood Θ . The subdomains Ω+ and Ω− correspond to the regions z > 0
and z < 0 respectively.
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of the form rα+j
∑

logqr ϕj,q(θ) . But in this situation of cracks, it is proved in [11] that
the logarithmic terms are absent. But still, the solution of (2.8), though existing, is not
unique. This circumstance will help in the second place where we use (H2) .

We used (H2) to prove (3.21), in particular that Hk[α, p ; β, q] = 0 for all α and β
in A when k �= 0 .

Lemma 5.1 For all j̄ ∈ N , p = 1, . . . , N and j ≥ 1 let the singularities Φ0[
1
2

+ j̄, p]
and their shadows Φj[

1
2

+ j̄, p] be fixed. The dual singularities Ψ0[
1
2

+ 1̄, q] are still
determined according to Lemma 3.2 and there exists a choice of the shadows Ψ�[

1
2
+ 1̄, q]

such that there holds, cf (3.20) and (3.21),

∀j̄, 1̄ ∈ N, ∀p, q ≤ N, ∀k > 0, Hk[
1
2

+ j̄, p ; 1
2

+ 1̄, q] = 0. (5.4)

PROOF. By the proof of Proposition 3.4, we know that for any choice of the Ψ�[β, q] ,
the identity Hk[α, p ; β, q] = 0 holds as soon as α − β + k �= 0 , i.e. in our case, when
1
2

+ j̄ − 1
2
− 1̄ + k �= 0 . Thus it remains to prove (5.4) when j̄ − 1̄ + k = 0 .

Let 1̄ and q be fixed. The proof uses induction over k . For k = 1 , j̄ = 1̄ − 1 . Let
us fix a particular solution ψ̆1[

1
2

+ 1̄, q] of (3.12). Any solution of (3.12) is the sum of
ψ̆1[

1
2

+ 1̄, q] and of an element of ker M0(−1
2
− 1̄ + 1) = ker M0(−1

2
− j̄) . A basis of

this kernel is the set of ψ0[
1
2

+ j̄, p′] , p′ = 1, . . . , N . Therefore H1[
1
2

+ j̄, p ; 1
2

+ 1̄, q]
is the sum of a fixed contribution and of a linear combination of the contributions of the
ψ0[

1
2

+ j̄, p′] , i.e. of H0[
1
2

+ j̄, p ; 1
2

+ j̄, p′] . By Lemma 3.2, we can determine elements
of the kernel ker M0(−1

2
− j̄) so that H1[

1
2

+ j̄, p ; 1
2

+ 1̄, q] = 0 for all p = 1, . . . , N .

For a general k , we assume that the Ψ�[
1
2

+ 1̄, q] are determined for 1 < k and have to
prove (5.4) for j̄ = 1̄ − k . We isolate the contribution j = 0 , 1 = k in Hk and the
proof is similar to the case k = 1 .

5.C THE RIGHT HAND SIDE

Let us consider now a standard smooth right hand side f ∈ C∞(Ω) . Then f belongs to
the weighted spaces V0,0(Ω

+) and V0,0(Ω
−) . With

ξ+
0 = min{ξ+

1 , 2} and ξ−0 = min{ξ−1 , 2}, (5.5)

there holds, for η = 2 :

f ∈ Vξ+0 −2 , η−2(Ω
+) and f ∈ Vξ−0 −2 , η−2(Ω

−). (5.6)

Thus a general smooth interior right hand side alters the asymptotics of the solution only
in the region of exponents Reα ≥ 2 and Re γ ≥ 2 . The corresponding parts in the
asymptotics of u (either polynomial or singular) are no more orthogonal in the sense of
the bilinear form J [R] versus the standard singularities associated with a zero (or flat)
right hand side.
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In connection with Remark 4.5 (iii), we see that in order to take (5.6) into account,
we first have to replace ξ1 by ξ0 := min{ξ+

0 , ξ−0 } in the statement of Theorem 4.3 and
investigate the consequences on the estimates of the limitation η = 2 .

We assume that m > n+ξ0−η1 . We do changes in the general proof of Theorem 4.3
in the same spirit as at the end of this proof: For I0 we reduce the sum by the extra
condition that Re β + k < 2 , and the same for I−+

1 . Thus we need that Reα < 2 so that
the triple (β = α, q = p, k = 0) belongs to the sum defining I0 . The conclusions are
still the same.

For I+
2 the sum is augmented by the set of (β, q, j, 1) such that ξ+

1 − Re β + n −
j− 1+ 1 > 0 and Re β + j + 1 ≥ 2 . The new terms do not satisfy the same estimates as
the old ones since the corresponding contribution (i) in z+ is now O (1) . As the power
(iii) of R is still RReβ−Reα+j+� , we obtain

I+
2 = min

{
O

(
Rξ

1
++n−Reα+1

)
,O

(
RReβ−Reα+j+�

) }
,

where the min is taken over (β, j, 1) such that ξ+
1 − Re β + n − j − 1 + 1 > 0 and

Re β + j + 1 ≥ 2 .

We have also to consider I3 anew with the constraint that η = 2 . The part (a) of
the estimate is the same, but concerning part (b), we have now to deal with the possibility
that ξ+

0 − η + n + 1 = ξ+
0 − 2 + n + 1 may be ≥ 0 . In this case, the contribution (i) is

O (1) and the contribution (iii) is Rη−Reα = R2−Reα .

Let Q[R](u,Km[α, p; b]) be the remainder J [R](u,Km[α, p; b])−
∫
I
aα,p(z) b̄(z) dz .

Theorem 5.2 Let u be the solution of problem (1.2) with a smooth right hand side f ∈
C

∞(Ω) . We assume the hypotheses (H1) − (H4) . Let α ∈ A with Reα ∈ (0, 2) . We
fix an integer n ≥ 0 such that

n ≥ Reα− ξ0 − 1. (5.7)

Let m be an integer m ≥ n and b ∈ C
m(I) be such that ∂jzb(−+1) = 0 for all

j = 0, . . . , n− 1 . Then there holds

Q[R]
(
u,Km[α, p ; b]

)
= O

(
Rmin{1 , n+ξ1 ,m+η1}−Reα+1

)
. (5.8)

Remark 5.3 If f is zero on the edge E , then f belongs to V1,1(Ω−+) and the above
statement can be improved by replacing everywhere 2 by 3 , including in the definition
(5.5) of ξ−+

0 and we obtain the following estimate for the remainder

Q[R]
(
u,Km[α, p ; b]

)
= O

(
Rmin{2 , n+ξ1 ,m+η1}−Reα+1

)
. (5.9)
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5.D OTHER BOUNDARY CONDITIONS

In a similar way as described in detail for Dirichlet boundary conditions, we can treat other
self-adjoint boundary conditions such as Neumann conditions or mixed conditions in sev-
eral forms, i.e. Dirichlet on certain faces and Neumann on the others, or of mixed type
for systems, where for example in elasticity some components of the displacement are
prescribed to 0 and the complementing components of the traction are also prescribed.

We may also consider transmission conditions, based on a coercive bilinear form B
with piecewise constant coefficients.

Once the correct Mellin symbols M0 and L−+ are defined, we consider their respec-
tive spectra A and G−+ and everything works in the same way, mutatis mutandis. But
we have to emphasize that the sets of exponents A and G−+ may systematically contain
(small) integers. For example, if we consider a Neumann problem, 0 always belongs
to A and G−+ , which implies that α1 = 0 (and, in general, ξ1 = 0 ), though this zero
exponent corresponds to a “singular function” Φ0 which is constant.

Also the consideration of non zero boundary data in the neighborhood of the edge
would introduce more perturbation in the orthogonality relations between the asymptotics
of the solution and the standard singularities associated with a zero right hand side.

6 OTHER METHODS AND FORMULAS, A COMPARISON

Inspired by [26] and [20] we can provide other families of formulae for the determi-
nation of the edge coefficients. We present them and then compare them with each other.
All of them are valid in the extended framework of polyhedral domains as in §5.A.

6.A POINTWISE DUAL FORMULAS

Adapting [26] we find the formula, valid for any solution u of (1.2) with smooth Lu =
f , sufficiently flat near the edge E : For each fixed z0 ∈ I :

aα,p(z0) =

∫
Ω

Lu ·Kz0 [α, p] dx dy dz. (6.1)

The 3D dual function (x, y, z) �→ Kz0 [α, p](x, y, z) is defined as

Kz0 [α, p] := Ψ3D
z0

[α, p] −Xz0 [α, p]

where

1. Ψ3D
z0

[α, p] is a dual 3D “corner” singularity at (0, 0, z0) considered as the vertex
of a cone: With ρ0 the distance to the point (0, 0, z0) , and ϑ0 the corresponding
spherical coordinates, Ψ3D

z0
[α, p] has the form

Ψ3D
z0

[α, p](ρ0, ϑ0) = ρ−1−ᾱ
0 ψ[α, p](ϑ0)
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and satisfies on the infinite wedge WI coinciding with Ω in the conical neighbor-
hood Θ : {

LΨ3D
z0

[α, p] = 0 in WI ,

Ψ3D
z0

[α, p] = 0 on ∂WI .

It does not belong to H1 in any neighborhood of z0 due to its strong singularity in
ρ−1−ᾱ

0 . The spherical pattern ψ depends only on the wedge WI and the operator
L , but not on the particular point z0 since we have supposed that the operator has
constant coefficients.

2. Xz0 [α, p] is the correction in H1(G) , solution of{
LXz0 [α, p] = 0 in Ω,

Xz0 [α, p] = Ψ3D
z0

[α, p]
∣∣
∂Ω

on ∂Ω.
(6.2)

Note that Xz0 strongly depends on z0 , because the trace of Ψ3D
z0

[α, p] on ∂Ω
depends on z0 .

6.B GLOBAL DUAL FORMULAS

In the same spirit as formulas (6.1)-(6.2), we can also obtain exact formulas for moments
of the coefficients: For test functions b ∈ C∞

0 (I) (or more generally b as in Theorem 4.3
with n large enough)∫ 1

−1

aα,p(z) b(z) dz =

∫
Ω

Lu ·Kb[α, p] dx dy dz. (6.3)

Here Kb[α, p] := Km[α, p; b] − Xb[α, p] where Km[α, p; b] is defined in (3.11) with
m > Reα − 1 (i.e. so that LKm[α, p; b] belongs to H−1(Ω) , see (3.13)) and Xb[α, p]
is the correction in H1(G) , solution of{

LXb[α, p] = LKm[α, p; b] in Ω,

Xb[α, p] = Km[α, p; b]
∣∣
∂Ω

on ∂Ω.
(6.4)

Compare with [20], where the case L = ∆ with m = 0 is considered.

An alternative to (6.3) in the spirit of [15] is the following mixed formula∫ 1

−1

aα,p(z) b(z) dz =

∫
Ω

Lu · χKm[α, p; b] − u · L(χKm[α, p; b]) dx dy dz. (6.5)

Here the cut-off χ can be taken as in the expansions (4.6)-(4.7), i.e. χ(x) = χ(r+) in
Ω+ and χ(x) = χ(r−) in Ω− . Simpler cut-off can be used if Ω contains a cylinder of
the form {x, r < r0, 0 < θ < ω, z ∈ I} : then χ = χ(r) with χ(r) ≡ 1 for r < r0/2
and ≡ 0 for r ≥ r0 .
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6.C COMPARISON

Formula (6.1) yields exact pointwise values for the edge coefficient, provided the right
hand side is smooth enough to ensure the continuity of the coefficient and flat enough to
cancel any Taylor part of degree ≤ Reα in the solution u . This formula makes use of
the right hand side only and does not need the computation of u . But its main drawback
is its own computation. The determination of the dual spherical pattern ψ[α, p] is seldom
explicit and difficult in general: In addition to the Laplace operator, this is only done for
the Lamé system under Neumann boundary conditions for a crack situation ( ω = 2π ),
see [30]. Moreover the solution of the three-dimensional problem (6.2) is necessary for
each value of z0 where we want to have the value of the coefficient aα,p . Finally, the
application of formula (6.1) requires the computation of a volume integral.

Formula (6.3) yields exact evaluation of the moment of the coefficient against the test
function. It has the following advantages over (6.1): The continuity of the coefficients is
no more necessary; The basic function Km[α, p; b] is easier to determine (1D problems
on (0, ω) ) and less singular than Ψ3D

z0
. But it still requires to solve as many 3D problems

(6.4) as values of test functions b .

Formula (6.5) is closer to the idea of the quasi-dual formulas, since it does no more
require to solve 3D problems for the determination of the dual functionals, but requires
the knowledge of the solution u . Still (6.5) is a volume integral and the determination of
the cut-off terms χKm[α, p; b] and L(χKm[α, p; b]) is not obvious.

The quasi-dual formulas (4.9) and (5.2) need the determination of the same basic
functions Km[α, p; b] and the computation of the solution u itself, but no other 3D solu-
tion. It requires only one (or a few) surface integrals, away from the edge where the func-
tions Km[α, p; b] are the most singular. Each determination of J [R]

(
u,Km[β, p ; b]

)
does not provide the exact value of the moment of aα,p against b , but its value modulo
a (known) power of R , which allows a Richardson extrapolation of the limit from the
computation of J [R]

(
u,Km[β, p ; b]

)
for 3 values of R .

The works [34] in two dimensions and [36] in three dimensions also introduce an
extraction method based on integration over a circular arc of radius R , followed by
Richardson extrapolation in R . They are successfully implemented in an engineering
stress analysis code. In a certain sense, they are precursory to our present method, with
the following important distinction: In these two references the antisymmetric duality
pairing J [R] is replaced by a simple scalar product only involving the angular part of the
singular functions. This possibility only exists for the Laplace operator due to its natural
separation of variables, see [36], and for the Lamé equations in 2D, see [34]. In order
to reach a wide generality, we are led to deal with the universal duality pairing J [R] .
On the other hand, the extraction done in [36] yields pointwise values of the coefficients.
Extracting moments is more suitable to the regularity properties of the edge coefficients
near corners, and to the approximation by finite elements.
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problème de Laplace dans un domaine diédral. RAIRO Modél. Math. Anal. Numér. 27(4)
(1993) 395–420.

[21] V. MAZ’YA, B. PLAMENEVSKII. On the coefficients in the asymptotics of solutions
of elliptic boundary- value problems near conical points. Sov. Math., Dokl. 15 (1974)
1570–1575.

[22] V. MAZ’YA, B. PLAMENEVSKII. On the coefficients in the asymptotics of solutions of
elliptic boundary value problems near the edge. Sov. Math., Dokl. 17 (1976) 970–974.

[23] V. G. MAZ’YA, B. A. PLAMENEVSKII. Coefficients in the asymptotics of the solutions
of an elliptic boundary value problem in a cone. J. Sov. Math. 9 (1978) 750–764.

[24] V. G. MAZ’YA, B. A. PLAMENEVSKII. Lp estimates of solutions of elliptic boundary
value problems in a domain with edges. Trans. Moscow Math. Soc. 1 (1980) 49–97.

[25] V. G. MAZ’YA, B. A. PLAMENEVSKII. On the coefficients in the asymptotic of solutions
of the elliptic boundary problem in domains with conical points. Amer. Math. Soc. Trans.
(2) 123 (1984) 57–88.

[26] V. G. MAZ’YA, J. ROSSMANN. Ueber die Loesbarkeit und die Asymptotik der Loesungen
elliptischer Randwertaufgaben in Gebieten mit Kanten. III. Preprint P-MATH-31/84,
Akad. Wiss. DDR 1984.

31
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