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Abstract. We consider boundary value problems for elliptic systems in the sense
of Agmon-Douglis-Nirenberg on plane domains with corners, where the domain, the
coefficients of the operators and the right hand sides all depend on a parameter. We
construct corner singularities in such a way that the corresponding decomposition
of the solution into regular and singular parts is stable, i. e. the regular part and
the coefficients of the singular functions depend smoothly on the parameter. The
construction of these singular functions continues the paper [4] and generalizes results
known for second order scalar boundary value problems — see [2, 3] [11].

Introduction

0.a Motivation. Parameter dependence in elliptic boundary value problems
is important in a variety of applications, for example in the question of stability
of numerical approximations, in shape optimization problems (optimal control of
the domain), or in the case of quasi-cylindrical domains (the geometry is almost
independent of one of the variables which can be considered as a parameter); an
example of the latter are domains with edges which can be partly treated as corner
domains depending on a parameter.

Unlike regular elliptic boundary value problems, for which the usual stability
theory for invertible or Fredholm operators can be applied, boundary value problems
with corner singularities may show phenomena of unboundedness or non-regularity
in the dependence of the singular parts on a parameter. A well-known aspect of that
instability is the occurrence of logarithmic terms in the asymptotics near a corner



for certain isolated values of its opening angle ω, while such terms are absent for
any other value of ω : for example, concerning the first term in the singular part of
the solution of the Dirichlet problem, the set of exceptional openings is formed by
the angles π/n with n = 2, 3, . . . for the Laplace operator and this set reduces to
ω0 � 0.813π for the biharmonic operator — see [6] for instance.

In the general situation, corner singularities are determined by eigenvalues and
eigenfunctions of certain associated spectral problems. The multiplicity of these
eigenvalues may change for some values of the parameter: then the differentiability
with respect to the parameter may be lost (“branching”), or even if the eigenvalues
remain smooth functions of the parameter, the eigenfunctions may become linearly
dependent and their coefficients unbounded (“crossing”). The latter phenomenon of
crossing is the only to appear in the case of second order scalar operators and was
studied intensively in [2, 3], [10, 11].

There it was shown that certain linear combinations of the usual singular functions
had to be constructed in order to obtain stability of the coefficients. These special
linear combinations were given either by divided differences or, equivalently, in the
form of complex contour integrals [2, §8]. The approach via contour integrals turns
out to be successful also in the case of general boundary value problems elliptic in
the sense of Agmon-Douglis-Nirenberg.

In the general case of higher order equations (order ≥ 4) or for systems, the first
one of the above-mentioned phenomena, namely the “branching” of the eigenvalues
may appear. This is well known for standard boundary values problems for the
biharmonic operator or the Stokes system (the first branching occurs at the above-
mentioned opening ω0 � 0.813π). We show that also in this case the construction
based on contour integrals leads to a form of the singular functions that generates
smooth parameter dependence for the corresponding coefficients.

Our aim in this paper is twofold: We want to show that our construction of
corner singularities, which continues the paper [4], provides on one hand stability and
smoothness with respect to a parameter and on the other hand also rather explicit
formulas for the singularities. Thus we think that these formulas, in spite of the
intrinsic difficulties coming from the fact that we treat general ADN-elliptic systems
and admit also corner angles π and 2π, are sufficiently explicit to be used, for example,
in numerical approximations.

Our formulas can be compared to the general analytic functionals of Schulze [13,
14] and to the stable Keldyš chains of Schmutzler [12].

0.b Plan. In §1, we describe the class of parameter dependent corner problems
that will be studied. We introduce a class of diffeomorphisms that does not exclude
corner angles π and 2π. Thus corners may develop out of (or disappear into) smooth
parts of the boundary and (inward) cusps may appear. We formulate the main results
on the existence of corner asymptotics which depend in a stable and smooth way on
the parameter (Theorems 1.1 and 1.3). The aim of the rest of the paper is the
description of these stable asymptotics and the proof of the theorems.



In §2, corner singularities are constructed. The construction uses complex integrals
on two levels: First for the construction of a basis of solutions of a certain associated
system of ordinary differential equations without boundary conditions. Here the
contour integral is only needed if the multiplicities of the (complex) characteristics of
the principal part are changing; we illustrate this by several examples. In a second
step, this solution basis is used to construct the eigenfunctions of a corresponding two-
point boundary value problem. Here the above-mentioned phenomena of “crossing”
and “branching” have to be treated. This section introduces the study of three types
of spaces of singular functions associated to complex contours γ: X (γ) and Y (γ)
for the principal parts of the asymptotics corresponding to flat and polynomial right
hand sides, respectively (Theorems 2.7 and 2.12), and various spaces Z (γ) for the
non-principal terms of the asymptotics (singular right hand sides, Theorem 2.21).

In §3, we formulate and prove the basic results of decomposition when the gain of
regularity is ≤ 1 (here only the principal parts of the problem and of the asymptotics
are involved).

In §4, we introduce the Taylor expansion of the boundary value problem at the corner
(interior systems and boundary operators on the curved sides of the domain) and,
using the spaces X (γ), Y (γ) and Z (γ), we give in Lemma 4.5 and Theorem 4.6
expressions in the form of finite sums of elementary terms, of the “abstract” stable
asymptotics of §1 and prove the stability theorems 1.1 and 1.3. As an example, we
calculate the first terms of these asymptotics for the Laplace operator on a domain
limited by a portion of a parabola or of a circle (Examples 4.9 and 4.10).

In §5, starting from the formulas with contour integrals that we introduced in §2, we
derive the radial and angular behavior of the terms in the asymptotics. For this we
rely on a generalization of the Leibniz formula for divided differences to more general
contour integrals which we present in the Appendix, §6.

0.c Outline of results. We explain roughly the structure of the stable asymp-
totics by a short discussion of their radial behavior. If r denotes the distance to the
corner, the ordinary behavior that every one knows is rµ logq r with µ describing a
finite set of complex numbers. These µ appear as eigenvalues, and they are conve-
niently constructed as zeros of certain polynomials. Thus the ordinary asymptotics
behave as

q!

2iπ

∫
γ

rλ

(λ− µ)q+1
dλ .

where the contour γ surrounds µ. If the µ depend smoothly on a parameter, but q
is not constant (for instance equal to 1 for some values of the parameter and to 0
everywhere else), we say that there are crossings. The stable asymptotics behave like
divided differences of the function r → rλ:

S[µ1, . . . , µd; r] =
1

2iπ

∫
γ

rλ

(λ− µ1) · · · (λ− µd)
dλ ,

where, in fact, d = Q + 1 with Q the maximal value of q. But in general the µj

themselves do not depend smoothly on the parameter; there are branchings. However



there are polynomials a of degree d ≥ 2 whose coefficients depend smoothly on the
parameter which intervene as denominators for the radial functions:

1

2iπ

∫
γ

rλ

a(λ)
dλ .

If there is a branching, it is impossible to factorize a into a product of stable mono-
mials and all the functions giving the stable radial behavior are described by:

S[a, qj; r] =
1

2iπ

∫
γ

rλ qj(λ)

a(λ)
dλ ,

where (qj)j=1,...,d
is a basis of the space Pd−1 of polynomials of degree < d. In §5, we

give examples for such formulas when d = 2 or 3.

1. Parameter dependent boundary value problems

1.a General setting. We consider a class of plane elliptic boundary value
problems depending on a parameter

t ∈T , where T ⊂ R is a compact interval.

This means that we have:
• a family of bounded domains Ωt ⊂ R

2,
• a family of elliptic systems of differential operators Lt,
• a family of systems of boundary operators Bt,
and we look for the solutions ut of the problem Ltut = ft in Ωt

Btut = gt on ∂Ωt .

Our results will be valid under the following global hypotheses — however, to simplify
the notation, we will consider only a more restricted class of problems later on.

The domains Ωt are piecewise smooth, i. e. their boundaries are composed of a
finite number of C∞ arcs ∂jΩt, j = 1, . . . , J whose dependence on t is also C∞. The
corner angles are C∞ functions of t, and we assume that they are always contained
in the interval (0, 2π]. Thus cracks and inward cusps are allowed (angle 2π) but not
outward cusps (angle 0).

crack inward cusp outward cusp



Figure 1

A corner angle π corresponds to a point O where the boundary arcs meet tangen-
tially. In Figure 2, we sketch an example of possible variations with respect to the
parameter.

O O O
Figure 2

The operators Lt are systems properly elliptic in the sense of Agmon-Douglis-
Nirenberg [1], their coefficients are C∞ on Ωt and are C∞ functions of the parameter
t ∈ T . On each arc ∂jΩt, the boundary operators Bt are defined by a system Bj

t

which satisfies the usual covering condition and whose coefficients are C∞ on ∂jΩt

and are C∞ functions of the parameter t ∈T — so we can treat mixed boundary
value problems.

For the right hand sides ft and gt, we consider several levels of regularity with
respect to the parameter t, namely mere boundedness, differentiability of order k,
C

∞ or analyticity. Since differentiability with respect to t with values in some func-
tion space on Ωt is, in general, not an intrinsic notion but requires the definition
of diffeomorphisms between the Ωt, by localization we will first reduce our class of
domains to a more restricted class, where all domains Ωt have only one corner and
are the image of a single domain Ω by a family of (singular) diffeomorphisms χt.

1.b Localization. Let us denote z = (z1, z2) the cartesian coordinates in R
2.

The first simplification is the localization at one “corner” Ot of Ωt. Ot is the meeting
point of two arcs ∂jΩt and the function t �→ Ot is C∞. We can always assume, via
a global diffeomorphism on R

2, C∞ with respect to t, that the corner coincides with
the origin O and that one of the two arcs meeting at O is a segment in the coordinate
axis z2 = 0. In a neighborhood of the origin O, the domain Ωt is described in polar
coordinates (r, θ) by

0 ≤ θ ≤ ωt(r)

where for a r0 > 0

(t, r) �→ ωt(r) is C∞ onT × [0, r0) and ∀t ∈T , ωt(0) ∈ (0, 2π] .

As a convention, we denote by ωt the opening of the tangent sector to Ωt at O, i. e.

ωt := ωt(0).



Note that, if there were no angle ωt equal to π or 2π, we could even assume, after
a global diffeomorphism, that ωt(r) is a constant independent of r and t. But as
we want to admit these somewhat delicate cases, we have to use a slightly more
complicated setting.

In any case, there exists a family of diffeomorphisms

χt : (r, θ) �−→ (rt, θt) ,

mapping a neighborhood of the corner O of a fixed domain Ω onto a neighborhood
of the corner Ot of Ωt. For Ω we can take any bounded domain whose boundary is
C

∞ outside the origin and which coincides in the neighborhood of the origin with a
sector

Γ = {(r, θ) | 0 < r < +∞, 0 < θ < ω}
of arbitrary opening ω ∈ (0, 2π). The mappings χt are smooth when expressed in
polar coordinates:

(t, r, θ) �→ rt(r, θ) and (t, r, θ) �→ θt(r, θ) are C∞ onT × [0, r0)× [0, ω] .

They satisfy

rt(0, θ) = 0 for all t, θ ,
θt(r, 0) = 0, θt(r, ω) = ωt(rt(r, ω)) for all (t, r) ∈T × [0, r0) .

For χt, we can always choose near the origin:

rt = r, θt(r, θ) =
ωt(r)

ω
· θ .

But such a diffeomorphism cannot be extended as a diffeomorphism (in cartesian
coordinates) to the whole closure of Ω including the origin. Only if all angles ωt are
different from π and 2π, it is possible to choose ω and the χt so that they can be
extended as C∞ diffeomorphisms to all of R

2 — namely, in this situation, either all
angles ωt are < π and it suffices to take ω ∈ (0, π), or all angles ωt are > π and it
suffices to take ω ∈ (π, 2π).

At this stage, we localize our problem in the neighborhood of the corner Ot and
assume that the only corner of Ωt is Ot. To be completely specific, we assume that
Ω is a subset of Γ, and we fix Ωt globally by requiring

χt : Ω �−→ Ωt is a homeomorphism for all t ∈T .

Since our stability results are of local nature, this is not really a restriction.

1.c ADN elliptic systems. We take as interior operators ADN-elliptic sys-
tems of multi-order (m1, . . . , mN) as explained below. For the sake of simplicity,
we consider Dirichlet boundary conditions only. We want to emphasize, however,
that the corner singularities as constructed in the paper [4], are valid in the general



situation described in Section 1.a and that the results of the present paper can be
formulated for the general situation, too.

For the system Lt = (Lt;kl)1≤k,l≤N
of partial differential operators, we make the

following hypothesis: there exists (m1, . . . , mN) ∈ N
N such that Lt is ADN-elliptic

of multi-degree (mk + ml)1≤k,l≤N
. This means that

deg(Lt;kl) ≤ mk + ml, 1 ≤ k, l ≤ N

and if
L̆t = (L̆t;kl)1≤k,l≤N

is the principal part of degree (mk + ml)1≤k,l≤N
of Lt, we assume that L̆t is prop-

erly elliptic in the sense of Agmon-Douglis-Nirenberg [1]. For such operators, the
homogeneous Dirichlet conditions are written as

ul ∈
◦

Hml(Ωt), 1 ≤ l ≤ N

and this defines complementing boundary conditions.

Although, relying on [4], we could get the results of the present paper in the most
general case, we are convinced that the simplifications in the notations and in the
technical details of the proofs which are gained by making the symmetry assumption
for the orders of the systems and by restricting to Dirichlet homogeneous conditions,
improve the readability of our results sufficiently to justify this restriction. The
formulation and proof of the corresponding results for the most general case require
no essential new idea.

Let us denote by m the multi-order (m1, . . . , mN). The Sobolev spaces naturally
associated with the above problem are, for any s ≥ 0:

◦
Hm :=

N∏
l=1

◦
Hml , Hs+m :=

N∏
l=1

Hs+ml , Hs−m :=
N∏

k=1

Hs−mk ,

where the Sobolev spaces Hs are defined as usual (see [8]) and
◦

Hs(Ω) denotes the
closure of C∞

0 (Ω) in Hs(Ω).

Thus the operator Lt is continuous from Hs+m(Ωt) to Hs−m(Ωt) for all s ≥ 0,

and the homogeneous Dirichlet conditions are defined by the condition u ∈
◦

Hm(Ωt).
We consider therefore the boundary value problem Ltut = ft in Ωt

ut ∈
◦

Hm(Ωt) .

For the right hand side, we assume the (spatial) regularity

ft ∈Hs−m(Ωt) for all t ∈T

with some s > 0.



Assuming some initial regularity for ut:

ut ∈Hs0+m(Ωt) with 0 ≤ s0 < s ,

we have then for every t ∈T the decomposition of ut into corner singularities and
a regular part corresponding to Hs+m(Ωt) regularity. To be more precise, we have
to introduce the spectral problem associated to the principal part Mt of Lt at the
origin:

Mt(∂z) = L̆t(0, ∂z) .

Let Λt denote the set of all complex numbers λ such that there exists a non-zero
function, multi-homogeneous of degree λ + m, of the form

u(r, θ) = rλ+mv(θ), v ∈
◦

Hm(0, ωt)

or in components (l = 1, . . . , N)

ul(r, θ) = rλ+mlvl(θ), vl ∈
◦

Hml(0, ωt)

that satisfies
Mtu = 0 for r > 0, θ ∈ [0, ωt].

Λt is a discrete set in C. It is the spectrum of a certain operator function
◦
At(λ) which

we consider later on (see §2.a).

1.d Uniform estimates. Here is our first stability result.

Theorem 1.1 Let s0, s ∈ R be given such that 0 ≤ s0 < s and

Re λ �= s− 1 for all λ ∈ Λt, t ∈T and s �∈ N . (1.1)

(i) Then there exists a finite number of singular functions S�;t ($ = 1, . . . ,L) which
are C∞ functions of t ∈T , r > 0 (of course, not at r = 0 !), and θ ∈ R such that
any solution ut of the problem Ltut = ft in Ωt

ut ∈
◦

Hm(Ωt) ,
(1.2)

for which there holds

ut ∈Hs0+m(Ωt) , ft ∈Hs−m(Ωt) , (1.3)

admits a decomposition

ut =
L∑

�=1

c�;t S�;t + ureg; t (1.4)



with certain c�;t ∈ C and ureg; t ∈ Hs+m(Ωt), with r−s−mureg; t ∈ L2(Ωt). Moreover,
there is a constant C, independent of t, u and f , such that for all t ∈T there holds

L∑
�=1

|c�;t|+ ‖ureg; t‖Hs+m(Ωt)
+ ‖r−s−mureg; t‖L2(Ωt)

≤ C
(
‖ut‖Hs0+m(Ωt)

+ ‖ft‖Hs−m(Ωt)

)
.

(1.5)

(ii) If all angles ωt are different from π and 2π, the condition s �∈ N in (1.1) can be
removed and all conclusions of (i) still hold, except that now r−s−m+εureg; t ∈ L2(Ωt)
and the estimate (1.5) must be replaced by

L∑
�=1

|c�;t|+ ‖ureg; t‖Hs+m(Ωt)
+ ‖r−s−m+εureg; t‖L2(Ωt)

≤ C
(
‖ut‖Hs0+m(Ωt)

+ ‖ft‖Hs−m(Ωt)

)
,

(1.6)

where ε > 0 is an arbitrarily small fixed number.

(iii) If, in a neighborhood of r = 0, the diffeomorphisms χt and the operators Lt

depend analytically on t, then, for any t0 ∈ T , there exists a decomposition as in
(1.4) for t in a neighborhood of t0 with singular functions S�;t depending analytically
on t.

If the data depend regularly on the parameter t, the splitting (1.4) depends reg-
ularly on t too, as we are going to explain now.

1.e Parameter regularity. In order to describe higher regularity with respect
to the parameter, we need weighted Sobolev spaces V s

0 (Ωt). Their definition is for
s ≥ 0 (see [9], [5], [2]):

v ∈ V s
0 (Ωt) ⇐⇒ v ∈ Hs(Ωt) and r−sv ∈ L2(Ωt).

The norm is ‖v‖2

V s
0 (Ωt)

= ‖v‖2

Hs(Ωt)
+ ‖r−sv‖2

L2(Ωt)
. An equivalent norm would be

‖v‖
Hs(Ωt)

+
∑
|β|≤s

‖r−s+|β|∂β
z v‖

L2(Ωt)
.

For further reference we define for δ ∈ R

V s
δ (Ωt) = {v | rδv ∈ V s

0 (Ωt)}.

The spaces V s
0 differ from Hs by the Taylor expansion at the origin. This is expressed

by the following well-known lemma [5].

Lemma 1.2 Let s > 0. For v ∈ Hs(Ωt) there exist the traces at the origin ∂β
z v(0),

for 0 ≤ |β| < s− 1. Let

v0(z) := v(z)−
∑

|β|<s−1

zβ

β!
∂β

z v(0).



(i) If s �∈ N, v0 belongs to V s
0 (Ωt), and

‖v0‖V s
0 (Ωt)

+
∑

|β|<s−1

|∂β
z v(0)| ≤ C ‖v‖

Hs(Ωt)
.

(ii) If s ∈ N, there (only) holds

v0 ∈ Hs(Ωt) and r−s+εv0 ∈ L2(Ωt), ∀ε > 0

(in other words, v0 ∈ Hs(Ωt) ∩ V s
ε (Ωt)) and the corresponding norm estimate.

The importance of the spaces V s
0 lies in the fact that they are invariant with

respect to the class of diffeomorphisms χt introduced in §1.b. Thus

χ∗
t : v �→ v ◦ χt V s

0 (Ωt) → V s
0 (Ω)

is an isomorphism. This is an easy consequence of the representation of V s
0 in polar

coordinates (see [5]). On the other hand, χ∗
t is not an isomorphism between Hs(Ωt)

and Hs(Ω), in general. Only if χt is a diffeomorphism of R
2 in cartesian coordinates

(which, once again, can be assumed if there are no angles π or 2π), the spaces Hs

are invariant under χ∗
t .

We can now define the regularity with respect to t ∈T . Let κ ∈ {0, 1, , . . . , +∞}.
Then the function t �→ vt is κ-times differentiable with values in V s

0 (Ωt),

t �→ vt ∈ C κ(T , V s
0 (Ωt))

if the function t �→ χ∗
t vt is in C κ(T , V s

0 (Ω)) in the usual sense, i. e.

t �→ dj

dtj
(vt ◦ χt) is continuous with values in V s

0 (Ω), j = 0, 1, . . . , κ.

We abbreviate this as

t �→ vt ∈ C κ(T , V s
0 (Ωt)) ⇐⇒ t �→ χ∗

t vt ∈ C κ(T , V s
0 (Ω)). (1.7)

We define analyticity with respect to t analogously:

t �→ vt ∈ A (T , V s
0 (Ωt)) ⇐⇒ t �→ χ∗

t vt ∈ A (T , V s
0 (Ω)). (1.8)

If χt are diffeomorphisms in cartesian coordinates, we can use the corresponding
definitions for Hs(Ωt) instead of V s

0 (Ωt):

t �→ vt ∈ C κ(T , Hs(Ωt)) ⇐⇒ t �→ χ∗
t vt ∈ C κ(T , Hs(Ω)). (1.9)

In the general case for s �∈ N, we use the Taylor expansion

vt(z) = v0;t(z) +
∑

|β|<s−1

zβ

β!
∂β

z vt(0) (1.10)



and define

t �→ vt ∈ C κ(T , Hs(Ωt)) ⇐⇒


t �→ v0;t ∈ C κ(T , V s

0 (Ωt))
and

t �→ ∂β
z vt(0) ∈ C κ(T ) (|β| < s− 1),

(1.11)

respectively

t �→ vt ∈ A (T , Hs(Ωt)) ⇐⇒


t �→ v0;t ∈ A (T , V s

0 (Ωt))
and

t �→ ∂β
z vt(0) ∈ A (T ) (|β| < s− 1).

(1.12)

In the case where the previous definition (1.9) of C κ(T , Hs(Ωt)) is applicable, it is
equivalent to the definition (1.11). One should note, however, that for κ ≥ 1 these
definitions are not “intrinsic”. They depend on the choice of the diffeomorphisms χt,
not only on the family of domains Ωt.

Theorem 1.3 Let s0, s ∈ R be given such that 0 ≤ s0 < s and such that (1.1) holds.
Let κ ∈ {0, 1, , . . . , +∞} be given.

(i) Then any solution ut of the problem (1.2) for which there holds

t �→ ut ∈ C κ(T , Hs0+m(Ωt)) , t �→ ft ∈ C κ(T , Hs−m(Ωt)) , (1.13)

admits the decomposition (1.4) with coefficients c�;t ∈ C and a regular part ureg; t ∈
V s+m

0 (Ωt) which satisfy the estimate (1.5) and moreover

t �→ c�;t ∈ C κ(T ) t �→ ureg; t ∈ C κ(T , V s+m
0 (Ωt)) . (1.14)

(ii) If all angles ωt are different from π and 2π, the condition s �∈ N in (1.1) can be
removed and then any solution ut of the problem (1.2) for which (1.13) holds admits
the decomposition (1.4) with coefficients c�;t ∈ C and a regular part ureg; t ∈Hs+m(Ωt)
which satisfy the estimate (1.6) and moreover

t �→ c�;t ∈ C κ(T ) t �→ ureg; t ∈ C κ(T , Hs+m(Ωt)) . (1.15)

(iii) If, in a neighborhood U of r = 0, the diffeomorphisms χt and the operators Lt

depend analytically on t, then to any t0 ∈T there exists a neighborhoodT0 of t0 inT
such that for any solution ut of the problem (1.2) with support in U for which there
holds

t �→ ut ∈ A (T0, H
s0+m(Ωt)) , t �→ ft ∈ A (T0, H

s−m(Ωt)) , (1.16)

ut admits the decomposition (1.4) and moreover

t �→ c�;t ∈ A (T0) t �→ ureg; t ∈ A (T0, H
s+m(Ωt)) . (1.17)

Remark 1.4 If the operator Lt and the index s0 are such that for the problem (1.2)
there holds uniqueness of the solution ut ∈ Hs0+m(Ωt), then the initial regularity
hypothesis of ut with respect to t, as required in (1.13), is not needed. It is then a
consequence of the hypothesis on ft in (1.13) (see also Remark 4.8(ii)).



2. Construction of stable singular functions

Let Mt(∂z) denote, as in §1, the principal part of the operator Lt(z; ∂z) at the origin.
As “usual” (see [3], [4]) the description of the singularities is performed in 3 steps:
• The singular functions of Mt(∂z) with zero right hand side;
• The singular functions of Mt(∂z) with polynomial right hand sides;
• The singular functions of Mt(z; ∂z) with singular right hand sides.

Each step is performed in two stages: firstly solving an interior equation Mtu
0
t =

ft, secondly solving boundary conditions Ctut = gt together with the equation
Mtut = 0. For the first step, ft is 0; for the second one ft is polynomial; finally, for
the third step ft is generated by the solutions from the two previous steps and by an
induction procedure.

2.a Singularities with zero right hand side. It is well known that any
non-zero solution u of Mtu = 0 with homogeneous Dirichlet boundary conditions,
which has the form

u(r, θ) =
Q∑

q=0

rλ+m logq r vq(θ) with vq ∈
◦

Hm(0, ωt) (2.1)

with
s0 − 1 < Re λ < s− 1,

contributes to the singularities of the problem (1.2) with conditions (1.3). When
Lt = Mt, i. e. when Lt is homogeneous with constant coefficients, and when Ωt

coincides with a sector near the origin, the above functions generate the whole space
of singular functions of the problem (1.2) with ut ∈Hs0+m(Ωt) and ft ∈ V s−m

0 (Ωt).

This is the reason for the introduction of the spaceXt(s0, s) as the space generated
by the solutions u of Mtu = 0 of the form (2.1) with s0 − 1 < Re λ < s − 1. We
are going to investigate the stability of the spaces Xt with respect to t and construct
stable generators for them. To do that, we write Mt in polar coordinates as

Mt(∂z) =
(
diag(r−m)

)
×Mt(θ; ∂θ, r∂r)×

(
diag(r−m)

)
i. e. in components

Mt;kl(∂z) = r−mk Mt;kl(θ; ∂θ, r∂r) r−ml

With this notation, any multi-homogeneous solution

u(r, θ) = rλ+mv(θ) of Mtu = 0

corresponds to a solution v(θ) of the system of ordinary differential equations

Mt(θ; ∂θ, λ) v(θ) = 0. (2.2)



Since we are considering homogeneous Dirichlet boundary conditions, we consider this

differential operator on the space
◦

Hm(0, ωt). Thus we define the family of operators

◦
At(λ) :

◦
Hm(0, ωt) → H−m(0, ωt)

v(θ) �→ Mt(θ; ∂θ, λ) v(θ)
(2.3)

Later on, we shall introduce the corresponding operator family At(λ) with non-zero
boundary conditions.

Due to the ellipticity of Mt, λ �→
◦
At(λ) has a meromorphic resolvent λ �→

◦
At(λ)−1.

The poles of this resolvent are given by the set Λt introduced above in §1.c, and its
residues generate the spaces Xt of singularities (see [7] and [4, Lemma 4.1]):

Lemma 2.1 Let γ be a simple closed contour in C. Let Xt(γ) be the space generated
by the solutions u of Mtu = 0 of the form (2.1) with λ ∈ int γ. If γ ∩ Λt is empty,
then

Xt(γ) = {
∫
γ
rλ+m

◦
At(λ)−1Ψ(λ) dλ | Ψ(λ) holomorphic with values in H−m(0, ωt)}

As a consequence of the ellipticity, the infinite strip s0−1 < Re λ < s−1 contains
only a finite number of poles in Λt and there exists a closed contour γ(s0, s) such
that Xt(s0, s) = Xt(γ). Conversely, let γ1

t , . . . , γ
J
t be a system of simple closed non-

intersecting curves such that

Λt ∩ {λ | Re λ ∈ (s0 − 1, s− 1)} ⊂
J⋃

j=1

int γj
t .

Then

Xt(s0, s) =
J⊕

j=1

Xt(γ
j
t ). (2.4)

Our first aim is the description of generators of Xt(γ) (see Corollary 2.8). To

do this, we study the resolvent
◦
At(λ)−1: we construct first a basis of solutions of

the homogeneous system (2.2) without boundary conditions. This construction was
presented in detail in [4]. We describe here the results and illustrate them by some
examples.

In the following construction, t ∈T is a fixed value. We will consider the depen-
dence (stability, regularity) on t later.

Let Mt(ξ1, ξ2) be the symbol of the operator Mt(∂z1 , ∂z2). We write it in Cayley-
transformed coordinates:

Mt;+(α) := Mt(α + 1, i(α− 1)) ; Mt;−(α) := Mt(1 + α, i(1− α)) (α ∈ C).

These are matrix polynomials in α whose determinants, due to the ellipticity of Mt

do not vanish on the unit circle

γ̃ = {α ∈ C | |α| = 1}.



For any polynomial

A(α) =
d∑

n=0

An αn,

we define the shifted polynomials A� δ(α), δ = 0, . . . , d by

A� δ(α) :=
d∑

n=δ

An αn−δ .

Finally, we need the following diagonal N ×N matrices:

Z+(λ; ζ, ζ∗; α) =
(

(αζ + ζ∗)λ+ml

(λ + ml)(λ + ml − 1) · · · (λ + 1)
δkl

)
1≤k,l≤N

Z−(λ; ζ, ζ∗; α) =
(

(ζ + αζ∗)λ+ml

(λ + ml)(λ + ml − 1) · · · (λ + 1)
δkl

)
1≤k,l≤N

(2.5)

If we identify z ∈ R
2 with ζ = z1 + i z2 ∈ C, we have the relation

Mt(∂z1 , ∂z2) Z−+(λ; ζ, ζ; α) = Z̃−+(λ; ζ, ζ; α) Mt,−+(α) (2.6)

for any λ, ζ, α ∈ C, where Z̃−+ is defined similarly to Z−+ as

Z̃+(λ; ζ, ζ∗; α) =
(
λ(λ− 1) · · · (λ−mk + 1) (αζ + ζ∗)λ−mk δkl

)
1≤k,l≤N

Z̃−(λ; ζ, ζ∗; α) =
(
λ(λ− 1) · · · (λ−mk + 1) (ζ + αζ∗)λ−mk δkl

)
1≤k,l≤N

(2.7)

We can now describe the space of solutions of the system (2.2). Let us denote

Wt(λ) := {u(r, θ) = rλ+mv(θ) |Mt(∂z) u = 0 for θ ∈ (0, ωt)}

and its angular part

Wt(λ) := {v(θ) ∈ C∞(R)⊗ C
N |Mt(θ; ∂θ, λ) v(θ) = 0 for θ ∈ (0, ωt)},

so that

u =
(
rλ+m1v1(θ), . . . , r

λ+mN vN(θ)
)
∈Wt(λ) ⇐⇒ v = (v1, . . . , vN) ∈ Wt(λ) . (2.8)

The following theorem was shown in [4, Theorem 2.1 and Lemma 4.2]:

Theorem 2.2 Let λ be any complex number, and let d be the maximal degree of all
the matrix elements of Mt;−+ as polynomials in α. We define:

W
−+
t (λ) :=

{
ζ �→ w(λ, ζ) | ∃q1, . . . , qd ∈ C

N

w(λ, ζ) =

∫
γ̃

Z−+(λ; ζ, ζ; α) M−1
t;−+

(α)
(
M � d

t;−+
(α) q1 + · · ·+ M � 1

t;−+
(α) qd

)
dα

}
.

(2.9)



(i) For all λ ∈ C \ N, the dimension of W
−+
t (λ) is equal to |m|,

W+
t (λ)⊕W−

t (λ) = Wt(λ) ,

and there exists q1
−+,h, . . . , q

d
−+,h in C

N for h = 1, . . . , |m| (independent of λ but possibly

dependent on t, see Remark 2.3 below) such that the

w−+

t;h(λ, ζ) :=

∫
γ̃

Z−+(λ; ζ, ζ; α) M−1
t;−+

(α)
(
M � d

t;−+
(α) q1

−+,h + · · ·+ M � 1
t;−+

(α) qd
−+,h

)
dα

for h = 1, . . . , |m| are a basis of W
−+
t (λ).

(ii) the functions vt;h(λ, ·) defined for h = 1, . . . , 2|m| by

vt;h(λ, θ) :=

 w+
t;h(λ, eiθ) for h = 1, . . . , |m|

w−
t;h−m(λ, eiθ) for h = m + 1, . . . , 2|m|

are a basis of Wt(λ).

Remark 2.3 There is a lot of freedom in the choice of the vectors qj

−+,h. It was

shown in [4] that they can be chosen independently of λ ∈ C \ N. If a choice(
q1

−+,h(t0), . . . , q
d
−+,h(t0)

)
h=1,...,|m|

yields linearly independent functions w−+

t0;h for one

t0 ∈ T , this choice will work also for t in a neighborhood of t0 due to the con-
tinuous dependence of Mt;−+ on t. Thus ifT is sufficiently small, the vectors qj

−+,h can
be chosen independently of t. In general, they will depend on t, but it is easy to see
that they can be chosen as analytic (even polynomial) functions of t ∈ T . In the

sequel we assume that such a choice is fixed. In any case, the basis functions w−+

t;h

and vt;h are C∞ with respect to t (or analytic, if Mt depends analytically on t).

Remark 2.4 From the representation (2.9) and the residue theorem, it is clear that

the components of the elements of W
−+
t (λ) consist of linear combinations of the ele-

ments of Z−+ and of their derivatives with respect to α, where α takes values α0 in
the zero set of det Mt;−+(α) inside the unit circle.

More precisely, if w ∈W
+
t (λ), then w = (w1, . . . , wN), and wl(z) is given in terms of

the complex variable ζ as a linear combination of functions of the form

ζn(α0ζ + ζ)λ+ml−n =
( ζ

ζ

)n
ζλ+ml

(
1 + α0

ζ

ζ

)λ+ml−n

where n ∈ N and det Mt;+(α0) = 0, |α0| < 1 (n = 0 if α0 is a simple pole of M−1
t;−+

).

Similarly, if w ∈W
−
t (λ), then its component wl(z) is a linear combination of functions

of the form

ζn(α0ζ + ζ)λ+ml−n =
( ζ

ζ

)n
ζλ+ml

(
1 + α0

ζ

ζ

)λ+ml−n

where n ∈ N and det Mt;−(α0) = 0, |α0| < 1.

Note that these functions are well defined for |α| < 1 and ζ in a sector of opening
ω ≤ 2π.



Example 2.5

(i) For the scalar case N = 1, we denote by d−+ the degrees of the polynomials
M−+(α). For the sake of simplicity, we omit the index t. The representation (2.9) then
simplifies to

W+(λ) =
{∫

γ̃

(αζ + ζ)λ+m M−1
+ (α) f(α) dα | f ∈ Pd+−1[α]

}
;

W−(λ) =
{∫

γ̃

(ζ + αζ)λ+m M−1
− (α) f(α) dα | f ∈ Pd−−1[α]

}
.

(ii) Note that even in the scalar case, the multiplicities of the roots α0 may depend
on the parameter t. In this case, the functions ζn(α0ζ +ζ)λ+ml−n are not regular with
respect to t. The linear combinations defined by the contour integrals in Theorem 2.2,
however, depend regularly on t. Consider the following example of a scalar operator
of order 2m = 4 :

Mt(∂z) =
1

16

[
(1− t)2∆2 − 8t∂2

z1
∂2

z2

]
= (∂

ζ

2 − t∂
ζ

2)(∂
ζ

2 − t∂
ζ

2).

Mt is elliptic for |t| < 1. We find

Mt;−+(α) = (α2 − t)(1− tα2) .

There is a branching point t = 0. For t �= 0 the functions

(−+
√

t ζ + ζ)λ+2 and (−+
√

t ζ + ζ)λ+2

are a basis of Wt(λ), and for t = 0 the double root at α = 0 gives the basis functions
ζλ+2, ζζλ+1, ζλ+2, and ζζλ+1.
This does not depend smoothly on t. If we use the above formulas in (i), however, we
can choose 2πif(α) = 1− tα2 and 2πif(α) = 2α(1− tα2) and obtain basis functions
that are analytic with respect to t:

w+
t;1 =

1√
t

[
(ζ +

√
t ζ)λ+2 − (ζ −

√
t ζ)λ+2

]
w+

t;2 = (ζ +
√

t ζ)λ+2 + (ζ −
√

t ζ)λ+2

w−
t;1 =

1√
t

[
(ζ +

√
t ζ)λ+2 − (ζ −

√
t ζ)λ+2

]
w−

t;2 = (ζ +
√

t ζ)λ+2 + (ζ −
√

t ζ)λ+2 .

(iii) The two-dimensional Stokes system in complex form associates to (u, u∗, p) the
triple (f, f∗, g) by 

2∂
ζ
∂

ζ
u + ∂

ζ
p = 1

2
f

2∂
ζ
∂

ζ
u∗ + ∂

ζ
p = 1

2
f ∗

∂
ζ
u + ∂

ζ
u∗ = 1

2
g .



Here

∂
ζ

=
1

2
(∂z1 − i ∂z2) ∂

ζ
=

1

2
(∂z1 + i ∂z2)

and the complex velocity components are

u := u1 + i u2 u∗ := u1 − i u2

where (u1, u2) is the usual velocity field. For this system we find

M+(α) =

 2α 0 1
0 2α α
α 1 0

 and M−(α) =

 2α 0 α
0 2α 1
1 α 0

 .

From the representation in Theorem 2.2, we find that the following triples w−+
j (λ, ·)

for j = 1, 2 are bases of W−+(λ):

w+
1 (λ; ζ) = (ζλ+1, 0, 0) ; w+

2 (λ; ζ) = (−(λ + 1)ζλζ, ζλ+1, 2(λ + 1)ζλ) ;

w−
1 (λ; ζ) = (0, ζλ+1, 0) ; w−

2 (λ; ζ) = (ζλ+1, −(λ + 1)ζλζ, 2(λ + 1)ζλ) .

In order to construct solutions for the homogeneous Dirichlet problem

◦
At(λ) v = 0

(see (2.3)), we define the following objects.

For a function v = (v1, . . . , vN) ∈ Hm(0, ωt), we introduce the vector of traces
corresponding to the Dirichlet conditions on θ = 0 and θ = ωt : The column vector
Ct v of length 2|m| contains first the |m| terms

v1(0), ∂nv1(0), . . . , ∂m1−1
n v1(0), v2(0), ∂nv2(0), . . . , ∂mN−1

n vN(0);

and then the corresponding |m| terms

v1(ωt), ∂nv1(ωt), . . . , ∂m1−1
n v1(ωt), v2(ωt), ∂nv2(ωt), . . . , ∂mN−1

n vN(ωt).

The normal derivative ∂n corresponds here to −∂θ for θ = 0 and to ∂θ for θ = ωt.

With the solution basis vt;h(λ, ·) defined in Theorem 2.2, we define now

• Nt(λ) : the 2|m| × 2|m| matrix of complex numbers whose 2|m| columns are the
Ct vt;h(λ, ·) for h = 1, . . . , 2|m| and

Dt(λ) := detNt(λ);

• Ft(λ) : the N × 2|m| matrix of C∞ functions on [0, ωt] whose 2|m| columns are
the vt;h(λ, ·) for h = 1, . . . , 2|m|.



Thus
Nt(λ) = Ct ◦Ft(λ).

The operator Mt(λ), when acting from Hs+m(0, ωt) to Hs−m(0, ωt) has a right
inverse Rt(λ) which is a holomorphic function of λ ∈ C (see [4, Theorem 3.3 and
§4.b]).
Note that, according to Remark 2.3, Nt, Dt, Ct, and Rt all depend smoothly on t.

From the description of the Dirichlet problem
◦
At(λ) v = f

as the system  Mt(λ) v = f

Ct v = 0 ,

one obtains with these definitions immediately the following result.

Proposition 2.6 (i) The set Λt \ Z of non-integer poles of the resolvent
◦
At(λ)−1 is

the set of non-integer roots of the equation

Dt(λ) = 0.

(ii) For any λ ∈ C \ Λt there holds
◦
At(λ)−1 = Rt(λ)−Ft(λ)Nt(λ)−1

CtRt(λ).

As a corollary, we obtain descriptions of the spaces of singular functions Xt(γ) in
terms of the above defined finite dimensional objects.

Theorem 2.7 Let γ be a simple closed contour such that Λt ∩ γ = ∅.
(i) Then

Xt(γ) =
{
(r, θ) �→

∫
γ
rλ+m

Ft(λ, θ)Nt(λ)−1
G (λ) dλ | G : C �→ C

2|m| holomorphic
}

(ii) Let at,γ be the polynomial in λ with leading coefficient 1 that has as its roots
precisely the roots of Dt(λ) inside γ with the same multiplicities: it is given for
λ′ �∈ int γt by

at,γ(λ
′) = exp

( 1

2iπ

∫
γ

d

dλ
Dt(λ)

log(λ− λ′)

Dt(λ)
dλ

)
.

Let d(γ) be the degree of at,γ. Then

Xt(γ) =
{
(r, θ) �→

∫
γ

rλ+m
Ft(λ, θ)Nt(λ)−1

G (λ) dλ | G ∈ Pd(γ)−1[λ]⊗ C
2|m|

}
.

We also have the inclusion

Xt(γ) ⊂
{
(r, θ) �→

∫
γ

rλ+m
Ft(λ, θ)

G (λ)

Dt(λ)
dλ | G ∈ Pd(γ)−1[λ]⊗ C

2|m|
}

=
{
(r, θ) �→

∫
γ

rλ+m
Ft(λ, θ)

G (λ)

at,γ(λ)
dλ | G ∈ Pd(γ)−1[λ]⊗ C

2|m|
}
.



Corollary 2.8 Let (γt)t∈T be a family of simple closed contours depending continu-
ously on t ∈T such that

∀t ∈T : Λt ∩ γt = ∅.
(i) Then d(γt) =: d is independent of t ∈T .

(ii) Let furthermore (G�)�=1,...,2|m|d be a basis of Pd−1[λ]⊗ C
2|m|. Then the functions

X�;t(r, θ) =

∫
γt

rλ+m
Ft(λ, θ)Nt(λ)−1

G�(λ) dλ

are C∞ functions of t ∈T , r > 0, and θ ∈ R (analytic if the data are analytic) and
they generate the space Xt(γt) for all t ∈T .

(iii) Let (t, λ) �→ G (t, λ) ∈ C
2|m| be a function of class C κ(T ), holomorphic in a

neighborhood of int γt for each t, and let vt ∈Xt(γt) be defined by

vt(r, θ) =

∫
γt

rλ+m
Ft(λ, θ)Nt(λ)−1

G (t, λ) dλ . (2.10)

Then there are coefficients c� ∈ C κ(T ), $ = 1, . . . , 2|m|d such that

vt(r, θ) =
∑

�

c�(t) X�;t(r, θ) . (2.11)

Furthermore, there is an estimate with a constant C independent of G :∑
�

‖c�‖
Cκ(T )

≤ C sup
t∈T , 0≤κ′≤κ

‖∂κ′
t G (t, ·)‖

L1(γt)
. (2.12)

Proof. Let

G (t, λ) = at,γ(λ)H (t, λ) +
2|m|d∑
�=1

c�(t)G�(λ)

be the Euclidean division of G (t, ·) by at,γ (see Proposition 6.5 in the Appendix).
Here H (t, ·) is holomorphic, so it does not contribute to the integral (2.10). The
coefficients c� are given by the formulas

c�(t) =
1

2iπ

∫
γt

G (t, λ) ·Q∗
�,t(λ)

at,γ(λ)
dλ ,

where Q∗
�,t, $ = 1, . . . , 2|m|d is a certain basis of Pd−1[λ]⊗C

2|m| depending regularly
on t ∈T . The formula (2.11) and the estimate (2.12) follow immediately.

Remark 2.9 The family of spaces (Xt(γt))t∈T is a (C∞ or analytic) vector bundle
of constant fiber dimension d0 ≤ d.

Remark 2.10 The generating functions of the space Xt(γ) are in a simple and
natural way functions of the complex variable ζ = reiθ, because the matrix function
rλ+m

Ft appearing in their definition is the N × 2|m| matrix of functions

Wt(λ) : ζ �−→Wt(λ, ζ) = rλ+m
Ft(λ, θ)

whose first |m| columns are the basis vectors w+
t;h(λ, ·) as defined in Theorem 2.2,

while the second |m| columns are the vector functions w−
t;h(λ, ·), h = 1, . . . , |m|.



2.b Singularities with polynomial right hand sides. The second step
in the description of the general form of the singular functions is the case of polynomial
right hand sides. We are thus looking for solutions of the form (2.1) of the system
Mtu = f where f ∈ P[z1, z2]⊗C

N , i. e. the components of the vector function f are
polynomials in the cartesian variables (z1, z2).

We use, as above, the notation Pn for the space of polynomials of degree at most n
and P(n) for the space of homogeneous polynomials of degree n. In order to obtain a
convenient description, we decompose the space of vector polynomials into subspaces
of (multi-)homogeneous polynomials according to the multi-order of our system L:
for any λ0 ∈ N,

P(λ0+m) =
N∏

l=1

P(λ0+ml) and P(λ0−m) =
N∏

k=1

P(λ0−mk) .

Thus the components of f ∈ P(λ0−m) have the form fk(r, θ) = rλ0−mkϕk(θ), where ϕk

belongs to a space of trigonometric polynomials in θ of degree λ0 − mk; we denote
the space of these trigonometric polynomials ϕ = (ϕ1, . . . , ϕN) such that rλ0−mϕ is
a polynomial, by Tλ0−m.

Let then Yt(γ) be the space generated by all the solutions u of Mtu = f of the
form (2.1) with λ ∈ int γ and f ∈ ⊕

λ0∈(int γ)∩N

P(λ0−m).

If (int γ)∩N is empty, Yt(γ) coincides withXt(γ). We can without restriction assume
that int γ contains only one integer element λ0 — cf. the decomposition (2.4).

The Mellin transforms of the polynomials in P(λ0−m) are meromorphic vector
functions Ψ with a simple pole in int γ of the form

Ψ(λ) = Φ(λ) + (λ− λ0)
−1ϕ with ϕ ∈ Tλ0−m ,

where Φ is holomorphic with values in H−m(0, ωt). In analogy to Lemma 2.1 we
have

Lemma 2.11 Let γ be a simple closed contour in C, int γ containing the only integer
λ0. If γ ∩ Λt is empty, then

Yt(γ) = {
∫
γ

rλ+m
◦
At(λ)−1Ψ(λ) dλ | Ψ(λ) meromorphic with a simple pole in λ0

and a polar part in Tλ0−m}.

Due to the presence of the term Rt(λ) in the formula for
◦
At(λ)−1 in Proposi-

tion 2.6, the preceding lemma cannot be used directly to give a description of Yt(γ)
in the spirit of Theorem 2.7. In [4], this description was obtained by writing the poly-
nomial right hand side as a special case of a very general form of singular functions.
Here we shall give a slightly simpler and more precise formulation.

Theorem 2.12 Let γ be a simple closed contour such that Λt ∩ γ = ∅ and such that
(int γ) ∩ N = {λ0}. Then, with at,γ the polynomial introduced in Theorem 2.7, we



have the inclusion

Yt(γ) ⊂
{
(r, θ) �→

∫
γ

rλ+m
Ft(λ, θ)

G (λ)

(λ− λ0) at,γ(λ)
dλ | G ∈ Pd(γ)[λ]⊗ C

2|m|
}

+ P(λ0+m).

Proof. The theorem is a consequence of the following more precise statement and
of Theorem 2.7.

Lemma 2.13 Let ft ∈ P(λ0−m) be such that its coefficients are C κ(T ) functions (or
analytic). Suppose that also the coefficients of Mt have this regularity with respect to
t ∈T and that γt depends continuously on t with Λt ∩ γt = ∅ and (int γ) ∩N = {λ0}
for all t. Then the system  Mt ut = ft

Ct ut(r, ·) = 0 (r > 0),

has a solution of the form
ut = upol; t + using; t

where upol; t ∈ P(λ0+m), the coefficients of upol; t are C κ(T ) (or analytic) and there
exists Gt ∈ Pd(γt)[λ]⊗ C

2|m| whose coefficients are C κ(T ) (or analytic) such that

using; t(r, θ) =

∫
γt

rλ+m
Ft(λ, θ)

Gt(λ)

(λ− λ0) at,γt(λ)
dλ . (2.13)

Proof. We show first that

Mt : P(λ0+m) �−→ P(λ0−m)

is surjective. Let f ∈ P(λ0−m). Consider the Dirichlet problem on B2, the disk of
radius 2:

Mt w = f , w ∈
◦

Hm(B2).

This is an elliptic boundary value problem which is therefore solvable provided f
satisfies a finite number of solvability conditions. These can be satisfied by modifying
f on B2 \ B1 (here we use that Mt has constant coefficients and hence the kernel
of the adjoint problem is generated by analytic functions). There exists therefore a

solution w ∈
◦

Hm(B2) of Mtw = f̃ with f̃ = f on B1.

For r ≤ 1 we have therefore Mtw = f , and w is analytic in (z1, z2) for r ≤ 1. Let u
be the Taylor polynomial of w at 0 of (multi-)degree λ0+m. Then the l-th component
of Mt(w − u) vanishes to the order O(rλ0−ml+1) at the origin. On the other hand,
Mt(w − u) is a polynomial of (multi-)degree ≤ λ0 −m. Hence Mt(w − u) ≡ 0 for
r ≤ 1. Let u0 ∈ P(λ0+m) be the part of u homogeneous of degree λ0 + m. We find
again Mt(u− u0) = 0, so that finally Mtu0 = f holds.

As a surjective mapping between two finite-dimensional spaces, Mt has a right inverse
Rt, pol(λ0) which depends regularly on t.



We can therefore define
upol; t = Rt, pol(λ0) ft .

We have to find now a function using; t satisfying

Mt using; t = 0, Ct using; t = Ct upol; t .

Using Mellin transformation as in [4, (5.6)], we find a solution of the form

using; t(r, θ) =

∫
γt

rλ+m
Ft(λ, θ)Nt(λ)−1 Gt(λ)

(λ− λ0)
dλ

with λ �→ Gt(λ) holomorphic. This implies (2.13).

Remark 2.14 In some cases, the space Yt(γ) coincides with the space of polynomials
P(λ0+m); for example:
(i) If the angle ω is different from π or 2π, and we assume in addition to the hypotheses
of Theorem 2.12 that Λt ∩ (int γ) = ∅, then Yt(γ) = P(λ0+m).
(ii) If ω is π or 2π and the only possible element of Λt in int γ is λ0 ∈ N then
Yt(γ) = P(λ0+m).

Proof. (i) Since λ0 �∈ Λt, the operator

(Mt,Ct) : P(λ0+m) �−→ P(λ0−m) × C
2|m|

w −→ (Mtw , Ctw
∣∣∣
r=1

)

is bijective: indeed, since

dim P(λ0+m) = dim P(λ0−m) × C
2|m| = (λ0 + 1)N + |m| ,

it suffices to prove that the operator is injective; if w ∈ P(λ0+m), w = rλ0+mϕ,

satisfies Mtw = 0 and Ctw|r=1 = 0 then
◦
At(λ0)ϕ = 0 and the assumption ϕ �= 0

would lead to the contradiction λ0 ∈ Λt.
Therefore to any w ∈ Yt(γ), there exists u ∈ P(λ0+m) such that Mtu = Mtw and
Ctu(r, ·) = Ctw(r, ·). As Λt ∩ (int γ) = ∅, Xt(γ) = {0}. Hence u = w.

For the proof of (ii) we refer to the paper [?]. There this is shown for the case of
general boundary conditions and it is furthermore shown that for ω = 2π, Λt contains
only integers and half integers.

2.c Singular right hand sides. The third step in the description of the
singular functions is the construction of classes of singularities which are “closed”
under the solution of the model boundary value problem. That means

If f and g have these forms, then both problems

Mt u = f (no boundary conditions)

and
Mt u = 0, Ct u(r, ·) = g(r)

have solutions with a similar form.



We shall, in fact, define two classes of spaces Zt(γ; a; ν) and Z̃t(γ; a; ν) depending
on a simple closed contour γ ⊂ C, a polynomial a and an integer ν. The difference
between Zt and Z̃t corresponds to the difference between Z−+ and Z̃−+ in (2.5) and
(2.7) respectively.

Definition 2.15 Let γ ∩ N = ∅ and a �= 0 on γ. Then Zt(γ; a; ν) is the space
generated by all functions u+ and u− where

u−+(ζ) =

∫
γ

V −+(λ, ζ)H (λ)

a(λ)
dλ with H ∈ Pdeg(a)−1[λ]⊗ C

N (2.14)

where V −+(λ, ζ) is the diagonal matrix diag(v−+

l (λ, ζ)) with (v−+
1 , . . . , v−+

N) =: v−+ defined
by

v−+(λ, ζ) =

∫
γ̃

Z−+(λ; ζ, ζ; α) h(α)

det Mt;−+(α)ν
dα with h ∈ P|m|ν−1[α]⊗ C

N . (2.15)

The space Z̃t(γ; a; ν) is defined analogously, where Z−+ in (2.15) is replaced by Z̃−+.

It is clear that

Zt(γ; a; ν) ⊂ Zt(γ
′; a′; ν ′) , and Z̃t(γ; a; ν) ⊂ Z̃t(γ

′; a′; ν ′)

provided that int γ ⊂ int γ′, a divides a′ and ν ≤ ν ′.

Note that, in polar coordinates, the functions in Zt(γ; a; ν) are of the form∑
j,q

rλj+m logq r vj,q(θ)

where λj are the roots of a in int γ, whereas the elements of Z̃t(γ; a; ν) are of the
form ∑

j,q

rλj−m logq r vj,q(θ).

A simple calculation shows that the operator Mt maps Zt(γ; a; ν) into Z̃t(γ; a; ν).
Lower order terms in the differential operator and terms coming from the Taylor
expansion of the coefficients give rise to a shift in the contour γ:

Lemma 2.16 Let γ ⊂ C be a simple closed contour. Let p ∈ N and Lp be a N ×N
matrix of multi-homogeneous differential operators with polynomial coefficients of the
following form, for k, l = 1, . . . , N :

Lp,kl = ζβ1kl ζβ2kl ∂
ζ

i1kl ∂
ζ

i2kl with − β1kl − β2kl + i1kl + i2kl = mk + ml − p .

Then there exists a polynomial b0 with integer roots and ν0 ∈ N such that for any
polynomial a without roots on γ and any ν ∈ N, the operator

Lp maps Zt(γ; a; ν) into Z̃t(γ
′; a′; ν ′)

with

γ′ = γ + p = {λ ∈ C | λ− p ∈ γ}, a′(λ) = a(λ− p) · b0(λ), ν ′ = ν + ν0 .



Proof. We consider one component ul of an element u ∈ Zt(γ; a; ν) and

wk = ζβ1klζβ2kl∂
ζ

i1kl∂
ζ

i2klul(ζ) with − β1kl − β2kl + i1kl + i2kl = mk + ml − p .

We have to show that wk is the k-th component of an element w ∈ Z̃t(γ
′; a′; ν ′). By

definition, ul = u+
l + u−

l , where

u−+

l =

∫
γ

(∫
γ̃

Z−+

l (λ; ζ, ζ; α)
hl(α)

bν
−+
(α)

dα

)
Hl(λ)

a(λ)
dλ. (2.16)

Here Hl(λ) and hl(α) are (scalar) polynomials, Z−+

l is the l-th entry of the diagonal
matrix defined in (2.5), and bν

−+
is the polynomial bν

−+
(α) = det Mt;−+(α)ν .

We will give the details only for u+
l . By definition (2.5) of Z+

l , (2.16) is of the form

u+
l (ζ) =

∫
γ

(∫
γ̃

(αζ + ζ)λ+ml
hl(α)

bν
+(α)

dα

)
Hl(λ)

a(λ) b1(λ)
dλ , (2.17)

where b1(λ) is a polynomial with integer roots. Using the binomial formula for

ζβ2 = (αζ + ζ − αζ)β2 ,

we can write
ζβ1ζβ2∂

ζ

i1∂
ζ

i2(αζ + ζ)λ+ml

as a sum of terms of the form

b2(λ)

b3(λ)
αi1+β3∂β1+β3

α (αζ + ζ)λ+ml+β1+β2−i1−i2

where 0 ≤ β3 ≤ β2, and b2 and b3 are polynomials with integer roots. Note that
λ+ml +β1 +β2− i1− i2 = λ+p−mk. Now we use partial integration in the integral
over γ̃ with respect to α, which gives a denominator bν′

+(α) with ν ′ = ν +β1 +β2. We
find that wk is a sum of terms of the form∫

γ

(∫
γ̃

Z̃+
k (λ + p; ζ, ζ; α)

hl(α)

bν′
+(α)

dα

)
H

′
l (λ)

a(λ) b4(λ)
dλ

with Z̃+
k as defined in (2.7). According to Definition 2.15, this is indeed the form of

the k-th component of a function in Z̃t(γ + p; a′; ν ′).

Lemma 2.17 Let γ be a simple closed curve, ν ∈ N and a be a polynomial without
zeros on γ. Then to any f ∈ Z̃t(γ; a; ν), there exists u ∈ Zt(γ; a; ν + 1), solution of

Mt(∂z) u = f .

Proof. Let

f =

∫
γ

(∫
γ̃

Z̃−+(λ; ζ, ζ; α)
h(α)

det Mt;−+(α)ν
dα

)
H (λ)

a(λ)
dλ. (2.18)



Then with relation (2.6), we see immediately that

u =

∫
γ

(∫
γ̃

Z−+(λ; ζ, ζ; α)
Mt;−+(α)−1 h(α)

det Mt;−+(α)ν
dα

)
H (λ)

a(λ)
dλ (2.19)

is the desired solution.

Let us now study inhomogeneous boundary conditions corresponding to singular
functions. Let Ct be the boundary trace operator corresponding to Dirichlet bound-
ary conditions on Γt: Ctu is a function of r > 0 defined by(

Ctu
)
(r) =

(
u1(r, 0), . . . , ∂mN−1

n uN(r, 0); u1(r, ωt), . . . , ∂
mN−1
n uN(r, ωt)

)
. (2.20)

The relation with the operator Ct as defined in §2.a is given by(
Ct r

mu
)
(r) = rµ

Ctu(r, ·) , (2.21)

where
µ = (σ1, . . . , σ|m|, σ1, . . . , σ|m|) (2.22)

and
σ = (m1, m1 − 1, . . . , 1, m2, . . . , 1, . . . , mN , . . . , 1). (2.23)

The spaces of traces corresponding to the spaces Zt are defined as follows.

Definition 2.18 S (γ; a) is the space generated by all functions g = (g1, . . . , g2|m|)
of the form

g(r) =

∫
γ

rλ+µ ψ(λ)

a(λ)
dλ with ψ ∈ Pdeg(a)−1[λ]⊗ C

2|m| . (2.24)

The trace result is the following:

Lemma 2.19 Let γ ∈ C be a simple closed contour. Then there exists a polynomial
b0 with integer roots such that for any polynomial a without roots on γ and any ν ∈ N,
the operator

Ct maps Zt(γ; a; ν) into S (γ; a · b0) .

We leave the simple proof to the reader. We will prove a more general statement,
analogue of Lemma 2.16 for the trace operators, in Lemma 4.1 below. Here, we
prove the fundamental statements about the solution of the boundary value problem
(Mt, Ct) with singular right hand side.

Lemma 2.20 Let γ ⊂ C be a simple closed contour with Λt ∩ γ = ∅. Let at,γ be
the characteristic polynomial defined in Theorem 2.7. Let a be a polynomial without
zeros on γ. Then to any g ∈ S (γ; a) there exists a solution u ∈ Zt(γ; a · at,γ; 1) of
the system  Mt u = 0

Ct u = g .



Proof. Let d = deg(a). Let G be the unique polynomial in Pd+d(γ)[λ]⊗ C
2|m| such

that
1

a(λ) · at,γ(λ)
G (λ)−N −1

t (λ)
ψ(λ)

a(λ)

has no poles in int γ (see the Appendix). We define u by

u(r, θ) =

∫
γ

rλ+m
Ft(λ, θ)

G (λ)

a(λ) · at,γt(λ)
dλ .

From the definition of Ft and Theorem 2.2, we see that u belongs to Zt(γ; a · at,γ; 1)
and satisfies Mtu = 0. By the definition of G , we can write u as

u(r, θ) =

∫
γ

rλ+m
Ft(λ, θ)Nt(λ)−1 ψ(λ)

a(λ)
dλ .

The operator Ct = Ct(θ, ∂θ) commutes with the integral and with the multiplication
by powers of r. Using CtFt = Nt, we find with (2.21)

Ct u(r) =

∫
γ

rλ+µ ψ(λ)

a(λ)
dλ = g(r) .

Theorem 2.21 Consider the boundary value problem on Γt: Mt ut = ft ,

Ct ut = gt ,
(2.25)

where, for any t ∈T , ft ∈ Z̃t(γt; at; ν) and gt ∈ S (γt, at). Suppose that ft and gt

depend regularly on t ∈ T , i.e. all the polynomials in their definitions are C κ(T )
functions (or analytic), that γt depends continuously on t, and that for every t the
hypotheses of lemmas 2.17 and 2.20 are satisfied. Then there exists a polynomial b0

with integer roots such that the problem (2.25) has a solution

ut ∈ Zt(γt; at · b0 · at,γt ; ν + 1)

which depends regularly on t ∈T , too.

Proof. We solve first the interior equation with the help of Lemma 2.17, correct the
traces with Lemma 2.19, then solve the boundary value problem with Lemma 2.20
and observe that all operations in the proofs of the lemmas conserve the regularity
in t.

3. Regularity in weighted Sobolev spaces

Following the by now classical Kondratev method [7] (see also [5], [9]), we consider
now regularity in weighted Sobolev spaces. There are two kinds of regularity re-
sults: The first one follows from the Agmon-Douglis-Nirenberg estimates on smooth



domains, applied to a dyadic partition on a neighborhood of a corner. Here the
regularity with respect to a parameter is well known, and we present the result
(Proposition 3.1) therefore without proof. The second result describes the asymp-
totic behavior at the corner and its proof uses Mellin transformation. In Theorem 3.2,
we present a version where the gain in regularity at the corner is described in terms
of the weight, whereas the Sobolev exponent remains fixed. By combining Propo-
sition 3.1 and Theorem 3.2 one can obtain versions where the gain in regularity is
described by changing the weight and the Sobolev index at the same time.

In addition to the weighted Sobolev spaces (see §1.e)

V s+m
δ (Ωt) =

N∏
l=1

V s+ml
δ (Ωt) and V s−m

δ (Ωt) =
N∏

k=1

V s−mk
δ (Ωt),

we consider the following spaces of (Dirichlet) traces on the boundary ∂Ωt:

V s+σ
δ (∂Ωt) =

|m|∏
h=1

V s+σh
δ (∂Ωt) .

If we define the trace operator Bt(∂z) by

Bt(∂z)u =
(
u1, ∂nu1, . . . , ∂

m1−1
n u1, u2, . . . , ∂

m2−1
n u2, . . . , ∂

mN−1
n uN

)∣∣∣
∂Ωt

,

we have then the continuous trace mapping (for s > −1
2
)

Bt(∂z) : V s+m
δ (Ωt) −→ V

s+σ− 1
2

δ (∂Ωt)

where σ = (m1, m1 − 1, . . . , 1, m2, . . . , 1, . . . , mN , . . . , 1).

Proposition 3.1 Let δ0, δ1, s0, s1 ∈ R be such that

−1
2

< s0 < s1 and s0 − δ0 = s1 − δ1.

Let κ ∈ N. Let ut ∈ C κ(T , V s0+m
δ0

(Ωt)) be a solution of Ltut = ft,

Btut = gt,
(3.1)

with
ft ∈ C κ(T , V s1−m

δ1
(Ωt)) and gt ∈ C κ(T , V

s1+σ− 1
2

δ1
(∂Ωt)).

Then ut ∈ C κ(T , V s1+m
δ1

(Ωt)), and there is an estimate

‖ut‖
Cκ(T ,V

s1+m
δ1

(Ωt))
≤ C

(
‖ut‖

Cκ(T ,V
s0+m

δ0
(Ωt))

+

‖ft‖
Cκ(T ,V

s1−m
δ1

(Ωt))
+ ‖gt‖

Cκ(T ,V
s1+σ− 1

2
δ1

(∂Ωt))

)
.



Theorem 3.2 Let δ0, δ1 ∈ R, s > −1
2

be such that

δ0 > δ1 ≥ δ0 − 1

and
∀λ ∈ Λt : Re λ �= s− 1− δ0, Re λ �= s− 1− δ1.

Let κ ∈ N. Let ut ∈ C κ(T , V s+m
δ0

(Ωt)) be a solution of the boundary value problem
(3.1) with

ft ∈ C κ(T , V s−m
δ1

(Ωt)) and gt ∈ C κ(T , V
s+σ− 1

2
δ1

(∂Ωt)).

Then there exists ureg; t ∈ C κ(T , V s+m
δ1

(Ωt)) and c�;t ∈ C κ(T ) such that

ut = ureg; t +
L∑

�=1

c�;t X�;t .

The singular functions X�;t belong to the spaceXt(γt), where γt is a curve surrounding
the finite set

Λt ∩ {λ ∈ C | s− 1− δ0 < Re λ < s− 1− δ1}.
They are C∞ functions in (t, r, θ) ∈T × (0,∞) × [0, ωt] independent of ut, ft, gt.
There are estimates

L∑
�=1

‖c�;t‖
Cκ(T )

+ ‖ureg; t‖
Cκ(T ,V s+m

δ1
(Ωt))

≤ C
(
‖ut‖

Cκ(T ,V s+m
δ0

(Ωt))
+

‖ft‖
Cκ(T ,V s−m

δ1
(Ωt))

+ ‖gt‖
Cκ(T ,V

s+σ− 1
2

δ1
(∂Ωt))

)
.

Proof. We begin by transforming the boundary value problem (3.1) with the help
of the diffeomorphism χt : Ω → Ωt (see §1.b). In the following we will reserve the
notation with t as a subscript for objects defined on Ωt, whereas for those defined on
Ω, we write t as a variable. For the function

u(t, r, θ) = (χ∗
t ut)(r, θ) = (ut ◦ χt)(r, θ) ,

we obtain a family of boundary value problems on the fixed domain Ω which we write
as  L(t, r, θ; r∂r, ∂θ) u(t, z) = f(t, z) (t, z) ∈T × Ω,

C(∂z) u(t, z) = g(t, z) (t, z) ∈T × ∂Ω.
(3.2)

The hypotheses on u, f , g are conserved:

u ∈ C κ(T , V s+m
δ0

(Ω)), f ∈ C κ(T , V s−m
δ1

(Ω)), g ∈ C κ(T , V
s+σ− 1

2
δ1

(∂Ω)).

Note that the differential operator L(t, ·) does not, in general, have regular coefficients
when written in cartesian coordinates. Due to our hypotheses on the diffeomorphism
χt, however, the operator

L (t, r, θ; r∂r, ∂θ) = rmL(t, r, θ; r∂r, ∂θ) rm



has coefficients regular in (r, θ) ∈ [0, r0)× [0, ω]. Let

M (t, θ; r∂r, ∂θ) = L (t, 0, θ; r∂r, ∂θ)

and
M(t, r, θ; r∂r, ∂θ) = r−m

M (t, θ; r∂r, ∂θ) r−m.

Then we have the following continuous mapping

L(t, r, θ; r∂r, ∂θ)−M(t, r, θ; r∂r, ∂θ) : V s+m
δ0

(Ω) −→ V s−m
δ0−1 (Ω) ⊂ V s−m

δ1
(Ω)

which is also continuous

C
κ(T , V s+m

δ0
(Ω)) −→ C

κ(T , V s−m
δ1

(Ω)).

This principal part M(t, ·) is related to the principal part Mt as defined in §1.c by
transformation with the principal part χ̆t of the diffeomorphism χt: Let

χ̆t(r, θ) = (r̆t, θ̆t) with r̆t(r, θ) = r · lim
ρ→0+

rt(ρ, θ)

ρ
, θ̆t(r, θ) = θt(0, θ).

Thus for the choice described in §1.b, one finds χ̆t(r, θ) = (r, θ
ωt

ω
).

Let χ̆∗
t be the corresponding transformation operator, i.e.

χ̆∗
t u = u ◦ χ̆t .

Then we have
M(t, r, θ; r∂r, ∂θ) = χ̆∗

t Mt(∂z)
(
χ̆∗

t

)−1
. (3.3)

This can easily be seen if we introduce the dilation operator Tρ by Tρu(z) = u(ρz)
and use the relations

Mt = lim
ρ→0+

ρm Tρ Lt T
−1
ρ ρm ; M(t, ·) = lim

ρ→0+
ρm Tρ L(t, ·) T−1

ρ ρm ;

and
χ̆∗

t = lim
ρ→0+

Tρ χ∗
t T−1

ρ ; L(t, ·) = χ∗
t Lt

(
χ∗

t

)−1
.

Let ϕ be a cut-off function near the corner point, i.e. ϕ ∈ C∞
0 (R2), ϕ(r, θ) = 1 for

r < R0, ϕ(r, θ) = 0 for r > 2R0, where R0 > 0 is chosen such that for r ≤ 2R0, Ω
coincides with the sector Γ (see §1.b). Let ũ = ϕu. Then ũ satisfies a boundary
value problem  M(t, r, θ; r∂r, ∂θ) ũ(t, z) = f̃(t, z),

C(∂z) ũ(t, z) = g̃(t, z),
(3.4)

where the initial regularity hypotheses on ũ, f̃ , g̃ are still the same as before. The
problem (3.4) is (multi-) homogeneous in r and can be considered as defined on Γ.
It can therefore be subject to Mellin transformation: Let

û(t, λ, θ) :=

∫ ∞

0

r−λ−mũ(t, r, θ)
dr

r
,

f̂(t, λ, θ) :=

∫ ∞

0

r−λ+mf̃(t, r, θ)
dr

r
,



ĝj(t, λ) :=

∫ ∞

0

r−λ−σg̃(t, r, θ)
dr

r
(θ = j · ω, j = 0, 1)

Then û is holomorphic for Reλ < s − δ0 − 1, while f̂ and ĝj are holomorphic for
Re λ < s− δ1− 1, and for Re λ < s− δ0− 1, one has the boundary value problem on
[0, ω]:  M (t, θ; λ, ∂θ) û(t, λ, θ) = f̂(t, λ, θ),

C
j(∂θ) û(t, λ, ·) = g̃j(t, λ)

(3.5)

where we set for θ = jω, j = 0, 1:

C
j(∂θ)v =

(
v1(θ), . . . , ∂

m1−1
θ v1(θ), v2(θ), . . . , ∂

m2−1
θ v2(θ), . . . , ∂

mN−1
θ vN(θ)

)
.

We abbreviate this as

A (t, λ) û(t, λ) =
(

f̂(t, λ)
ĝ(t, λ)

)
= F̂ (t, λ) .

Inverse Mellin transform gives

ũ(t, r, ·) =
1

2iπ

∫
Re λ=s−δ0−1

rλ+m
A (t, λ)−1 F̂ (t, λ) dλ .

If γt is a contour around the (finitely many) poles of A (t, λ)−1 between the lines
Re λ = s− δ0 − 1 and Re λ = s− δ1 − 1, then we can write

ũ(t, r, ·) =
1

2iπ

∫
Re λ=s−δ1−1

rλ+m
A (t, λ)−1 F̂ (t, λ) dλ

+

∫
γt

rλ+m
A (t, λ)−1 1

2iπ
F̂ (t, λ) dλ

=: ũreg + ũsing.

(3.6)

Here the first term on the right hand side, ũreg, is a function in V s+m
δ1

(Γ) for each t
which is easily seen to belong to C κ(T , V s+m

δ1
(Γ)) and to satisfy the estimate

‖ũreg‖
Cκ(T ,V s+m

δ1
(Γ))

≤ C
(
‖f̃‖

Cκ(T ,V s−m
δ1

(Γ))
+ ‖g̃‖

Cκ(T ,V
s+σ− 1

2
δ1

(∂Γ))

)
,

so it contributes to the regular part ureg; t.

For the description of the second term, ũsing, we would like to use Corollary 2.8. We
cannot apply it directly to the integral involving the resolvent A (t, λ)−1, because,

unlike the operator
◦
At(λ), the operator A (t, λ) is not derived from a differential

operator with constant coefficients with respect to cartesian coordinates. We do
not, therefore, have the explicit description of a basis of the kernel of M (t, λ) as we
have it for Mt(λ) (see Theorem 2.2). We can, however, use the description given in

Proposition 2.6 for the resolvent of
◦
At, together with the isomorphism induced by

the principal part χ̆t of the diffeomorphism χt between the solutions ofMtvt = 0 and
M (t, ·)v(t) = 0.

Namely, from the definitions, from the identities

M (t, θ; ∂θ, λ) v(θ) = r−λ
M (t, θ; r∂r, ∂θ) rλ v(θ) ,

Mt(θ; ∂θ, λ) w(θ) = r−λ
Mt(θ; r∂r, ∂θ) rλ w(θ) ,



and from (3.3), we find

M (t, λ) v =
(
r−λ+m χ̆∗

t rλ−m
)
Mt(λ)

(
r−λ−m

(
χ̆∗

t

)−1
rλ+m

)
v . (3.7)

Note that the mapping which associates to any function w defined on (0, ωt) the
function on (0, ω) :

θ �−→
(
∂rrt(0, θ)

)λ−m
w(θt(0, θ))

(
= (r−λ+m χ̆∗

t rλ−m) w ∀r > 0
)
,

is an isomorphism of C∞([0, ωt])⊗C
N onto C∞([0, ω])⊗C

N , depending smoothly on
t and λ.

From (3.7), we see that the solution of (3.5) is given by

û(t, λ) = A (t, λ)−1 F̂ (t, λ)

= R(t, λ)f̂(t, λ)−F (t, λ)N (t, λ)−1
(
C (t, λ)R(t, λ)f̂(t, λ)− ĝ(t, λ)

)
where the operators and matrices R(t, λ), F (t, λ), C (t, λ), N (t, λ) are related to
Rt(λ), Ft(λ), Ct(λ), Nt(λ) in Proposition 2.6 via the isomorphisms of equation (3.7).

It follows that ũsing has the representation

ũsing(t, r, ·) =

∫
γt

rλ+m
F (t, λ)N (t, λ)−1

G (t, λ) dλ,

with a G (t, λ) holomorphic in λ ∈ int γt, regular in t, and estimated by

sup
λ∈γt

‖G (·, λ)‖
Cκ(T )

≤ C
(
‖f̃‖

Cκ(T ,V s−m
δ1

(Γ))
+ ‖g̃‖

Cκ(T ,V
s+σ− 1

2
δ1

(∂Γ))

)
.

The analogue of Corollary 2.8 shows now

ũsing(t, r, θ) =
∑

�

c�(t) X�(t, r, θ)

where the functions (r, θ) �→ X�(t, r, θ) span the space X (t, γt) of all solutions v
of M(t) v = 0, Cv = 0, where v is quasi-homogeneous as in (2.1) with exponents
λ ∈ int γt. This space X (t, γt) is mapped isomorphically onto the space Xt(γt)

studied in §2 by the mapping
(
χ̆∗

t

)−1
. The functions

X�;t =
(
χ̆∗

t

)−1
X�(t)

are therefore a generating set of singular functions in Xt(γt) depending smoothly on
t. The function

using; t =
(
χ̆∗

t

)−1
ũsing(t)

has therefore the properties of the singular part as stated in the theorem.

It remains to show that
ureg; t = ut − using; t

is in C κ(T , V s+m
δ1

(Ωt)) and satisfies the right estimates. Now

ureg; t =
(
χ∗

t

)−1
(1− ϕ)u(t) +

(
χ∗

t

)−1
ũreg(t) +

((
χ∗

t

)−1 −
(
χ̆∗

t

)−1
)
ũsing(t).



We have to consider only the last term. Hence we have to show that χ∗
t − χ̆∗

t maps
the functions X�;t into C κ(T , V s+m

δ1
(Ω)). But from the assumptions on χt it follows

by Taylor expansion that χ∗
t − χ̆∗

t maps C κ(T , V s+m
δ0

(Ω)) into C κ(T , V s+m
δ0−1 (Ω)).

Remark 3.3 Singular functions in Xt(γt) and, more generally in Zt(γt; a; ν) (see
Definition 2.15), belong to V s+m

δ (Ωt) if s− δ − 1 < inf{Re λ | λ ∈ γt}.

Theorem 3.2 can be extended to the case of right hand sides in ordinary Sobolev
spaces. The singular functions X�;t ∈ Xt(γt) are then replaced by Y�;t ∈ Yt(γt),
where Yt(γt) is the space studied in §2.b.

Corollary 3.4 Let s > 0, let 0 < δ0 ≤ s and δ1 = max{0, δ0− 1} with the additional
condition that s �∈ N if δ1 = 0. We assume that

∀λ ∈ Λt : Re λ �= s− 1− δ0, Re λ �= s− 1− δ1.

Let κ ∈ N. Let ut ∈ C κ(T , V s+m
δ0

(Ωt)) be a solution of the boundary value problem
(3.1) with

ft ∈ C κ(T , Hs−m(Ωt)) and gt ∈ C κ(T , V
s+σ− 1

2
δ1

(∂Ωt)).

Then there exist ureg; t ∈ C κ(T , V s+m
δ1

(Ωt)) and c�;t ∈ C κ(T ) such that

ut = ureg; t +
L∑

�=1

c�;t Y�;t .

The singular functions Y�;t belong to the space Yt(γt), where γt is a curve surrounding
the finite set

(Λt ∪ N) ∩ {λ ∈ C | s− 1− δ0 < Re λ < s− 1− δ1}.
They are C∞ functions in (t, r, θ) ∈T × (0,∞) × [0, ωt] independent of ut, ft, gt.
There are estimates
L∑

�=1

‖c�;t‖
Cκ(T )

+ ‖ureg; t‖
Cκ(T ,V s+m

δ1
(Ωt))

≤ C
(
‖ut‖

Cκ(T ,V s+m
δ0

(Ωt))
+

‖ft‖
Cκ(T ,Hs−m(Ωt))

+ ‖gt‖
Cκ(T ,V

s+σ− 1
2

δ1
(∂Ωt))

)
.

Proof. By §1.e, ft has a Taylor expansion

ft = f0;t + fpol; t

with f0;t ∈ C κ(T , V s−m
δ1

(Ωt)) and fpol; t ∈ C κ(T , P(λ0−m)). Here λ0 = [s − δ0] ∈ N.
The proof follows then immediately from Lemma 2.13 and Theorem 3.2.

Remark 3.5 If the diffeomorphisms χt are smooth in cartesian coordinates, then
s ∈ N is allowed for δ1 = 0 (cf [5]).

Remark 3.6 For the case of analytic parameter dependence, there hold analogues
of the statements of Proposition 3.1, Theorem 3.2 and Corollary 3.4.



4. Complete asymptotics

In this section, we finish the proof of Theorem 1.3 and we describe the complete
stable asymptotics. We do not give a separate proof of Theorem 1.1, because this
follows from the same arguments by just omitting the regularity with respect to the
parameter t ∈T . For the same reason, we do not repeat the proof for the case of
analytic parameter dependence.

4.a Taylor expansion of the operators. We begin by considering the Tay-
lor expansion at r = 0 of the interior operator Lt and the boundary operator Bt. An
explicit description of this expansion was given in [4, §1.d]. Here we describe it in a
shorter way by using the dilation operator Tρ defined by

Tρu(z) = u(ρz)

as in the proof of Theorem 3.2. Consider the differential-operator-valued function

ρ �−→ L(ρ) := ρm Tρ Lt T
−1
ρ ρm (ρ > 0) . (4.1)

Let
L(ρ) ∼

∑
p≥0

ρp L
(p)
t

be its Taylor expansion at ρ = 0, i.e.

L
(p)
t =

1

p!

dp

dρp
L(ρ)

∣∣∣
ρ=0

.

Then L
(0)
t = Mt, and L

(p)
t is a multi-homogeneous differential operator with polyno-

mial coefficients, linear combination of operators Lp as considered in Lemma 2.16. If
we define the remainder RP(Lt) by

Lt =
P−1∑
p=0

L
(p)
t + RP(Lt) ,

then for any s and δ we have continuous mappings

RP(Lt) : C κ(T , V s+m
δ (Ωt)) −→ C

κ(T , V s−m
δ−P (Ωt)). (4.2)

For the Taylor expansion of the boundary operator, we consider the family of
operators

ρ �−→ B(ρ) := ρ−µ Tρ Bt T
−1
ρ ρm (ρ > 0) . (4.3)

In this formula, we interpret the boundary operator Bt in a neighborhood of the
origin as the (2|m| ×N) matrix valued operator Bt defined by(

Bt u
)
(r) =

(
u1(r, 0), . . . , ∂mN−1

n uN(r, 0); u1(r, ωt(r)), . . . , ∂
mN−1
n uN(r, ωt(r))

)
.

(4.4)



Thus for ρ > 0, the operator B(ρ) maps a N -component vector function of (r, θ)
defined in a neighborhood of (0, r0]× [0, ωt] to a 2|m|-component vector function of
r, where the first |m| components correspond to the traces for θ = 0 and the second
|m| components to those for θ = ωt(ρr). For example, the (|m| + 1)-st component
of B(ρ)u(r) is u1(r, ωt(ρr)). Let

B(ρ) ∼
∑
p≥0

ρp B
(p)
t

be the Taylor expansion of B(ρ) at ρ = 0. For p = 0, we find B
(0)
t = Ct according

to (2.20). We define the remainder RP(Bt) by

Bt =
P−1∑
p=0

B
(p)
t + RP(Bt) .

We use this Taylor expansion to describe the action of Bt on singular functions in
the spaces Zt(γ; a; ν) of Definition 2.15 and we obtain a statement corresponding to
Lemma 2.16.

Lemma 4.1 Let γ, a, ν, p satisfy the hypotheses of Lemma 2.16. Then there exists
a polynomial b0 with integer roots such that the operator

B
(p)
t maps Zt(γ; a; ν) into S (γ′; a′)

with
γ′ = γ + p = {λ ∈ C | λ− p ∈ γ}, a′(λ) = a(λ− p) · b0(λ) .

Proof. We write the proof for u+ as defined in (2.14)–(2.15), the case of u− being
similar. From (2.14), we have

B
(p)
t u+(r) =

∫
γ

B
(p)
t V +(λ, ζ)H (λ)

a(λ)
dλ with H ∈ Pdeg(a)−1[λ]⊗ C

N (4.5)

and from (2.15), we obtain

B
(p)
t v+(λ, ζ) =

∫
γ̃

B
(p)
t Z+(λ; ζ, ζ; α) h(α)

det Mt;+(α)ν
dα with h ∈ P|m|ν−1[α]⊗ C

N . (4.6)

From the definition of B
(p)
t , we see that it satisfies

ρ−µ Tρ B
(p)
t T−1

ρ ρm = ρp B
(p)
t .

Together with the homogeneity of the functions Z+

Tρ Z+(λ; ζ, ζ; α) = Z+(λ; ρ ζ , ρ ζ ; α) = ρλ+m Z+(λ; ζ, ζ; α) ,

this shows that the function G+(λ; r; α) := B
(p)
t Z+(λ; ζ, ζ; α)(r) satisfies

Tρ G+(λ; r; α) = ρλ+p+µ G+(λ; r; α) .

Setting b(λ) := (λ + 1) · · · (λ + maxl ml) and defining

g+(λ; α) := G+(λ; 1; α) · b(λ),



we therefore obtain a function g+ holomorphic in λ and α such that

G+(λ; r; α) = rλ+p+µ g+(λ; α)

b(λ)
.

Let

ψ1(λ) =

∫
γ̃

g+(λ; α) h(α)

det Mt;+(α)ν
dα .

With (4.5)–(4.6), we find

B
(p)
t u+(r) =

∫
γ

rλ+p+µ Ψ 1(λ)H (λ)

a(λ)
dλ ,

which, after Euclidean division modulo a, reduces to the required form. Finally we
obtain

B
(p)
t u(r) =

∫
γ+p

rλ+µ ψ(λ)

a(λ− p) · b0(λ)
dλ . (4.7)

Lemma 4.2 Let γ, a, ν be as in the preceding lemma. Then there is r0 > 0 such
that for any P ∈ N

RP(Bt) maps Zt(γ; a; ν) into V
s+µ− 1

2
δ−P (0, r0)

for any s, δ satisfying (compare with Remark 3.3)

s− δ − 1 < inf{Re λ | λ ∈ γt} .

Proof. We consider again a function u+ as in the previous proof. From the
definition 4.3 of B(ρ) and the definition of RP(Bt), we find

ρ−µ Tρ RP(Bt) T−1
ρ ρm = ρP R̃(ρ) ,

where R̃(ρ) is C∞ at ρ = 0 and R̃(0) = RP(Bt).

Setting G+(λ; r; α) :=
(
RP(Bt) Z+(λ; ζ, ζ; α)

)
(r), we find

Tρ G+(λ; r; α) = ρλ+p+µ G̃+(λ; r; α; ρ) .

Here G̃+(λ; r; α; ρ) = R̃(ρ) Z+(λ; ζ, ζ; α) and we see that, with the polynomial b(λ)
as above, the function

(λ, r, α, ρ) �−→ G̃+(λ; r; α; ρ) · b(λ)

is holomorphic in λ and α and C∞ in r > 0 and ρ ≥ 0. Thus writing

G+(λ; r; α) = Tr G+(λ; 1; α) = rλ+p+µ G̃+(λ; 1; α; r)

we see that r �→ G+(λ; r; α) belongs to V
s+µ− 1

2
δ−P (0, r0) for any α and any λ with

Re λ > s− δ−1 such that b(λ) �= 0. This is uniform in α ∈ γ̃ and λ ∈ γt. Integrating

over γ̃ and γt according to (2.14)–(2.15), we find u+ ∈ V
s+µ− 1

2
δ−P (0, r0).

Whereas the preceding two lemmas were formulated for a fixed t ∈T , their proofs
show that the regularity with respect to t is conserved.



Proposition 4.3 Let the hypotheses of Lemmas 4.1 and 4.2 be satisfied for every
t ∈ T . Let γt depend continuously on t. Suppose that ut ∈ Zt(γt; at; ν) is smooth
with respect to t in the sense that all the polynomials in (2.14)–(2.15) are C∞ in the
variable t. Then also the polynomial a′ and the polynomial ψ in the formula (4.7) for

B
(p)
t ut are C∞ with respect to t ∈T . Furthermore,

RP(Bt) ut ∈ C∞(T , V
s+µ− 1

2
δ−P (0, r0)) .

4.b Expansion of the singular functions. In the following we denote by
C

∞(T ,Zt(γt; at; ν)) the space of functions

t �−→ ut ∈ Zt(γt; at; ν), t ∈T

such that the polynomials in their definition (2.14)–(2.15) are C∞ functions of t ∈T .
Analogously, we define C∞(T ,Xt(γt)) and C∞(T ,Yt(γt)) — we do not know whether
this is equivalent to the requirement that the functions themselves are C∞ functions
ofT , but this is not important for the following.

We will now describe the construction of the complete singular functions of the
operator (Lt, Bt). By ∂Ω0

t we denote a neighborhood of the corner in Ωt which can
be identified with a neighborhood of the origin in ∂Γt.

Lemma 4.4 Let γt ⊂ C be a family of simple closed curves depending continuously
on t ∈T . Suppose that for an integer P ≥ 2 and all t ∈T there holds

(γt + p) ∩ N = ∅, (γt + p) ∩ Λt = ∅ for p = 0, . . . , P − 1.

Then for any Xt ∈ C∞(T ,Xt(γt)) there exist X
(p)
t , p = 0, . . . , P − 1, with

X
(0)
t = Xt,

X
(p)
t ∈ C

∞
(
T , Zt(γt + p; a

(p)
t,γt
· b(p)

0 ; 2p + 1)
)
, p = 1, . . . , P − 1,

such that the function

SP(Xt) :=
P−1∑
p=0

X
(p)
t

satisfies

Lt S
P(Xt) ∈ C

∞(T , V s−m
δ−P (Ωt)),

Bt S
P(Xt) ∈ C

∞(T , V
s+σ− 1

2
δ−P (∂Ω0

t ))

for any s and δ with s− δ− 1 < inf{Re λ | λ ∈ γt, t ∈T }. The polynomials a
(p)
t,γt

are
given by

a
(p)
t,γt

(λ) = at,γt+p(λ) · at,γt+p−1(λ− 1) · · · at,γt(λ− p) (4.8)

and b
(p)
0 has integer roots.



Proof. We construct the X
(p)
t inductively as solutions of the boundary value

problems (
Mt, Ct

)
X

(p)
t = −

p−1∑
q=0

(
L

(p−q)
t , B

(p−q)
t

)
X

(q)
t . (4.9)

Note that this holds also for p = 0, namely (Mt, Ct)X
(0)
t = 0 due to the definition

of the space Xt(γt). It is clear that X
(0)
t belongs to C∞(T ,Zt(γt; at,γt ; 1)). Sup-

pose that for q = 1, . . . , p − 1, X
(q)
t ∈ C∞(T ,Zt(γt; a

(q)
t,γt
· b(q)

0 ; 2q + 1)) have been
constructed. Then according to Lemma 2.16 and Lemma 4.1(

L
(p−q)
t , B

(p−q)
t

)
X

(q)
t = (f

(q)
t , g

(q)
t )

with

f
(q)
t ∈ Z̃t(γt + p ; a

(q)
t,γt

(λ− p + q) · b(q)
1 (λ) ; 2q + 1 + ν

(q)
0 )

g
(q)
t ∈ S (γt + p ; a

(q)
t,γt

(λ− p + q) · b(q)
1 (λ)),

with a polynomial b
(q)
1 with integer roots. Considering the degrees of the differential

operators in L
(p−q)
t and the proof of Lemma 2.16, we see that ν

(q)
0 ≤ p − q, hence

2q + 1 + ν
(q)
0 ≤ 2p.

Hence we conclude from Theorem 2.21 that the boundary value problem(
Mt, Ct

)
X

(p)
t = −

p−1∑
q=0

(f
(q)
t , g

(q)
t )

has a solution X
(p)
t ∈ Zt(γt + p ; at · b(p)

0 · at,γt+p ; 2p + 1) where b
(p)
0 has the required

form and at is the least common multiple of

a
(q)
t,γt

(λ−p+q) = at,γt+q(λ−p+q) · · · at,γt+1(λ−p+1)·at,γt(λ−p) for q = 0, . . . , p−1.

Thus X
(p)
t is in the right space.

Now we compute (Lt, Bt)S
P(Xt) by using their Taylor expansion(

Lt, Bt

)
SP(Xt) =

P−1∑
p=0

(
L

(p)
t , B

(p)
t

)
SP(Xt) + RP

(
Lt, Bt

)
SP(Xt)

=
P−1∑
p=0

p∑
q=0

(
L

(p−q)
t , B

(p−q)
t

)
X

(q)
t +

∑
p+q≥P

p, q ≤P−1

(
L

(p)
t , B

(p)
t

)
X

(q)
t

+ RP
(
Lt, Bt

)
SP(Xt).

According to the construction, the first sum on the right hand side vanishes.

For the second sum, we note that for p + q ≥ P we have

L
(p)
t X

(q)
t ∈ Z̃t(γt + p + q; a′; ν ′) ⊂ V s−m

δ−P (Ωt)

and
B

(p)
t X

(q)
t ∈ S (γt + p + q; a′) ⊂ V

s+σ− 1
2

δ−P (∂Ω0
t ),

because s− (δ − P )− 1 < inf{Re λ | λ ∈ γt + p + q}.



Finally, for the remainders we use the fact that

X
(p)
t ∈ Zt(γt + p; a

(p)
t,γt
· b(p)

0 ; 2p + 1)

and hence, with (4.2),

RP(Lt)X
(p)
t ∈ V s−m

δ−P (Ωt)

and, with Lemma 4.2

RP(Bt)X
(p)
t ∈ V

s+σ− 1
2

δ−P (∂Ω0
t ).

For the traces, we identified |m|-component vector functions on ∂Ω0
t with 2|m|-

component vector functions on (0, r0), and thus V
s+σ− 1

2
δ−P (∂Ω0

t ) with V
s+µ− 1

2
δ−P (0, r0).

The proof is complete if we remark that all above constructions conserve the regularity
with respect to t ∈T .

If we admit polynomial right hand sides, we obtain the following generalisation.

Lemma 4.5 In addition to the hypotheses of Lemma 4.4, suppose that int γt contains
exactly one integer element λ0.
Then for any Yt ∈ C∞(T ,Yt(γt)) there exist Y

(p)
t , p = 0, . . . , P − 1, with

Y
(0)

t = Yt,

Y
(p)

t ∈ C
∞

(
T , Zt(γt + p ; a

(p)
t,γt
· b(p)

1 ; 2p + 1) + P(λ0+p+m)

)
, p = 1, . . . , P − 1,

such that the function

SP(Yt) =
P−1∑
p=0

Y
(p)

t

satisfies

Lt S
P(Yt) ∈ C

∞(T , V s−m
δ−P (Ωt) + P(λ0−m)),

Bt S
P(Yt) ∈ C

∞(T , V
s+σ− 1

2
δ−P (∂Ω0

t )).

The polynomials a
(p)
t,γt

are given in (4.8) and b
(p)
1 are polynomials with integer roots.

Proof. The proof follows the same scheme as above. The functions Y
(p)

t are
solutions of the boundary value problems(

Mt, Ct

)
Y

(p)
t = −

p−1∑
q=0

(
L

(p−q)
t , B

(p−q)
t

)
Y

(q)
t . (4.10)

The main difference is the situation for p = 0: as Yt ∈ Yt(γt), we have

(Mt, Ct)Y
(0)

t = (fpol, 0), with fpol ∈ P(λ0−m).

The construction of the Y
(q)

t is based on Lemma 2.13 and Theorem 2.21. With similar
calculations as in the previous lemma, we obtain(

Lt, Bt

)
SP(Yt) = (fpol, 0) +

∑
p+q≥P

p, q ≤P−1

(
L

(p)
t , B

(p)
t

)
Y

(q)
t + RP

(
Lt, Bt

)
SP(Yt).

Hence the lemma.



4.c Proof of Theorem 1.3. We will show now that the singular functions
SP(Yt) are the correct objects to use in the decomposition Theorems 1.1 and 1.3.

Thus let s be given as in (1.1). Without restriction (see, however, Remark 4.7)
we assume s0 = 0. We choose a sequence ξ0, . . . , ξI ∈ R with the properties

−2 < ξ0 ≤ −1 < ξ1 . . . < ξI = s− 1,
ξi �∈ N; |ξi − ξi−1| < 1; Re λ �= ξi for all λ ∈ Λt, t ∈T (i = 1, . . . , I).

(4.11)

Since this restricts the variation of the Λt, the condition (4.11) might not be satisfied
for the whole intervalT . In this case we can find a covering ofT by open subintervals
for which (4.11) is possible. We will then get the results of Theorems 1.1 and 1.3
for these subintervals and we can patch them together with the help of a smooth
partition of unity. For the case of analytic dependence on the parameter, we only
obtain a local result. So we assume now that (4.11) is valid. We can then cover the
set

(Λt ∪ N) ∩ {λ ∈ C | ξ0 < Re λ < s− 1}
with a finite number of open sets of the form int γj

t , j = 1, . . . , J , where γj
t are simple

closed curves depending continuously on t ∈T and satisfying

(γj
t + p) ∩ (Λt ∪ N) ∩ {λ ∈ C | ξ0 < Re λ < s− 1} = ∅

for all j = 1, . . . , J , t ∈T and p ∈ N, and

Re λ �= ξi for all λ ∈ γj
t , t ∈T , j = 1, . . . , J ; i = 1, . . . , I.

According to Theorem 2.12, each of the spaces Yt(γ
j
t ) is generated by a finite number

of functions described there.

The following theorem then holds.

Theorem 4.6 Let {Y�;t | $ = 1, ... ,L} be a generating set of the space ⊕j=1,...,JYt(γ
j
t )

such that each Y�;t belongs to C∞(T ,Yt(γ
j�
t )) for some j�. For each $ = 1, . . . ,L, let

i and j be such that

Y�;t ∈ Yt(γ
j
t ) and ξi < Re λ < ξi+1 for all λ ∈ γj

t ,

and define P� = [s− ξi]. Then with the singular functions S�;t defined by

S�;t = SP�(Y�;t) ,

Theorems 1.1 and 1.3 hold.

Proof. Let ft ∈ Hs−m(Ωt) be given and ut ∈
◦

Hm(Ωt) be a solution of the
boundary value problem (1.2). We begin by using the interior regularity theorem,
Proposition 3.1:

ut ∈
◦

Hm(Ωt) ⊂ V m
0 (Ωt), Lt ut ∈Hs−m(Ωt) ⊂ V s−m

s (Ωt), Bt ut = 0

implies ut ∈ V s+m
s (Ωt) ⊂ V s+m

δ0
(Ωt) with δ0 = s− ξ0 − 1. We define

δi = s− ξi − 1 = ξI − ξi.



With u
(0)
t = ut, we have therefore the beginning i = 0 of the following situation:

u
(i)
t ∈ V s+m

δi
(Ωt); Lt u

(i)
t ∈Hs−m(Ωt); Bt u

(i)
t ∈ V

s+σ− 1
2

0 (∂Ωt). (4.12)

We will show that by splitting off suitable singular functions, we can pass from i to
i + 1. At the end, we shall have ureg; t = u

(I)
t .

In (4.12), we can apply Corollary 3.4 and obtain

u
(i)
t = u

(i)
reg; t +

∑
�

c�;t Y�;t

with
u

(i)
reg; t ∈ V s+m

max(0,δi−1)(Ωt) ⊂ V s+m
δi+1

(Ωt)

and Y�;t ∈ Yt(γ
j
t ) for a γj

t such that

λ ∈ γj
t =⇒ Re λ ∈ (s− 1− δi, s− 1− δi+1) = (ξi, ξi+1).

We take a smooth cut-off function η(r) supported in [0, r0) and define:

u
(i+1)
t = u

(i)
reg; t +

∑
�

c�;t

(
Y�;t − η · SP�(Y�;t)

)
.

Each term in the sum is in V s+m
δ (Ωt) for any δ > s− 1− inf{Re λ | λ ∈ γj

t } − 1 (see
Remark 3.3) and thus in V s+m

δi+1
(Ωt), since

δi+1 > δi − 1 = s− ξi − 2 > s− 2− inf{Re λ | λ ∈ γj
t }.

Hence u
(i+1)
t ∈ V s+m

δi+1
(Ωt). Furthermore we have

u
(i+1)
t = u

(i)
t − η

∑
�

c�;t S
P�(Y�;t).

Lemma 4.5 gives us

Lt S
P�(Y�;t) ∈ V s−m

δi−P�
(Ωt) + P(λj−m),

Bt S
P�(Y�;t) ∈ V

s+σ− 1
2

δi−P�
(∂Ω0

t ),

where λj is the only integer in int γj
t . If there is no integer in int γj

t , the polynomial
part in Lt S

P�(Y�;t) is absent. Also, δi − P� ≤ δi − (s− ξi − 1) = 0. Hence

Lt S
P�(Y�;t) ∈ Hs−m(Ωt),

Bt S
P�(Y�;t) ∈ V

s+σ− 1
2

0 (∂Ω0
t ),

and with (4.12) we find

Lt u
(i+1)
t ∈Hs−m(Ωt) and Bt u

(i+1)
t ∈ V

s+σ− 1
2

0 (∂Ωt).

This shows the induction step, and the proof of the theorem is complete if we note
once again that all the tools used here conserve the regularity in t ∈T .

Remark 4.7
(i) If ut ∈ Hs0+m(Ωt) is given as in Theorems 1.1 and 1.3 with s0 > 0, then, due
to the obvious inclusion Hs0+m(Ωt) ⊂ Hm(Ωt), we can apply the above theorem
for s0 = 0. Note that, however, we then obtain for ut a decomposition which uses



as singular functions the SP�(Y�;t) where Y�;t ∈ Yt(γ
j�
t ), and the γj

t cover all the
singular exponents with real parts in (ξ0, s − 1), not only those in (s0 − 1, s − 1).
Now functions in Yt(γt) with Re γt ⊂ (−∞, s0 − 1) can only belong to Hs0+m(Ωt) if
they are polynomials. Thus the singular functions S�;t which actually appear in the
decomposition of a ut ∈Hs0+m(Ωt) will have the form SP�(Y�;t)
(a) with Y�;t ∈ Yt(γ

j
t ) and Re γj

t ⊂ (s0 − 1, s− 1) — so the Y�;t themselves belong to
Hs0+m(Ωt) without belonging to Hs+m(Ωt),
(b) or with a polynomial Y�;t.

(ii) We consider the case (b).
• If an opening ωt is equal to π or 2π, the following situation may occur: A polynomial
Y�;t whose exponents do not correspond to the interval (s0−1, s−1), generates terms

Y
(p)

�;t which belong to Hs0+m(Ωt) without belonging to Hs+m(Ωt), although they

cannot be represented as combinations of other functions Y
(p′)

�′;t coming from a Y�′;t

whose exponents correspond to the interval (s0 − 1, s− 1).
• On the other hand, if the openings ωt are never equal to π or 2π, this situation
never occurs. See also the examples in the next subsection (§4.d).

Remark 4.8
(i) If certain eigenvalues µt in Λt cross the line Re λ = s0 − 1, i.e. Re µt < s0 − 1 for
t ∈T0 and Re µt > s0 − 1 for t ∈T1 withT0 andT1 two open subsets ofT , then the
corresponding functions S�;t do not belong to Hs0+m(Ωt) for t ∈T0, but they belong
to Hs0+m(Ωt) for t ∈T1. In the C∞ case, this situation is treated by localization
in t. In the analytic case, the assumption ut ∈ A (T , Hs0+m(Ωt)) implies that the
corresponding coefficients c�;t are identically 0 onT .

(ii) If problem (1.2) has a unique solution in u ∈Hs0+m(Ωt) for any f ∈Hs0−m(Ωt)
and any t ∈T , then

ft ∈ C κ(T , Hs0−m(Ωt)) =⇒ ut ∈ C κ(T , Hs0+m(Ωt))

and
ft ∈ A (T , Hs0−m(Ωt)) =⇒ ut ∈ A (T , Hs0+m(Ωt)).

Moreover, the eigenvalues in Λt never cross the line Re λ = s0 − 1. This situation is
well known for s0 = 0 when L is a strongly coercive system.

4.d Examples. We take N = 1 and L = ∆ and give a few examples of singular
functions for domains with curved sides. Here we describe the first terms in the
asymptotics of a solution of the Dirichlet problem for a fixed opening ω at O. Next
we discuss stable expressions for these terms in the neighborhood of the angles ω = π
and ω = 2π.

We are going to consider two types of curved sides:

(i) the parabola (P) : y = x2, whose branch x > 0, y > 0 is described in polar
coordinates by

r −→ ωP(r) = r − 5r3

6
+O(r5) as r → 0;



(ii) the circle (C) : y = x2 + y2, whose branch x > 0, y > 0 is described in polar
coordinates by

r −→ ωC(r) = r +
r3

6
+O(r5) as r → 0.

Example 4.9 We consider for ω ∈ (π
2
, 2π] the domain

{(x, y) | 0 < θ < ω − ωP(r)}.

• For ω different from π and 2π the generating term of the first singularity is an
element of a space X (γ):

X
(0)
ω,1(x, y) = Im ζ

π
ω .

From the Taylor expansion of its trace on θ = ω − ωP(r), we see that the first
generation of derived terms has to satisfy Dirichlet conditions:

X
(1)
ω,1

∣∣∣
θ=0

= 0; X
(1)
ω,1

∣∣∣
θ=ω

= −π

ω
r

π
ω

+1.

This gives

X
(1)
ω,1(x, y) =

π

ω

1

sin ω
Im ζ

π
ω

+1.

The generating terms of the second and the third singularities are

X
(0)
ω,2(x, y) = Im ζ

2π
ω ; X

(0)
ω,3(x, y) = Im ζ

3π
ω .

The first polynomial generating the space Y (γ) where γ surrounds 1, is

Y
(0)
ω,1 (x, y) = y (x sin ω − y cos ω).

These singular functions depend regularly on ω for ω ∈ (π
2
, π) ∪ (π, 2π). In order to

obtain stable expressions for ω near π or 2π, we have to change X
(1)
ω,1 into

X
(1),π
ω,1 =

π

ω

1

sin ω

(
Im ζ

π
ω

+1 − Im ζ
2π
ω

)
or

X
(1),2π
ω,1 =

π

ω

1

sin ω

(
Im ζ

π
ω

+1 − Im ζ
3π
ω

)
.

These stable expressions for π and 2π are obtained as integrals according to the
proof of Lemma 2.20 where the contour γ goes around {π

ω
, 2π

ω
− 1} and {π

ω
, 3π

ω
− 1}

respectively. Here rλ+m
F (λ, θ) is the vector function (ζλ+1, ζλ+1) and a(λ) = λ− π

ω
.

• When ω = π, the first term in a space X (γ) is a polynomial:

X
(0)
ω,1(x, y) = Im ζ.

and the corresponding generated term is

X
(1)
π,1(x, y) = − 1

π
Im ζ2 log ζ



which is the limit as ω → π of X
(1),π
ω,1 . This function is the first non-polynomial term

in the asymptotics for ω = π. Nevertheless, it does not correspond to the polar part

of the resolvent of
◦
A (λ) at λ = 1. For u ∈ Hs0+1(Ω)∩

◦
H1(Ω) with ∆u = f ∈ Hs−1(Ω)

and 1 < s0 < 2 < s, if we consider the singularities of u with respect to Hs+1, we have
to include the term X

(1)
π,1, although its “parent” term X

(0)
π,1 has an exponent outside

the relevant interval (s0, s), cf. Remark 4.7.

The polynomial terms of degree 2 are

X
(0)
ω,2(x, y) = 2xy and Y

(0)
ω,1 (x, y) = y2 .

• When ω = 2π, the first term is

X
(0)
ω,1(x, y) = Im ζ

1
2 .

and the corresponding generated term is

X
(1)
ω,1(x, y) =

1

4π
Im ζ

3
2 log ζ.

The same considerations as for the case ω = π hold for this term.

The first polynomial term is an element of a space X (γ):

X
(0)
ω,2(x, y) = Im ζ

and the corresponding generated term is

X
(1)
ω,2(x, y) = − 1

2π
Im ζ2 log ζ.

The next term is
X

(0)
ω,3(x, y) = Im ζ

3
2 .

Example 4.10 We consider the C 3 domain

{(x, y) | ωC(r) < θ < π − ωP(r)}.

The first polynomial is
X

(0)
1 (x, y) = Im ζ

and we find for the first three derived terms

X
(1)
1 (x, y) = −Re ζ2, X

(2)
1 (x, y) = 0, X

(3)
1 (x, y) =

1

π
Im ζ4 log ζ.

Here again, for Hs+1-regularity with s > 4, we have to consider the term X
(3)
1 whose

“parent” X
(0)
1 has an exponent 1 which may be outside the interval (s0, s).



5. Structure of the stable asymptotics

The principal parts of the singular functions are elements of spaces Xt(γt) or Yt(γt),
whereas the other terms are described as elements of spaces Zt. We shall give addi-
tional information on the behavior of such functions in the polar coordinates (r, θ).

5.a Radial behavior. It suffices to consider the elements of the spaces Zt,
since the radial behavior is similar for the spaces Xt(γt) or Yt(γt).

Lemma 5.1 Assume that the coefficients of a family at of polynomials of degree d
belong to C κ(T ) and that the contours γt are such that int γt contains all the roots of
at. Let ν ∈ N and let ut belong to C κ(T ,Zt(γt; at; ν)). If qt,1, . . . , qt,d ∈ C κ(T , Pd−1)
are for each t a basis of Pd−1, then there exist d functions of θ:

ϕt,1, . . . ,ϕt,d ∈ C κ(T ,C∞([0, 2π])⊗ C
N)

such that

ut(r, θ) =
d∑

j=1

(∫
γt

rλ+m qt,j(λ)

at(λ)
dλ

)
·ϕt,j(θ) .

Proof. By Definition 2.15, we have

ut(ζ) =

∫
γ

V +
t (λ, ζ)H +

t (λ) + V −
t (λ, ζ)H −

t (λ)

at(λ)
dλ .

From the formulas (2.15), we see that V −+
t (λ, ζ) has the form rλ+mΨ−+

t (λ, θ). Setting

Ψ t(λ, θ) = Ψ+
t (λ, θ)H +

t (λ) + Ψ−
t (λ, θ)H −

t (λ),

we obtain an holomorphic function of λ, C∞ in θ and C κ(T ). Then

ut(ζ) =

∫
γ

rλ+m Ψ t(λ, θ)

at(λ)
dλ ,

and the use of the “Leibniz formula” (6.4) yields the lemma with

ϕt,j(θ) =
1

2iπ

∫
γ

Ψ t(λ, θ) q∗t,j(λ)

at(λ)
dλ .

Remark 5.2 The relation of this lemma with the notion of “crossing” or “branching”
is the following: when the roots of the polynomials at all depend smoothly on t, and
when some of them coincide for a certain t0 ∈T , we say that there is a crossing in
t0. When the roots of the polynomials at do not depend smoothly on t, there is a
change of multiplicity in the points where the roots are not regular and we say that
there is a branching in such points.

In the asymptotics SP(Y ) of singular functions, the polynomials at are products of
characteristic polynomials at,γt whose coefficients are smooth. When the polynomials



at,γt have the degree 1, as it is the case for second order scalar problems, we only
have crossings.

We can give expressions of the radial functions with respect to the divided differ-
ences of the function λ → rλ. We recall the notation used in [2]: for µ1, . . . , µd in
int γ,

S[µ1, . . . , µd; r] =
1

2iπ

∫
γ

rλ

(λ− µ1) · · · (λ− µd)
dλ . (5.1)

Here, for a polynomial a ∈ Pd with leading coefficient equal to 1 and a polynomial
q ∈ Pd−1, we set

S[a, q; r] =
1

2iπ

∫
γ

rλ q(λ)

a(λ)
dλ . (5.2)

If we denote by µ1, . . . , µd the roots of a, there holds

S[a, q; r] = q(r∂r)
(
S[µ1, . . . , µd; r]

)
,

and also, by formula (6.4):

S[a, q; r] =
d∑

j=1

S[µ1, . . . , µj; r] · q[µj, . . . , µd] .

By special choices of q, we obtain

S[a,
dka

dλk
; r] = k!

∑
j1<...<jk

S[µj1 , . . . , µjk
; r] , (5.3)

and, if the µj are distinct,

S[a, λk; r] =
d∑

j=1

λk
j rλj∏

i�=j

(λj − λi)
. (5.4)

Remark 5.3 When κ = 0, i.e. when we only need a continuous dependence in t,
we can always use the ordinary divided differences (and not necessarily the “sym-
metrized” ones as above) because the roots µt,j depend continuously on t.

Let us give detailed expressions of stable bases of the form S[at, qt,j; r]j=1,...,d
in a

few particular cases (d = 2, 3).

• Case of 2 roots.
– If the roots µt,1 and µt,2 depend smoothly on t and are never equal to each other

(t ∈T ), we can choose for instance qt,1(λ) = λ − µt,2 and qt,2(λ) = λ − µt,1, which
gives as a stable basis {rµt,1 , rµt,2}.



– If the roots µt,1 and µt,2 depend smoothly on t and can be equal to each other,
we choose for instance qt,1(λ) = λ−µt,2 and qt,2(λ) = 1, which gives as a stable basis

{
rµt,1 ,

rµt,1 − rµt,2

µt,1 − µt,2

}
.

– If the roots µt,1 and µt,2 do not depend smoothly on t, we choose for instance
qt,1(λ) = 2λ− µt,1 − µt,2 and qt,2(λ) = 1, which gives as a stable basis

{
rµt,1 + rµt,2 ,

rµt,1 − rµt,2

µt,1 − µt,2

}
.

• Case of 3 roots.
– If the roots µt,1, µt,2 and µt,3 depend smoothly on t and can be equal to each

other, we choose for instance qt,1(λ) = (λ − µt,2)(λ − µt,3), qt,2(λ) = λ − µt,3 and
qt,3(λ) = 1, which gives as a stable basis{

rµt,1 , S[µt,1, µt,2; r], S[µt,1, µt,2, µt,3; r]
}
.

– If only the root µt,3 depends smoothly on t, we can choose for instance qt,1(λ) =
(2λ− µt,1 − µt,2)(λ− µt,3), qt,2(λ) = λ− µt,3 and qt,3(λ) = 1, which gives as a stable
basis {

rµt,1 + rµt,2 , S[µt,1, µt,2; r], S[µt,1, µt,2, µt,3; r]
}
.

– If the roots µt,1, µt,2 and µt,3 do not depend smoothly on t, we can choose
for instance qt,1(λ) = 3λ2 − 2λ(µt,1 + µt,2 + µt,3) + µt,1µt,2 + µt,2µt,3 + µt,3µt,1 and
qt,2(λ) = 3λ− µt,1 − µt,2 − µt,3, qt,3(λ) = 1, which gives as a stable basis{
rµt,1 +rµt,2 +rµt,3 , S[µt,1, µt,2; r]+S[µt,2, µt,3; r]+S[µt,3, µt,1; r], S[µt,1, µt,2, µt,3; r]

}
.

5.b Angular behavior. In the most general situation, the angular behavior
is determined by the functions ϕt,j(θ) as defined in the proof of Lemma 5.1. In the
cases where we know det Mt;−+(α) sufficiently well to compute the integrals in formula
(2.15) explicitly, we can obtain explicit expressions for ut in terms of the variables
ζ and ζ. For example, we proved in [4] that for systems “invariant by rotation” the
roots of det Mt;−+(α) = 0 are all equal to 0. Thus the following result, whose proof is
similar to that of Lemma 5.1, is interesting in numerous cases:

Lemma 5.4 We suppose that the roots of det Mt;−+(α) = 0 are all equal to 0. Assume
that the coefficients of a family at of polynomials of degree d belong to C κ(T ) and
that the contours γt are such that int γt contains all the roots of at. Let ν ∈ N and let
ut belong to C κ(T ,Zt(γt; at; ν)). If qt,1, . . . , qt,d ∈ C κ(T , Pd−1) are for each t a basis
of Pd−1, then there exist 2d polynomials U+

t,1, . . . ,U
+
t,d and U−

t,1, . . . ,U
−
t,d in P[X]⊗C

N

with C κ(T ) coefficients such that — with the notation (5.2):

ut(r, θ) =
d∑

j=1

S[at, qt,j; ζ] diag(ζm) ·U+
t,j

(
ζ

ζ

)
+ S[at, qt,j; ζ] diag(ζm) ·U−

t,j

(
ζ

ζ

)
.



6. Appendix:
Stable divided differences and Leibniz formulas

All the expressions of our singular functions are based on complex contour integrals∫
γ
qt(λ) at(λ)−1 dλ with, as denominator, a polynomial at whose coefficients depend

smoothly on t and a numerator which is holomorphic, or is more specifically written
as a product of two holomorphic functions which also depend smoothly on t. The
divided differences which we used in [2, 3] could also be used here if the roots of
the polynomials at depend smoothly on t too. But although the continuity of the
coefficients of the polynomials is transmitted to their roots, higher regularity (κ ≥ 1)
is not transmitted in general.

Proposition 6.1
(i) Let γ ⊂ C be a simple contour and let a be a polynomial of degree d ≥ 1, whose d
roots belong to int γ. Let q1, . . . , qd be a basis of Pd−1.Then there exists a (dual) basis
q∗1, . . . , q

∗
d of Pd−1 such that

Ba(qj, q
∗
k) :=

1

2iπ

∫
γ

qj(λ) q∗k(λ)

a(λ)
dλ = δjk. (6.1)

(ii) Assume that the coefficients of a family at of polynomials of degree d belong
to C κ(T ) and that the contours γt are such that int γt contain all the roots of at.
If qt,1, . . . , qt,d ∈ C κ(T , Pd−1) are for each t a basis of Pd−1, then the polynomials
q∗t,1, . . . , q

∗
t,d of the dual basis have also C κ(T ) coefficients.

The proof of the proposition is based on two lemmas.

Lemma 6.2 If a and γ satisfy the hypotheses of Proposition 6.1(i) and if q ∈ Pd−2,
then ∫

γ

q(λ)

a(λ)
dλ = 0.

Lemma 6.3 [1] Let a(λ) =
∑d

j=0 cjλ
j and γ be as in Proposition 6.1(i). Let, for

k = 1, . . . , d, a�k(λ) =
∑d

j=k cjλ
j−k be the shifted polynomials associated to a. Then,

for j, k = 1, . . . , d
1

2iπ

∫
γ

λj−1 a�k(λ)

a(λ)
dλ = δjk. (6.2)

Proof. One can choose γ such that 0 ∈ int γ, without changing the above integral.

• If j ≤ k − 1, the integral (6.2) is 0 by Lemma 6.2.

• If j ≥ k, λja�k(λ) = λj−ka(λ) + λj−krk, with rk ∈ Pk−1.
– If j = k, the integral (6.2) is equal to

1

2iπ

∫
γ

1

λ
dλ

︸ ︷︷ ︸
= 1

+
1

2iπ

∫
γ

rk(λ)

λ a(λ)
dλ

︸ ︷︷ ︸
= 0 by Lemma 6.2



– If j > k, the integral (6.2) is equal to

1

2iπ

∫
γ

λj−k−1 dλ

︸ ︷︷ ︸
= 0

+
1

2iπ

∫
γ

λj−k−1rk(λ)

a(λ)
dλ

︸ ︷︷ ︸
= 0 by Lemma 6.2

Proof of Proposition 6.1. We have just exhibited a basis and a dual basis, which
are also stable with respect to the parameter regularity. We generalize to any basis
qj by the introduction of the coefficients cjl such that

qj(λ) =
d∑

l=1

cjlλ
j−1.

The matrix (cjl) is invertible. Let (c̃jl) be its inverse. With

q∗k(λ) =
d∑

l=1

c̃lka
�l,

we obtain the relations (6.1).

Corollary 6.4 We assume that γ and a are as in Proposition 6.1 and that a is a
product a1 · · · aP . Let for each p, qp,j and q∗p,k be biorthogonal bases for the form Bap.
Then the basis

{q1,j} ∪ {a1 · q2,j} ∪ {a1 · a2 · q3,j} ∪ · · · ∪ {a1 · · · aP−1 · qP,j}
and the dual basis

{q∗1,k · a2 · · · aP} ∪ · · · ∪ {q∗P−2,k · aP−1 · aP} ∪ {q∗P−1,k · aP} ∪ {q∗P,k}
are biorthogonal for the form Ba.

Biorthogonal bases of Ba provide expressions for the (Hermite) interpolation poly-
nomial on the roots of a:

Proposition 6.5 We assume that γ and a are as in Proposition 6.1. Let u be a holo-
morphic function in a neighborhood of int γ. Then there exists a unique polynomial
u[a] ∈ Pd−1 such that

∀q ∈ Pd−1 Ba(q, u− u[a]) = 0.

For instance, if the roots µ1, . . . , µd of a are all simple, u[a] is the Lagrange interpolant
of u at µ1, . . . , µd. More generally, u[a] appears as the remainder of the Euclidean
division of u by a:

∃ϕ holomorphic, u = a ϕ + u[a].

For any biorthogonal bases qj and q∗k of Ba, we have

u[a] =
d∑

k=1

Ba(qk, u) q∗k . (6.3)

In particular, if a and u depend smoothly on a parameter t, so does u[a].



We deduce “Leibniz formulas”:

Proposition 6.6 We assume that γ and a are as in Proposition 6.1. Let u and v be
holomorphic functions in a neighborhood of int γ. For any biorthogonal bases qj and
q∗k of Ba, there holds Ba(u, v) =

∑d
k=1 Ba(qk, u) Ba(q

∗
k, v), i.e.

1

2iπ

∫
γ

u v

a
dλ =

d∑
k=1

(
1

2iπ

∫
γ

u qk

a
dλ

)(
1

2iπ

∫
γ

v q∗k
a

dλ

)
. (6.4)

The proof is straightforward, using that Ba(u, v) = Ba(u[a], v[a]) and the equali-
ties u[a] =

∑d
k=1 Ba(qk, u) q∗k and v[a] =

∑d
j=1 Ba(q

∗
j , v) qj.

Example 6.7
(i) If a(λ) =

∏d
l=1(λ− µl), a possible choice is (cf Corollary 6.4)

q1 = 1, qj(λ) =
j−1∏
l=1

(λ−µl) for j ≥ 2 ; q∗d = 1, qk(λ) =
d∏

l=k+1

(λ−µl) for k ≤ d−1.

One recovers the ordinary divided differences and the corresponding product formula
(cf [2, §8]). In the special case µ1 = . . . = µd, the formula (6.4) is just the ordinary
Leibniz formula for the derivative of order d− 1 of the product uv.

(ii) In connection with Lemma 6.2, for any fixed λ0, we can take qj(λ) = (λ−λ0)
j−1.

The dual basis is then given by q∗k = a�k
λ0

, which denotes the quotient of the Euclidean
division of a by (λ− λ0)

k.

(iii) One can choose the derivatives of a: qj(λ) = dja
dλj (see (5.3)).
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