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Abstract. We study a mixed Neumann-Robin boundary value problem for the
Laplace operator in a smooth domain inR2 . The Robin condition contains a param-
eter ε and tends to a Dirichlet condition asε → 0 . We give a complete asymptotic
expansion of the solution in powers ofε . At the points where the boundary condi-
tions change, there appear boundary layers of corner type of sizeε . They describe
how the singularities of the limit Dirichlet-Neumann problem are approximated. We
give sharp estimates in various Sobolev norms and show in particular that there
exist terms of orderO (ε log ε) .

1 INTRODUCTION

Let Ω ⊂ R
2 be a bounded domain with smooth boundary Γ . We consider the

Laplace equation in Ω with mixed Robin-Neumann boundary condition. The
Robin condition is imposed on the part ΓR of the boundary and the Neumann
condition on ΓN (we assume that Γ is equal to ΓR ∪ ΓN ):

(Pε)


∆uε = f in Ω
∂nuε = 0 on ΓN

ε∂nuε + uε = g on ΓR.

The two main features of this problem are

1. The intersection of ΓR and ΓN is not empty: we can suppose without
restriction that ΓR ∩ ΓN is formed by two points c1 and c2 , whence
a singular behavior near these points has to be expected. In order to
simplify the technical details of the description of this singular behavior,
we make the assumption that in a neighborhood of the two points c1

and c2 , the boundary Γ coincides with straight lines.



2. The Robin condition is ε∂n + I , where ε > 0 is a small parameter ( ∂n

denotes the derivative with respect to the exterior normal).

Thus, as ε → 0 , the problem changes its type, “degenerating” into the
mixed Dirichlet-Neumann problem

(P0)


∆u0 = f in Ω
∂nu0 = 0 on ΓN

u0 = g on ΓR.

This is a singular perturbation problem whose peculiarity lies in the ques-
tion of the singular behavior at c1 and c2 . Indeed, for problem (Pε) , the
first singular function behaves as O (r log r) , whereas, for problem (P0) , the

first singular function behaves as O
(
r1/2

)
. Therefore the introduction of

the small parameter ε can be considered as a regularization of the mixed
Dirichlet-Neumann problem (P0) , see [2, 12]. If this regularization is done
in view of a better numerical approximability of the solution, then one needs
to understand how the singular functions for ε = 0 are approximated by
“near-singular” functions for ε > 0 .

If, on the other hand, one needs to approximate the problem (Pε) for
a small value of ε , then it might be profitable to use numerical methods
that take the singularities of the limit problem (P0) into account. This is in
spite of the fact that these singularities are not present in the solution of the
problem (Pε) . We shall see below in what sense they are “nearly present”.
Our estimates should be useful as a basis for error estimates for such numerical
methods.

The problem (Pε) can also be considered as the simplest one in a whole
class of similar problems and it can serve as a starting point for various gen-
eralizations: Domains with corners, other elliptic boundary value problems
of mathematical physics such as problems from fluid dynamics, electromag-
netism or elasticity. One of the motivations for our paper were discussions
with B. Szabo and I. Babuška on this subject.

Beyond its role of simple model for the above mentioned class of problems,
the asymptotic behavior of solutions of (Pε) is of particular interest for (at
least) three reasons (see also [2, 12] for these and other motivations):

1. Problem (Pε) can be considered as a penalization of the limit prob-
lem (P0) — indeed such a method has been used to enforce Dirichlet
conditions in FEM.

2. Problem (Pε) in its actual form describes certain contact problems,
where the reaction of the contact zone is modelized by a stiff spring.

3. This question of “sudden” transformation of a singular behavior into a
completely different one at the limit is an old problem, whose correct
solution requires modern techniques of multiscale asymptotics.
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A problem like (Pε) , but with ΓN empty, was considered by Kirsch [7].
The mixed problem (Pε) was studied by Colli Franzone [1] who proved
error estimates between uε and u0 as ε → 0 in various Sobolev norms. In
these papers the Robin boundary condition is considered as a regularization
of the Dirichlet condition, too, but in different sense from the regularization
discussed above: The problem (Pε) for ε > 0 is well-posed and has a nice
variational form for g ∈ L2(Γ) which is, for instance, the standard regularity
condition in boundary control problems, whereas for the weak solution of the
Dirichlet problem, more regularity ( g ∈ H1/2(Γ) ) is required. The mixed
Dirichlet-Neumann problem (P0) is even ill-posed for g ∈ L2(Γ) !

The variational formulation of (Pε) is: Find u ∈ H1(Ω) such that

∀v ∈ H1(Ω) :

∫
Ω

∇uε · ∇v dx +
1

ε

∫
ΓR

(uε − g) v ds = −
∫

Ω

f v dx . (1.1)

From this formulation one is immediately led to various interpretations of (Pε)
as Tikhonov regularization or Yosida approximation or penalization method
for the limit problem (P0) , see the above references for applications of such
interpretations.

Our aim is to construct an asymptotic expansion of uε in powers of ε and
to deduce optimal error estimates. The main obstruction to the construction
of a singular perturbation series of the form uε � u0 + εu1 + ε2u2 + · · · , each
term un being solution of problem (P0) with f = 0 and g = −∂nu

n−1 , is
the lack of regularity of the solutions of the mixed problem (P0) .

Our technique is inspired by Nazarov’s paper [11]: it consists in cor-
recting the singular part of the un by a sort of corner layer term. We are
grateful for discussions with V. Maz’ya and S. Nazarov on this technique.
In our problem, these corner layer terms are not exponentially decreasing as in
the problems studied by Nazarov [9, 10] and Kellogg [6], where the limit
operator as ε → 0 has an order strictly lower than the operator for ε > 0 .

In our situation, the boundary layer of thickness ε is situated near the two
points c1 and c2 . Our method differs from the general strategy of “matching
asymptotic expansions”, explained by Il’in [5]. Roughly speaking, matching
asymptotic expansions consists in constructing two expansions:
- an outer expansion in variables x far from the boundary layer,
- an inner expansion in variables x/ε in the boundary layer,
and to determine the degrees of freedom in both expansions so that they co-
incide in an intermediate region. In contrast, we construct alternatively outer
and inner terms in order to avoid a strongly singular behavior at the boundary
layer of both the inner and outer terms (characteristic feature of a “bisingular
problem”). As a result, we obtain for uε a composite expansion with all terms
at least in H1(Ω) and optimal estimates for the remainders, see Theorem 7.1.
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In a neighborhood of the point ci = 0 , one of the forms of this expansion
reads:

uε ∼
∑
n∈N

εnun[log ε](x) +
∑
n∈N

εn+1/2wn[log ε](
x

ε
), (1.2)

the notation [log ε] indicates a polynomial behavior in log ε . The exponents
n + 1/2 come from the singular functions of the limit problem (P0) . The
singular behavior near 0 of uε comes from the boundary layer terms wn

only, see Theorem 8.6. An expansion as x → 0 of the terms un added to the
terms wn yields the complete inner expansion of uε whereas an expansion as
x → +∞ of the terms wn added to the terms un yields the complete outer
expansion of uε : this outer expansion necessarily contains powers of log ε ,
too (see §9 the expression of the first logarithmic term in ε log ε ).

We conclude this introduction by an explanation about this apparent para-
dox of change in the nature of singularities when ε → 0 . In suitable po-
lar coordinates, the most singular part of u0 has the form c1(u0) S1 where
S1 = r1/2 sin θ/2 and c1 is a coefficient; the remaining part of u0 is denoted
u0,reg and belongs nearly to H5/2 . The most singular part of uε has the form
γ1(uε) Σ1 where Σ1 = 1

π
r((θ − π) sin θ − log r cos θ) and γ1 is a coefficient.

The outcome of our constructions is an asymptotic expansion beginning as, cf
(6.3)-(6.4):

uε = u0 +
√

ε c1(u0) Y 1(
r

ε
, θ) + O (ε log ε) (1.3a)

= u0,reg +
√

ε c1(u0) K1(
r

ε
, θ) + O (ε log ε) (1.3b)

where Y 1 = K1 − S1 and the “profile” K1 is the only solution of the Robin-
Neumann problem with ε = 1 on a half-space, behaving like S1 at infinity and
belonging to H1 in the neighborhood of 0 , seeTheorem 5.4. The boundary
layer Y 1 decays like r−1/2 log r at infinity. The expansion (1.3a) is convenient
to prove optimal estimates for uε − u0 , for example we find

√
ε in the H1 -

norm, cf Proposition 6.3, whereas the expansion (1.3b) yields a decomposition
of uε in regular and singular parts relying on the decomposition of the profile
K1 itself in the neighborhood of 0 . The most singular part of K1 being
γ1(K1) Σ1 , we obtain that

γ1(uε) =
1√
ε

c1(u0) γ1(K1) + O
(√

ε log ε
)
. (1.4)

Indeed the behavior at infinity of K1 like S1 and its singular part in 0 like
Σ1 builds the link between the different behaviors of the solutions of problems
(Pε) and (P0) . In this sense, we can say that S1 is “nearly present” in K1 .

It is somewhat instructive to compare this transformation in the nature of
singularities with the regular perturbation occurring in the problem where we
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replace the Robin condition of problem (Pε) by ε r ∂nuε + uε : in this case
the singular functions associated with this new problem depend analytically
on ε → 0 : the first exponent admits the expansion λ(ε) = 1

2
+ 1

2π
ε + 1

2π2 ε2 +
O(ε3) .

2 ASYMPTOTIC EXPANSION FOR A PROBLEM WITHOUT
SINGULARITIES

In this section we consider the non-mixed problem with ΓN = ∅{
∆uε = 0 in Ω

ε∂nuε + uε = g on Γ.
(2.1)

We shall see that it is rather easy to construct the complete asymptotic ex-
pansion of uε as ε → 0 in this case: there are no boundary layer or corner
layer terms, so the expansion will have the form

uε = u0 + εu1 + · · · + εNuN + rN
ε . (2.2)

By localization, this expansion will also describe the behavior of the solution
uε of our original mixed problem (Pε) away from the singular points, i. e. in
the interior of Ω and near interior points of the boundary part ΓR .

An analysis and applications of such a non-mixed singularly perturbed
Robin problem have been described by Kirsch [7] for the case of the Helmholtz
equation.

The standard construction of the functions un , n ≥ 0 , uses the formal
series uε =

∑
n εnun which is inserted into the boundary value problem (2.1).

Comparison of coefficients of εn gives the sequence of Dirichlet problems{
∆u0 = 0 in Ω

u0 = g on Γ
;

{
∆un = 0 in Ω

un = −∂nu
n−1 on Γ

(n = 1, 2, . . .) .

(2.3)

If this sequence of Dirichlet problems is satisfied for n = 0, . . . , N , then
the remainder rN

ε satisfies the boundary value problem{
∆rN

ε = 0 in Ω

ε∂nr
N
ε + rN

ε = −εN+1∂nu
N on Γ.

(2.4)

This is the same problem as the problem satisfied by uε , only with a different
right hand side. Therefore all estimates for the remainders rN

ε for any N ≥ 0
are direct consequences of the basic estimates for uε (“ N = −1 ”).
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The right hand side in (2.4) is obtained from g by repeated application
of the Dirichlet-to-Neumann map (or Poincaré-Steklov operator)

T : u
∣∣∣
Γ
�→ ∂nu

∣∣∣
Γ
, where u satisfies ∆u = 0 in Ω . (2.5)

Namely, by (2.3) we have

un
∣∣∣
Γ

= (−T )ng . (2.6)

Now from the well-known properties of the operator T one can deduce all the
relevant estimates. In fact, one can consider the whole problem treated in this
paragraph as a variation on the theme that

(εT + I)−1 =
∑
n

(−εT )n

in the sense of asymptotic series. The fact that this is a singular perturbation
problem and not a regular one corresponds to the fact that εT + I is a pseu-
dodifferential operator of order one for ε > 0 and of order zero for ε = 0 .

The following lemma contains the basic estimate for the problem (2.1).
We use here the standard notation for the Sobolev spaces on Ω and on Γ .

Lemma 2.1 Let uε , ε > 0 , be the solution of the Robin problem(2.1). For any
s ∈ R there exists a constantC independent ofε such that

‖uε‖H1+s(Ω)
≤ C ‖g‖

H
1
2+s(Γ)

. (2.7)

Proof. We first estimate the trace uε

∣∣∣
Γ

and then we conclude by using the

regularity of the Dirichlet problem. We have

uε

∣∣∣
Γ

= (εT + I)−1g .

Now if g ∈ H
1
2 (Γ) , we have the variational formulation of the Robin prob-

lem (2.1), ∫
Ω

∇uε · ∇v dx +
1

ε

∫
Γ

uεv ds =
1

ε

∫
Γ

gv ds

for any v ∈ H1(Ω) . In particular, for v = uε and ε ≥ 0 we find

‖uε

∣∣∣
Γ
‖2

L2(Γ)
≤

〈
(εT + I)uε

∣∣∣
Γ
, uε

∣∣∣
Γ

〉
.

This shows that εT + I is a positive definite operator in L2(Γ) and that the
operator norm of (εT + I)−1 in L2(Γ) is bounded uniformly with respect to
ε > 0 . Now the operator T +I is a positive definite elliptic pseudodifferential
operator of order one, and we can use its fractional powers, which commute
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with εT + I , to transfer this uniform boundedness to Sobolev spaces of any
order on Γ . (Note that we cannot use powers of T directly, because T is
only semidefinite: it maps constants to zero.) Thus we have an estimate

‖uε

∣∣∣
Γ
‖

H
1
2+s(Γ)

≤ C ‖g‖
H

1
2+s(Γ)

for any s ∈ R with C independent of ε > 0 . If we combine this with the
estimate for the Dirichlet problem

‖uε‖H1+s(Ω)
≤ C ‖uε

∣∣∣
Γ
‖

H
1
2+s(Γ)

we arrive at (2.7).

Corollary 2.2 For any s ∈ R there exists a constantC independent ofε ∈ (0, 1]
such that

‖uε‖H1+s(Ω)
≤ C ε−1‖g‖

H− 1
2+s(Γ)

. (2.8)

Proof. We rewrite the Robin problem (2.1) as follows{
∆uε = 0 in Ω

∂nuε + uε = ε−1(g − (1 − ε)uε) on Γ.

This gives an estimate

‖uε‖H1+s(Ω)
≤ C ε−1‖g − (1 − ε)uε‖

H− 1
2+s(Γ)

≤ C ε−1‖g‖
H− 1

2+s(Γ)
.

In the last inequality we used the result of Lemma 2.1.

By interpolation, we obtain also estimates for any

s ∈ R, s − 1 ≤ t ≤ s ,

‖uε‖H1+s(Ω)
≤ C εt−s‖g‖

H
1
2+t(Γ)

(2.9)

Theorem 2.3 Let N ∈ N , s, t ∈ R with s ≤ t ≤ s+1 . For g ∈ H
1
2
+t+N(Γ) and

0 < ε ≤ 1 , let uε be the solution of the Robin problem(2.1). For n = 0, . . . , N
let un be constructed according to the sequence of Dirichlet problems(2.3). Then
uε admits the asymptotic expansion(2.2), where the remainderrN

ε satisfies the
estimate

‖rN
ε ‖

H1+s(Ω)
≤ C εN+t−s‖g‖

H
1
2+t+N (Γ)

. (2.10)

Here the constantC does not depend onε and g .

Proof. It suffices to apply the previous estimates (2.9) of uε to the prob-
lem (2.4) satisfied by rN

ε and to note that

‖∂nu
n‖

H− 1
2+t(Γ)

= ‖T n+1g‖
H− 1

2+t(Γ)
≤ C ‖g‖

H
1
2+t+N (Γ)

.
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3 REGULARITYANDSINGULARITIESOF THE MIXEDPROBLEM (P0)

We return to our initial problem, where the two boundary parts ΓR and ΓN

are non-empty and have at least two common points c1 and c2 . From Kon-
drat’ev’s work [8], we know that the solutions of problem (P0) has singular
solutions which behave like powers j − 1

2
of the distance ri to ci . The first

consequence is the limited regularity in the scale of the Sobolev spaces Hs , cf
Eskin [4], Dauge [3]:

Theorem 3.1 For all s ∈ (−1
2
, 1

2
) , for all g ∈ H

1
2
+s(ΓR) , problem (P0) with

f = 0 has a unique solutionu in the spaceH1+s(Ω) , and the following estimate
holds

‖u‖
H1+s(Ω)

≤ C ‖g‖
H

1
2+s(ΓR)

. (3.1)

As a complement of information, let us recall that for s = −+ 1
2
, problem

(P0) is not of closed range, whereas for s < −1
2

solutions are not unique and
for s > 1

2
solutions in H1+s(Ω) do not always exist.

More precisely, for i = 1, 2 , let (ri, θi) denote the polar coordinates
centered at ci and oriented such that, in a neighborhood of ci , the domain
Ω coincides with the set ri > 0 , θi ∈ (0, π) , and ΓR coincides with the set
ri > 0 , θi = 0 .

A basis of the singular functions of the mixed Dirichlet-Neumann problem
is given by

Sj(r, θ) = rj− 1
2 sin(j − 1

2
)θ, (3.2)

for j = 1, 2, . . . , and the localized singular functions of our problem can be
written as

Sj
i = χ(ri) Sj(ri, θi), (3.3)

where χ is a smooth cut-off function which is equal to 1 in a neighborhood
of 0 .

Theorem 3.2 Let M ≥ 1 be an integer. For alls ∈ (−1
2
, 1

2
) , for all g ∈

H
1
2
+s+M(ΓR) the unique solutionu ∈ H1(Ω) of problem(P0) with f = 0 admits

the splitting

u = ureg(M) +
2∑

i=1

M∑
j=1

cj
i (u) Sj

i (3.4)
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where ureg(M) belongs toH1+s+M(Ω) and the cj
i (u) are coefficients; moreover

we have the estimate

‖ureg(M)‖H1+s+M (Ω)
+

2∑
i=1

M∑
j=1

|cj
i (u)| ≤ C ‖g‖

H
1
2+s+M (ΓR)

. (3.5)

As we have seen in the previous section, the terms un of the formal asymp-
totic expansion of the solution uε of problem (Pε) would be the solution of
problem (P0) with f = 0 and g = −∂nu

n−1 . Thus we also have to con-
sider the expansion of solutions with singulardata, e.g. solutions of the mixed
Dirichlet-Neumann problem with right-hand side f = 0 and g = −∂nS

j .

The precise formulation of this problem requires the definition of the mixed
problem on the half-space (which is the “model” domain in the neighborhood
of the boundary points of Ω ). Let

Π = {(x, y) ∈ R
2 | y > 0}

be the half-space. R+ and R− are the two parts of its boundary. The relevant
mixed problem is 

∆u = 0 in Π
∂nu = 0 on R−

u = g on R+.
(3.6)

As well-known in the theory of corner problems, the spaces in which such a
problem with singular right-hand side can be solved are generated by functions
of the form rλ logq r ψq(θ) . In our particular situation, we only use those
corresponding to λ = j − 1/2 :

S
j =

{
u = rj− 1

2

Q∑
q=0

logq r ψq(θ) | ψq ∈ C∞([0, π])
}

(3.7)

We have:

Lemma 3.3 Let j be an integer. We setSj(0) = Sj defined in(3.2). For each
integer ( ≥ 1 , there exists a solutionSj(�) ∈ S j−� to problem(3.6) with datum
g = −∂nS

j(�−1) .

The proof of this lemma is classical and is already essentially contained in
[8], see also [3]. The degree in log r increases by one at each step because of
a resonance (this fact is particular for the angle π , and disappears if one has,
instead of Π , a cone of opening ω such that π/ω is not rational).

The above sequences Sj(1), Sj(2), . . . , generated by Sj are not unique since
Sj(�) is defined up to the addition of any c Sj−� .
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Definition 3.4 For any integers j and ( ≥ 1 , we define the “associated” sin-
gular functions Sj,� as a particular solution of the system{

Sj,0 = Sj

Sj,� ∈ S j−� solution of problem (3.6) with datum g = −∂nS
j,�−1.

Then for any sequence Sj(1), Sj(2), . . . as in Lemma 3.3, there exist coeffi-
cients c(p) such that

Sj(1) = Sj,1 + c(1) Sj−1

Sj(2) = Sj,2 + c(1) Sj−1,1 + c(2) Sj−2

. . .
(3.8)

Using the complex form of the coordinates ζ = r eiθ , we can prove that

Sj,� = Re
(
(−ζ)j−�− 1

2 P j,�[log(−ζ)]
)
, (3.9)

where P j,� is a polynomial of degree ( with real coefficients that can be
determined recursively from the coefficients of P j,�−1 .

We can choose the following formula for the first associated function Sj+1,1 :

Sj+1,1(r, θ) =
1

π
(j + 1

2
) rj− 1

2

(
(π − θ) cos(j − 1

2
)θ − log r sin(j − 1

2
)θ

)
. (3.10)

Returning to the mixed problem (P0) on Ω , we define Sj,�
i like in (3.3)

by
Sj,�

i = χ(ri) Sj,�(ri, θi).

For any 1 ≤ ( < k , we obtain the following splitting (3.11) for the solution u
with data f = 0 and g = −∑

i Ci ∂nS
k,�−1
i : for any M ≥ k − (

u = ureg(M) +
2∑

i=1

(
Ci S

k,�
i +

M∑
j=1

cj
i (u) Sj

i

)
. (3.11)

Remark 3.5 The splitting (3.11) holds for instance with g = −∂nS
2
i , whereas

with g = −∂nS
1
i which does not belong to L2(ΓR) , problem (P0) is not well-

posed: the uniqueness of solution is lost.
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4 BASIC ESTIMATES

Let us recall that uε is the solution of problem (Pε) for a small ε > 0 and u0

is the solution of problem (P0) with the same data. Let rε be the remainder

rε = uε − u0.

Our aim is to obtain estimates for uε and rε . For simplicity, we assume
(without restriction) that f = 0 . The arguments that we present now are
essentially contained in [1], but we write them in a more systematic way and
improve slightly the results of [1].

Reducing the problem to the boundary, we want to estimate in Sobolev
norms the traces γuε and γrε of uε and rε on the part ΓR of the boundary.
It is now important to give a precise definition for the Sobolev spaces on ΓR .
For any s ∈ R , the space Hs(Γ) on the whole boundary of Ω is obviously
defined like the Hs space on the unit circle T . The space Hs(ΓR) is the
space of the restrictions to ΓR of the distributions belonging to Hs(Γ) . And
we also need the space H̃s(ΓR) which is the dual space of H−s(ΓR) . Then we
set

Hs(ΓR) =

{
Hs(ΓR) if s ≥ 0,

H̃s(ΓR) if s ≤ 0.
(4.1)

The scale of the spaces Hs is an interpolation scale: for any θ ∈ [0, 1][
Hs,Ht

]
θ

= H(1−θ)s+θt.

We start from the variational formulation (1.1) of problem (Pε) and obtain

|uε|2H1(Ω)
+

1

ε
‖γuε‖2

L2(ΓR)
=

1

ε

〈
g, γuε

〉
, (4.2)

where |v|
H1(Ω)

= ‖∇v‖
L2(Ω)2

is the H1 -seminorm. As a first consequence, we

obtain that
1

ε
‖γuε‖2

L2(ΓR)
≤ 1

ε
‖g‖

L2(ΓR)
‖γuε‖L2(ΓR)

.

Whence
‖γuε‖L2(ΓR)

≤ ‖g‖
L2(ΓR)

. (4.3)

We can also start from the inequalities〈
g, γuε

〉
≤ ‖g‖H−1/2(ΓR)

‖γuε‖H1/2(ΓR)

and for 0 < ε bounded

|uε|2H1(Ω)
+

1

ε
‖γuε‖2

L2(ΓR)
≥ c ‖uε‖2

H1(Ω)
≥ c′ ‖γuε‖2

H1/2(ΓR)
.
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Whence from (4.2):

‖γuε‖H1/2(ΓR)
≤ C ε−1‖g‖H−1/2(ΓR)

. (4.4)

In order to write the reduction to the boundary, we introduce the Dirichlet-
to-Neumann operator T of the Dirichlet-Neumann mixed problem (P0) : for
g ∈ H1/2(ΓR) , Tg is the Neumann trace on ΓR γ∂nu0 in H−1/2(ΓR) of the
solution u0 . As a consequence of Theorem 3.1:

T : Hs(ΓR) −→ Hs−1(ΓR) is continuous ∀s ∈ (0, 1). (4.5)

As uε is the solution of problem (P0) with Dirichlet datum γuε , we
obviously have

(εT + I)(γuε) = g,

whence the invertibility of εT + I and

γuε = (εT + I)−1g. (4.6)

Since the trace of rε on ΓR is equal to γuε − g , we obtain

γrε =
(
(εT + I)−1 − I

)
g. (4.7)

Thus we have to study the continuity properties of the operators (εT +I)−1

and (εT + I)−1 − I . Note that we cannot use the perturbation series for
(εT + I)−1 as in §2, since powers T n , with n ≥ 2 are not well-defined, see
(4.5). The beginning of the perturbation series (“ N = 0 ”) appears in formulas
(4.8) and (4.10) below.

From (4.3) and (4.4), we obtain that the norm of (εT + I)−1 from Ht(ΓR)
into Hs(ΓR) is O (εt−s) for the two pairs (s, t) equal to (0, 0) and (1

2
,−1

2
) .

Then the following definitions are natural.

Let U be the set of pairs (s, t) such that the following estimate holds

‖γuε‖Hs(ΓR)
≤ C εt−s ‖g‖Ht(ΓR)

for any g ∈ Hs(ΓR) and let R be the set of pairs (s, t) such that the following
estimate holds

‖γrε‖Hs(ΓR)
≤ C εt−s ‖g‖Ht(ΓR)

for any g ∈ Hs(ΓR) . We already know that (0, 0) and (1
2
,−1

2
) belong to U .

In order to extend the knowledge of these sets U and R we use that, with
the help of a standard interpolation argument, they are convex sets of R

2 ,
and we rely on the two following lemmas.

12



Lemma 4.1 For all s ∈ (0, 1) and for all t ≤ s ,

(s, t) ∈ U ⇐⇒ (s − 1, t) ∈ R.

Proof. We start from the formula

(εT + I)−1 − I = −εT (εT + I)−1. (4.8)

The direction ⇒ is then a direct consequence of the assumption and of the
continuity property (4.5).

For the direction ⇐ , we cannot simply invert T in the above formula (4.8)
( T is not invertible), but we can use the inverse of T + I :

1

ε
(T + I)−1

(
(1 − ε)(εT + I)−1 − I

)
= −(εT + I)−1. (4.9)

If t ≤ s the identity is continuous from Ht(ΓR) into Hs(ΓR) . Thus, if (s, t)
belongs to R , the operator ((1 − ε)(εT + I)−1 − I) has the same properties
of continuity as (εT + I)−1 − I . The above formula (4.9) and the continuity
of (T + I)−1 from Hs−1(ΓR) into Hs(ΓR) ends the proof.

Lemma 4.2 For all t ∈ (−1, 0) and for all t ≤ s ,

(s, t) ∈ U ⇐⇒ (s, t + 1) ∈ R.

The proof is very similar to the previous one: instead of (4.8), we use

(εT + I)−1 − I = −ε(εT + I)−1T (4.10)

and instead of (4.9)

1

ε

(
(1 − ε)(εT + I)−1 − I

)
(T + I)−1 = −(εT + I)−1. (4.11)

Theorem 4.3 The setU satisfies

{(s, t) ∈ (−1, 1) × (−1, 1) | s − 1 ≤ t ≤ s} ⊂ U (4.12)

and the setR satisfies

{(s, t) ∈ (−1, 1) × (−1, 1) | s ≤ t ≤ s + 1} ⊂ R. (4.13)

13



s

t

s

t

U R

The proof uses the fact that (0, 0) and (1
2
,−1

2
) belong to U , thus the

segment linking these points is contained in U . Then we transport this set
into R by lemmas 4.1 and 4.2 and take the convex hull of the set thus
obtained. Then we return to U , next to R . We end by transporting the
diagonal of R into U .

Combining the above results with Theorem 3.1, we obtain

Corollary 4.4 For the solutionuε of problem(Pε) with f = 0 and the remainder
rε = uε − u0 , where u0 is the solution of problem(P0) , the following estimates
hold

∀s ∈
(
−1

2
, 1

2

)
, s − 1 ≤ t ≤ s : ‖uε‖H1+s(Ω)

≤ C εt−s ‖g‖H 1
2+t(ΓR)

(4.14)

∀s ∈
(
−1

2
, 1

2

)
, s ≤ t < 1

2
: ‖rε‖H1+s(Ω)

≤ C εt−s ‖g‖
H

1
2+t(ΓR)

. (4.15)

Remark 4.5 If f is any function in L2(Ω) , the above estimates still hold

with the part ‖g‖
H

1
2+t(ΓR)

in the right hand sides replaced by
(
‖f‖

L2(Ω)
+

‖g‖
H

1
2+t(ΓR)

)
. This can easily be proved by subtracting from uε the solution

of a Neumann problem on Ω with data f in Ω and a smooth function ϕ
with support inside ΓR on Γ .

5 THE MODEL PROBLEM (P1) . SINGULARITIES AT INFINITY

To go further in the construction of the asymptotic expansion of uε , the
first idea is to solve the mixed Dirichlet-Neumann problem (P0) with f = 0
and g = −∂nu0 . But, in general, the coefficients c1

i (u0) of the first singular
functions S1

i are not zero. Thus this mixed problem is not well-posed.

The idea is to solve directly the problem (Pε) for these singular parts in
a model situation, i.e. on the half-plane Π : using the homogeneity of such a

14



geometry, all problems (Pε) are equivalent by the change of variables r �→ r/ε
to the problem (P1) with ε = 1 :

(P1)


∆u = f in Π
∂nu = 0 on R−

∂nu + u = g on R+,

with f = 0 and g = −∂nS
j . We expect the solutions to define “corner layer

terms” with structure w( r
ε
, θ) .

As will be seen below, the solution of this problem is closely linked with
the solutions of the homogeneous problem (P1) (with f = 0 and g = 0 ):

∆K = 0 in Π
∂nK = 0 on R−

∂nK + K = 0 on R+.
(5.1)

Roughly speaking, to each Sj corresponds a solution Kj of the homogeneous
problem (5.1) which behaves like Sj at infinity (when r → +∞ ) and Kj−Sj

solves problem (P1) with f = 0 and g = −∂nS
j .

Theorem 5.1 For any integerj ≥ 0 , let K j be the space of solutions of problem
(5.1) which areO

(
rj−1/2

)
as r → +∞ and H1 on any bounded subdomain of

Π . Then
∀j ≥ 1, dimK j = j,

and for all K ∈ K j , there exists a constantc(K) such that

K = c(K) Sj + O

(
rj−1/2

)
.

An essential argument for the proof is the existence of a variational space
V on Π where problem (P1) is uniquely solvable. Let V be the space

V =
{
u | ∇u ∈ L2(Π)2 ; u

∣∣∣
R+

∈ L2(R+)
}
, (5.2)

endowed with the norm ‖u‖2

V
=

∫
Π
|∇u|2 +

∫
R+

|u|2 . With the help of the
Lax-Milgram theorem, we obtain immediately:

Lemma 5.2 For any f in the dual spaceH1(Π)∗ of H1(Π) and anyg ∈ L2(R+) ,
the problem(P1) on Π whose variational formulation reads

∀v ∈ V,

∫
Π

∇u · ∇v +

∫
R+

(u − g) v = −
∫

Π

f v,

has a unique solutionu ∈ V .
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Another key argument is the asymptotic expansion of any element K of
K

j at infinity (when r → +∞ ). By Mellin transformation, we obtain:

Lemma 5.3 Let K ∈ K j . For any P ∈ N , we can expandK as a sum

K =
P∑

p=0

K(p) + O

(
rj−P−1/2

)
, K(p) ∈ S j−p, (5.3)

where the spaceS j is defined in(3.7) and K(p) is solution of the mixed problem
(3.6) on Π with datumg = −∂nK

(p−1) ; for p = 0 , K(0) is solution of the totally
homogeneous problem(3.6).

Proof of Theorem 5.1. Let χ be a smooth cut-off function equal to 1
in a neighborhood of 0 and 0 in a neighborhood of +∞ . We remark that
(1 − χ)S0 belongs to V .

Let K ∈ K j . In the expansion (5.3) of K , the term K(0) is a solution in
S

j of the totally homogeneous problem (3.6). Thus it has the form c(0) Sj .

Let K ∈ K 0 . Writing its expansion (5.3) with P = 1 and cutting it by
(1 − χ) , we see that K belongs to V . Thus Lemma 5.2 yields that K = 0 .

For j ≥ 1 , let K ∈ K j . For the expansion (5.3) of K , there exist coefficients
c(�) such that (compare with (3.8))

K(0) = c(0) Sj

K(1) = c(0) Sj,1 + c(1) Sj−1

K(2) = c(0) Sj,2 + c(1) Sj−1,1 + c(2) Sj−2

. . .

Like above, we obtain that

K − (1 − χ)
j−1∑
�=0

c(�)
j−�∑
p=0

Sj−�,p

belongs to V . This proves that dimK j ≤ j . Conversely, we note that for
any k ≥ 1 ∆

(
(1 − χ)

k∑
p=0

Sk,p
)
, (1 − χ)

k∑
p=0

Sk,p
∣∣∣
R+


belongs to H1(Π)∗ × L2(R+) . Lemma 5.2 yields that there exists a unique
v ∈ V such that

v + (1 − χ)
k∑

p=0

Sk,p ∈ K k.

This ends the proof of Theorem 5.1 and proves also the following theorem.
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Theorem 5.4 For any integer j ≥ 1 , there exists a unique elementKj in K
j

satisfying

Kj = Sj + Sj,1 + · · · + Sj,j−1 + O
(
r−1/2 logj r

)
asr → +∞. (5.4)

Remark 5.5 Relying on (5.3), it is possible to push forward the asymptotic
expansion of Kj : we have

Kj = Sj + Sj,1 + · · · + Sj,j−1 + Sj,j + O
(
r−1/2

)
,

where this O
(
r−1/2

)
cannot be replaced by O

(
r−1/2

)
because of the possible

presence of a term c S0 in the asymptotics. Relying on (3.8) and (5.3), we
obtain that there exist (unique) coefficients cj(p) such that for any P ≥ j

Kj =
P∑

�=0

Sj,� +
P−j∑
p=0

cj(p)
P−p∑
�=0

S−p,� + O

(
rj−P−1/2

)
as r → +∞. (5.5)

6 THE FIRST TERMS IN THE EXPANSION. SHARP ESTIMATES

We suppose now that the right hand side is more regular than required for
the basic estimates in Section 4. This allows us to construct further terms in
the expansion of uε and to get eventually remainder terms that behave like
arbitrary high powers of ε as ε → 0 . It will also allow sharp estimates on
the first terms in the expansion. For example, we shall see that the powers of
ε given in Corollary 4.4 are sharp in the sense that there is no O (ε) estimate
for rε in any Sobolev norm on Ω .

The first term after u0 = u0 in the expansion is a correction term w0 to
u0 of corner layer type. The idea is to use the splitting of u0 , solution of
(P0) , into regular and singular parts as in Theorem 3.2, and then to replace
the singular functions Sj by their “near-singular” counterparts Kj that were
constructed in the previous section.

More precisely, in the first step we assume that g ∈ H1+δ for some δ > 0
and f = 0 . We can then apply Theorem 3.2 with M = 1 to u0 :

u0 = u0
reg(1) +

2∑
i=1

c1
i (u

0) S1
i . (6.1)

Recall that the singular function S1
i was defined in (3.3) from the model

function S1 via a cut-off function χ and that it is homogeneous of degree
1/2 . We have for any ε > 0

S1
i = χ(ri) S1(ri, θi) =

√
ε χ(ri) S1(

ri

ε
, θi) . (6.2)
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We define

w0(ε) =
2∑

i=1

c1
i (u

0) χ(ri) (K1 − S1)(
ri

ε
, θi) (6.3)

and
ũ0(ε) = u0 +

√
ε w0(ε)

= u0
reg(1) +

√
ε

2∑
i=1

c1
i (u

0) χ(ri) K1(
ri

ε
, θi) .

(6.4)

If the support of χ is chosen sufficiently small, then ∂n commutes with
the multiplication by χ(ri) , and the function χ(ri) K1( ri

ε
, θi) satisfies the

homogeneous boundary conditions of the problem (Pε) .

The remainder r̃ε = uε − ũ0(ε) satisfies therefore the boundary value
problem 

∆r̃ε = −√
ε ∆w0 in Ω

∂nr̃ε = 0 on ΓN

ε∂nr̃ε + r̃ε = − ε ∂nu
0
reg(1) on ΓR .

(6.5)

Thus the boundary conditions are already in a shape for the application of the
basic estimates with a gain of a power of ε , but due to the cut-off function,
the Laplace equation is now inhomogeneous, and we have to expand its right
hand side into powers of ε . This is done in the following lemma.

Lemma 6.1 For any P ≥ 1 , we have

−
√

ε ∆w0(ε) =
P∑

p=1

εp f 0p[log ε] + f 0(P )(ε) . (6.6)

Here f 0p[log ε] are polynomials of degreep in log ε :

f 0p[log ε] =
p∑

q=0

f 0pq logq ε

with coefficientsf 0pq ∈ C∞(Ω) . The remainder satisfies

‖f 0(P )(ε)‖
L2(Ω)

= O

(
εP

)
asε → 0 . (6.7)

Proof. From the definition (6.3) of w0 we find

∆w0(ε) =
2∑

i=1

c1
i (u

0)
(
2∇χ(ri) · ∇(K1 − S1)( ri

ε
, θi) + ∆χ(ri) (K1 − S1)( ri

ε
, θi)

)
(6.8)

18



Now we use the decomposition of K1 given in Lemma 5.3 and in (5.4), (5.5)
which can obviously be differentiated. Let us first consider a term K(p) ∈
S

1−p . We have
K(p) = r

1
2
−pψ(θ)[log r] ,

hence
K(p)(

r

ε
, θ) = εp− 1

2 f (p)(r, θ)[log ε] , (6.9)

where the coefficients of the polynomial f (p)(r, θ)[log ε] in log ε are C∞ for
r �= 0 . The same form (6.9) with the same power of ε holds for the gradient

∇
(
K(p)( r

ε
, θ)

)
. In (6.8) only derivatives of the cut-off function χ appear

which vanish in a neighborhood of the singularities at ri = 0 . Therefore these
terms have the form εpf 0p[log ε] as stated in the lemma. Note that in K1−S1

only terms K(p) with p ≥ 1 appear.

It remains to prove the norm estimate (6.7).

Assume that the support of ∇χ is contained in the annulus {r ∈ (a, b)} for
some 0 < a < b . Then for a function of the form

f(ε) = ∆χ(ri)F (
ri

ε
, θi)

with
F (r, θ) = O

(
r

1
2
−P

)
as r → ∞ ,

we have

‖f(ε)‖2

L2(Ω)
≤ O (1) ·

∫ b

a

∣∣∣∣rε
∣∣∣∣1−2P

r dr = O

(
ε2P−1

)
.

The same estimate is obtained for a term

∇χ(ri) · ∇F (
ri

ε
, θi) .

Together with the factor
√

ε we obtain (6.7).

We now use this expansion for P = 1 in order to define

f 1[log ε] = f 01[log ε] = f 010 + f 011 log ε. (6.10)

With this right hand side, we can now define the term u1 in our expansion
of uε as solution of the mixed boundary value problem (P0)

∆u1[log ε] = f 1[log ε] in Ω

∂nu
1[log ε] = 0 on ΓN

u1[log ε] = − ∂nu
0
reg(1) on ΓR .

(6.11)

19



This notation of polynomials in log ε which we shall use now systematically
means here that we have

u1[log ε] = u10 + u11 log ε ,

where u10 and u11 are solutions of the following two mixed problems inde-
pendent of ε : 

∆u10 = f 010 in Ω

∂nu
10 = 0 on ΓN

u10 = − ∂nu
0
reg(1) on ΓR

(6.12)

and 
∆u11 = f 011 in Ω

∂nu
11 = 0 on ΓN

u11 = 0 on ΓR .

(6.13)

We can now define the expansion up to O (ε) .

Theorem 6.2 For the solutionuε of (Pε) , with f ∈ H1(Ω) and g ∈ H1+δ(ΓR)
for someδ > 0 , we have an expansion

uε = u0 + ε u1[log ε] +
√

ε w0(ε) + r1
ε , (6.14)

where r1
ε satisfies estimates ∀s ∈

(
−1

2
, 1

2

)
, s ≤ t < 1

2
:

‖r1
ε‖H1+s(Ω)

≤ C ε1+t−s| log ε|
(
‖f‖

H1(Ω)
+ ‖g‖

H
3
2+t(ΓR)

)
. (6.15)

Proof. We consider the boundary value problem satisfied by r1
ε :

∆r1
ε = f 0(1)(ε) in Ω

∂nr
1
ε = 0 on ΓN

(ε∂n + 1) r1
ε = − ε2∂nu

1[log ε] on ΓR .

(6.16)

We compare this with the problem satisfied by uε and use the basic estimate
(4.14) and Remark 4.5. Replacing there t by t − 1 , we obtain for s and t
as in the theorem

‖r1
ε‖H1+s(Ω)

≤ C
(
‖f 0(1)(ε)‖

L2(Ω)
+ εt−1−s‖ε2∂nu

1[log ε]‖H− 1
2+t(ΓR)

)
(6.17)

The right hand side f 0(1)(ε) has, according to Lemma 6.1 with P = 1 , an L2

norm of order O (ε) . If we use the lemma with P = 2 , we even find that it

is O
(
ε2 log2 ε

)
. Its dependence on f and g is via the constants c1

i (u
0) , see
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the definition (6.3) of w0 . Therefore this contribution to r1
ε allows estimates

as in (6.15) with any power of ε less than 2.

For the last term in (6.17) we find

‖∂nu
1[log ε]‖H− 1

2+t(ΓR)
≤ C

(
‖f 1[log ε]‖

L2(Ω)
+ ‖∂nu

0
reg(1)‖H 1

2+t(ΓR)

)
≤ C | log ε|

(
‖f‖

H1(Ω)
+ ‖g‖

H
3
2+t(ΓR)

) (6.18)

Here we used the regularity estimate (3.5) of Theorem 3.2 for the problem
(P0) .

With the help of the expansion (6.14), we can now prove sharp estimates
for some of the limit cases in Section 4, in particular in (4.13) and (4.15). It
suffices to compute explicit norms of the terms εu1[log ε] and

√
ε w0(ε) , but

we have to pay attention to possible cancellations between these terms.

Proposition 6.3 Assume thatf = 0 and g ∈ H1+δ(ΓR) for someδ > 0 . Then
for rε = uε − u0 we have the estimates

‖rε‖L2(Ω)
= O (ε log ε) (6.19)

‖rε‖H1+s(Ω)
= O

(
ε

1
2
−s

)
for s ∈

(
−1

2
, 1

2

)
(6.20)

‖rε

∣∣∣
ΓR

‖
L2(ΓR)

= O

(
ε
√
| log ε|

)
(6.21)

These estimates cannot be improved, in general.

Proof. Recall from (3.10) and (5.5) the expansion as r → ∞

(K1 − S1)(r, θ) =
1

2π
r−1/2

(
(π − θ) cos θ

2
+ log r sin θ

2

)
+ c1(0) r−1/2 sin θ

2
+ O

(
r−3/2 log2 r

)
. (6.22)

This gives (locally near ci , we omit the index i for brevity)

√
ε w0(ε) = c ε log ε χ(r) (1 − χ( r

ε
)) r−1/2 sin θ

2
+ w̃(ε) , (6.23)

where
‖w̃(ε)‖

L2(Ω)
= O (ε) as ε → 0 .

This proves (6.19). In order to show that (6.19) is sharp, we have to show that
the two terms in ε log ε cannot cancel each other. Suppose the contrary,

lim
ε→0

1

ε log ε
‖εu1[log ε] +

√
ε w0(ε)‖

L2(Ω)
= 0 .

Hence
‖χ(r)

(
u11 − c (1 − χ( r

ε
))r−1/2 sin θ

2

)
‖

L2(Ω)
→ 0 .
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This contradicts the H1(Ω) regularity of the solution u11 of the mixed bound-
ary value problem (6.13), unless u11 = w0 = 0 , that is c1

i (u
0) = 0 .

In order to show (6.21), we note that on ΓR we have

u11 = 0 and (K1 − S1)(r, 0) = 1
2
r−1/2 + O

(
r−3/2 log2 r

)
.

Thus there are no terms in ε log ε , and the dominant term in the L2(Ω) norm
comes from

‖√εχ(r)(1 − χ( r
ε
))( r

ε
)−1/2‖2

L2(R+)
= O

(∫ b

aε

∣∣∣√ε( r
ε
)−1/2

∣∣∣2 dr

)
= O (ε2 log ε) .

(6.24)
All other terms are of order ε . This proves (6.21). Once again, the dominant
term can only be absent if c1

i (u
0) = 0 .

If, in (6.24), we take Besov semi-norms with positive index, we find with-
out much difficulty for the Hs(ΓR) norm with s > 0 a behavior O (ε1−s) .
The same power of ε is obtained for Hs(ΓR) norms of terms of the form√

εχ(r)v(r/ε) , where v ∈ Hs(R+) . We obtain

‖rε

∣∣∣
ΓR

‖
Hs(ΓR)

= O
(
ε1−s

)
for any s ∈ (0, 1) . (6.25)

From this we arrive at (6.20) by using the basic regularity of the problem (P0)
for rε .

7 THE COMPLETE CONSTRUCTION

If the data are more regular, we can extend the above construction of the
first terms u0 , w0 and u1 in the asymptotics of the solution uε of problem
(Pε) . In w0 there appears the first corner layer term (K1 − S1)(r/ε) . In the
next terms, we have other corner layer terms corresponding to the remainder
O

(
r−1/2 logj r

)
of the asymptotic expansion at infinity of Kj , cf (5.4). We

introduce the notation

Y j := Kj −
(
Sj + Sj,1 + · · · + Sj,j−1

)
. (7.1)

As already used in the previous section, we denote by [log ε] the polynomial
dependence with respect to log ε , excluding any other dependence in ε .

Here follows our result of complete asymptotic expansion for uε in two
kinds of terms:

1. The “outer expansion” formed by terms un which have the standard
regularity of variational solutions of the limit mixed Dirichlet-Neumann
problem (P0) ,
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2. The “inner expansion” formed by corner layer terms wn whose profiles
decay as O

(
r−1/2

)
only.

Theorem 7.1 Let N ≥ 1 . For the solutionuε of (Pε) , with f ∈ HN(Ω) and
g ∈ HN+δ(ΓR) for someδ > 0 , we have an expansion

uε = u0 + · · · + εNuN [log ε] + ε1/2 w0(ε) + · · · + εN−1/2 wN−1(ε) + rN
ε , (7.2)

where un and wn satisfy the recurrence relations(7.4) below and whererN
ε sat-

isfies estimates ∀s ∈
(
−1

2
, 1

2

)
, s ≤ t < 1

2
:

‖rN
ε ‖

H1+s(Ω)
≤ C εN+t−s| log ε|N

(
‖f‖

HN (Ω)
+ ‖g‖

HN+1
2+t(ΓR)

)
. (7.3)

The outer expansion termsun[log ε] are of degreen in log ε and are the solutions
of the mixed problems:

∆un[log ε] = fn[log ε] in Ω

∂nu
n[log ε] = 0 on ΓN

un[log ε] = − ∂nu
n−1
reg(1)[log ε] on ΓR ,

(7.4a)

for all 1 ≤ n ≤ N (for n = 0 , the last right hand side isg) ; the interior right hand
sides fn[log ε] come from the corner layer terms by equations(7.4c) and (7.4d)
below. The corner layer terms have the expressions, for0 ≤ n ≤ N − 1

wn(ε) =
2∑

i=1

χ(ri)

 n+1∑
j=1

cj
i (u

0, . . . , un+1−j)[log ε] Y j(
ri

ε
, θi)

 , (7.4b)

where the coefficientscj
i (u

0, . . . , un+1−j)[log ε] are linear combinations with coeffi-
cients polynomial inlog ε of the coefficientscn+1

i (u0), cn
i (u1), . . . , cj

i (u
n+1−j) , see

(7.9). The interior right hand sidesfn of (7.4a) are the sum of the contributions
corresponding toεn

fn[log ε] =
n−1∑
�=0

f � n[log ε], for n ≥ 1 (f 0 = f for n = 0) (7.4c)

which are issued from thew� for 0 ≤ ( < n by

−ε�+1/2 ∆w�(ε) =
P∑

n=�+1

εnf �n[log ε] + f �(P )(ε) (7.4d)

for any P ≥ ( + 1 and where the remainder satisfies‖f �(P )(ε)‖
L2(Ω)

= O

(
εP

)
as

ε → 0 .
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Proof. The proof works by induction over N . We recall that the remainder
rN
ε is defined by

rN
ε = uε −

(
N∑

n=0

εnun +
N−1∑
n=0

εn+1/2wn

)
.

To the relations (7.4a)-(7.4d), we add the boundary value problem for rN
ε

∆rN
ε = f (N)(ε) in Ω

∂nr
N
ε = 0 on ΓN

(ε∂n + 1) rN
ε = − εN+1∂nu

N [log ε] on ΓR ,

(7.4e)

where

f (N) =
N−1∑
�=0

f �(N)(ε). (7.5)

For N = 1 , all relations (7.4) are proved in the previous section. We assume
that they hold for N ≥ 1 and we have to prove them for N + 1 .

Since u0, . . . , uN are already determined, we can define wN by formula (7.4b):
we only have to give the precise definition of the coefficients cj

i (u
0, . . . , uN+1−j)

for j = 1, . . . , N + 1 , which will become clear hereafter. Anyway, we can
prove like for Lemma 6.1 that −εN+1/2 ∆wN(ε) has an expansion according
to (7.4d). Let us set, like for N = 1 :

r̃N
ε = uε −

(
N∑

n=0

εnun +
N∑

n=0

εn+1/2wn

)
.

Then
r̃N
ε = rN

ε − εN+1/2wN .

We are going to define the coefficients cj
i (u

0, . . . , uN+1−j) so that there holds
∆r̃N

ε = εN+1fN+1[log ε] + f (N+1)(ε) in Ω

∂nr̃
N
ε = 0 on ΓN

(ε∂n + 1) r̃N
ε = − εN+1∂nu

N
reg(1)[log ε] on ΓR .

(7.6)

We have ∆r̃N
ε = ∆rN

ε − εN+1/2∆wN . Since

−εN+1/2 ∆wN(ε) = εN+1fN N+1[log ε] + fN(N+1)(ε)

the combination with (7.4c) and (7.5) yields the interior equation of (7.6).

Concerning the boundary term on ΓR , we have near each corner ci (we write
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r for ri )

(ε∂n + 1)(−εN+1/2 wN) = εN+3/2
N+1∑
j=1

cj∂nS
j,j−1(

r

ε
). (7.7)

Now, from relations (7.4a) and splittings of the type (3.11) for un with M =
N + 1 − n , n = 0, . . . , N , we obtain that

uN = uN
reg(1) +

N+1∑
j=1

cj
i (u

N+1−j) Sj,j−1. (7.8)

Thus

(ε∂n + 1) r̃N
ε = − εN+1∂nu

N
reg(1)[log ε]

+ εN+1∂n

N+1∑
j=1

(
−cj

i (u
N+1−j) Sj,j−1(r) + cj

√
ε Sj,j−1(

r

ε
)
)

.

Thus, we have (7.6) if we choose the coefficients cj so that the above sum
with respect to j is zero: with the help of the homogeneity relations between
the Sj,j−1 (which are of “degree” 1/2 ) we obtain that there exist polynomials
Pj,k of degree j − k such that there holds

1√
ε

Sj,j−1(εR) =
j∑

k=1

Pj,k[log ε] Sk,k−1(R), ∀ε > 0, R > 0

and we set

cj
i (u

0, . . . , uN+1−j)[log ε] =
N+1∑
�=j

P�,j[log ε] c�
i(u

N+1−�), (7.9)

so that we have

N+1∑
j=1

cj
i (u

N+1−j) Sj,j−1(r) =
N+1∑
j=1

cj
i (u

0, . . . , uN+1−j)
√

ε Sj,j−1(
r

ε
). (7.10)

The proof of (7.6) is now complete.

It is clear that, if we define uN+1 by (7.4a) for n = N +1 , the new remainder
rN+1
ε satisfies (7.4e) with N + 1 instead N . The recurrence is proved. The

estimates for rN
ε are deduced from the boundary value problem that it satisfies,

like for N = 1 .

Like for N = 0 (Proposition 6.3), we can deduce sharp error estimates for
rN
ε , for example, if the data are smooth enough

‖rN
ε ‖

L2(Ω)
= O

(
εN+1 log ε

)
(7.11)
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‖rN
ε ‖

H1+s(Ω)
= O

(
εN+ 1

2
−s

)
for s ∈

(
−1

2
, 1

2

)
(7.12)

(7.13)

8 HIGHER NORM ESTIMATES

The expansion obtained in the previous section can be used to get estimates in
higher order Sobolev norms. For this, however, the terms in the expansion will
have to be rearranged in different ways depending on the desired norm. As
the regularity increases, one encounters two different kinds of thresholds: The
first one is associated with the singularities of the mixed Dirichlet-Neumann
problem (P0) which contain half-integer powers of r . This occurs at half-
integer Sobolev indices. The second one corresponds to the singularities of
the mixed Robin-Neumann problem (Pε) which contain integer powers and
logarithms of r . This occurs at integer Sobolev indices.

Thus in a first step, we consider Sobolev spaces H1+s with s ∈ (1
2
, 1) .

For ε > 0 , uε belongs to this space, whereas u0 and therefore rε = uε − u0

contain the first singular function S1 and have to be decomposed into regular
and singular parts. Here as throughout this whole section, we assume that
the right sides f and g are sufficiently smooth. For simplicity and without
restriction of generality, we assume that f = 0 .

We first extend the basic estimate (4.14) in Corollary 4.4 to this range.

Proposition 8.1

∀s ∈
(
−1

2
, 1

)
, t < 1

2
, s − 1 ≤ t ≤ s : ‖uε‖H1+s(Ω)

≤ C εt−s ‖g‖H 1
2+t(ΓR)

.

(8.1)

Proof. Let s ∈ (1
2
, 1) . We write the Robin boundary condition of (Pε) as

∂nuε = ε−1(g − uε) on ΓR. (8.2)

The regularity of the Neumann problem gives an estimate

‖uε‖H1+s(Ω)
≤ C

(
ε−1‖rε

∣∣∣
ΓR

‖H− 1
2+s(ΓR)

+ ‖uε‖H− 1
2+s(ΓR)

)
.

If we combine this with (4.13):

‖rε

∣∣∣
ΓR

‖H− 1
2+s(ΓR)

≤ C εt−s+1 ‖g‖H 1
2+t(ΓR)

,

we arrive at (8.1).

Let us recall the definition of r̃ε from (6.4) :

r̃ε = uε −
√

ε w0(ε) − u0 = uε −
√

ε
2∑

i=1

c1
i (u

0) χ(ri) K1( ri

ε
, θi) − u0

reg(1) . (8.3)

26



Here u0
reg(1) has H5/2−δ regularity for any δ > 0 , whereas the other terms in

the second decomposition have the regularity of the solutions of (Pε) . Thus
the following estimate can be interpreted as an explanation of how the regular
part u0

reg(1) of u0 is approximated by uε −
√

ε
∑2

i=1 c1
i (u

0) χ(ri) K1( ri

ε
, θi) .

Proposition 8.2

∀s ∈
(

1
2
, 1

)
, s ≤ t < 3

2
: ‖r̃ε‖H1+s(Ω)

≤ C εt−s ‖g‖
H

1
2+t(ΓR)

(8.4)

Proof. From the boundary value problem (6.5) satisfied by r̃ε we see
that r̃ε is composed of a term of order O (ε log ε) , due to Lemma 6.1, and

a solution of (Pε) with g replaced by −ε∂nu
0
reg(1)

∣∣∣
ΓR

. We can therefore use

Proposition 8.1 to obtain

‖r̃ε‖H1+s(Ω)
≤ C ε(t−1)−s ‖ε∂nu

0
reg(1)

∣∣∣
ΓR

‖H− 1
2+t(ΓR)

.

If we combine this with the regularity of the problem (P0) as given in (3.5)
(with M = 1 , s = t − 1 ):

‖∂nu
0
reg(1)

∣∣∣
ΓR

‖H− 1
2+t(ΓR)

≤ C ‖g‖
H

1
2+t(ΓR)

,

we arrive at (8.4)

In order to obtain an approximation with higher powers of ε but still in
the same range of regularity, we use the complete expansion (7.2) and recall
the definition for N ∈ N

r̃N
ε = uε −

N∑
n=0

εn un[log ε] −
√

ε
N∑

n=0

εn wn(ε) . (8.5)

Note that this differs from rN
ε only by the last term εN+ 1

2 wN .

Proposition 8.3

∀s ∈
(

1
2
, 1

)
, s ≤ t < 3

2
: ‖r̃N

ε ‖
H1+s(Ω)

≤ C εN+t−s ‖g‖
H

1
2+t+N (ΓR)

(8.6)

Proof. The boundary value problem (7.6) satisfied by r̃N
ε differs from

the problem (7.4e) satisfied by rN
ε by the right hand sides: In the interior, a

term of order O
(
εN+1 logN+1 ε

)
is added, and on ΓR , ∂nu

n is replaced by
∂nu

n
reg(1) . The proof then proceeds as for Proposition 8.2.

Remark 8.4 The definition of r̃N
ε can be written as

r̃N
ε = uε −

N∑
n=0

εn un
reg(1)[log ε] −

√
ε

N∑
n=0

εn w̃n(ε) , (8.7)
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where now the corner layer terms w̃n(ε) are no longer decaying as (r/ε)−1/2 ,
but growing as (r/ε)1/2 . They give the approximation of the singular parts
un − un

reg(1) . We have the explicit formula, compare (7.10), (7.4b) and (7.1),

w̃n(ε) =
2∑

i=1

χ(ri)

 n+1∑
j=1

cj
i (u

0, . . . , un+1−j)[log ε] Ỹ j(
ri

ε
, θi)

 (8.8)

with

Ỹ j := Kj −
j−2∑
l=0

Sj,l (8.9)

Thus, compared to Y j , one uses one term less in the asymptotic expansion of
Kj at infinity.

The second threshold appears at H2 regularity due to the singularities
of solutions of problem (Pε) . We will have to decompose uε into a regular
and singular part and obtain estimates for the convergence of both. This
decomposition is based on the well-known regularity of the Neumann problem
with discontinuous data (“mixed Neumann-Neumann problem”, so to say).

Lemma 8.5 Let M ≥ 1 , s ∈ (0, 1) and g ∈ H− 1
2
+M+s(ΓR) be given. Let

u ∈ H1(Ω) be solution of the boundary value problem
∆u = 0 in Ω

∂nu = 0 on ΓN

∂nu = g on ΓR .

(8.10)

Then u admits a splitting

u = ureg,Neu(M) +
2∑

i=1

χ(ri)
M∑

j=1

γj
i (u) Σj(ri, θi) , (8.11)

where the singular functions have the form

Σj(r, θ) =
1

π
rj

(
(θ − π) sin(jθ) − log r cos(jθ)

)
. (8.12)

The coefficientsγj
i (u) are local: They depend only on the Taylor expansion ofg at

ci . In particular,
γ1

i (u) = g(ci).

There is an estimate

‖ureg,Neu(M)‖H1+s+M (Ω)
+

2∑
i=1

M∑
j=1

|γj
i (u)| ≤ C

(
‖g‖

H− 1
2+s+M (ΓR)

+ ‖u‖
L2(Ω)

)
.

(8.13)
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If we decompose uε according to this lemma:

uε = (uε)reg,Neu(M) +
2∑

i=1

χ(ri)
M∑

j=1

γj
i (uε) Σj(ri, θi) , (8.14)

our expansion allows us to describe the asymptotics as ε → 0 both for the
regular part (uε)reg,Neu(M) and for the coefficients γj

i (uε) . We shall restrict
ourselves to M = 1 and describe the asymptotics of the leading coefficient
γ1

i (uε) .

Theorem 8.6 Let N ∈ N and g ∈ HN+1+δ(ΓR) for someδ > 0 . Then γ1
i (uε)

has an expansion asε → 0

γ1
i (uε) = ε−

1
2

N∑
n=0

εnγ1,n
i [log ε] + O

(
εN

)
. (8.15)

The coefficientsγ1,n
i [log ε] in this expansion have the explicit expression, compare

(7.4b),

γ1,n
i [log ε] = −wn(ε)(ci) = −

n+1∑
j=1

cj
i (u

0, . . . , un+1−j)[log ε] Kj(0) . (8.16)

In particular, the leading term inγ1
i (uε) is

− ε−
1
2 c1

i (u
0) K1(0) .

Proof. Writing the problem (Pε) once more as Neumann problem as in
(8.2), we obtain

γ1
i (uε) = ∂nuε(ci) = ε−1(g − uε)(ci) .

Now we use the expansion (7.2) of Theorem 7.1 up to N + 1 and note that
u0(ci) = g(ci) , whereas un(ci) = 0 for n ≥ 1 . In fact, un = −∂nu

n−1
reg(1) on

ΓR . This function is continuous on Γ and zero on ΓN , hence its value in ci

is zero. Thus we find the expansion (8.15) with a remainder term estimated
by

|ε−1rN+1
ε (ci)| ≤ C ε−1‖rN+1

ε ‖
H1+δ(Ω)

= ε−1
O

(
εN+1

)
= O

(
εN

)
.

The formula (8.16) is obtained from the definition (7.1), (7.4b) of wn by noting
that Sj,�(0) = 0 there.

Along the lines of these last propositions, the interested reader should now
be able to obtain estimates in Sobolev norms of any desired regularity. For
example, for Hs(Ω) with 2 < s < 5/2 , the object to estimate is (r̃ε)reg,Neu(1) ,
whereas for estimates with 5/2 < s < 3 , new corner layers derived from the
functions Kj and their asymptotics at infinity, similarly to w̃n , but with a
behavior in (r/ε)3/2 , have to be introduced, and functions un

reg(2) instead of
un

reg(1) have to be used.
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9 CONCLUDING REMARKS

When considering the asymptotics (7.2), we can see that the different objects
are not canonical (because of the cut-off functions χ(ri) ). In contrast, the
complete inner and outer expansions, although not valid one the whole domain
Ω , are uniquely determined, whereas some parts of the terms of the composite
expansion can be attached to either of the two scales. In particular, the outer
expansion has the form

∑
n∈N

n∑
p=0

εn logp ε vn,p(x). (9.1)

In particular, v0,0 = u0 and v1,1 is the sum of u11 and the first term of the
asymptotics of

√
ε w0 at infinity, i.e. −∑

i χ(ri) r
−1/2
i sin θi/2 . Considering

equation (6.13) and noting that f 011 = ∆
(∑

i χ(ri) r
−1/2
i sin θi/2

)
, we obtain

the “canonical” expression

v1,1 =
2∑

i=1

c1
i X1

i ; (9.2)

the coefficients c1
i are the coefficients of the first singularities S1

i of u0 , like
in (6.1) and the functions X1

i are the (unique) solutions of the homogeneous

mixed problem (P0) which are equal to χ(ri) r
−1/2
i sin θi/2 modulo H1(Ω)

respectively.

It is also interesting to know how the results of Theorem 7.1 can be ex-
tended to other geometries of the domain Ω .

If Ω is still smooth, but if we relax the hypothesis about the geometry
in the neighborhood of the transition points ci for the boundary conditions,
allowing that the boundary is any regular curve in the neighborhood of these
points, then the asymptotics of uε has a similar form, involving integral powers
of ε and log ε for the outer expansion terms and half-integers n + 1/2 for
the inner expansion terms (with possibly higher degrees in log ε ).

The proof is still more technical. For example, one can use a change of
variables to flatten the boundary in the neighborhood of ci , and one obtains
a new operator L(x, ∂x) = ∆+A , instead of ∆ , with A =

∑
|α|=1 aα∂α a first

order operator with smooth coefficients. The construction of the corner layer
model terms Kj and Y j involves the operator ε−2L(εx, ε−1∂x) on the half
plane Π . The corresponding boundary value problem is a regular perturbation
of problem (P1) introduced at the beginning of section 5.

Another interesting generalization is the case when the domain Ω is polyg-
onal. For a corner situated in the Neumann region ΓN , there is no special effect
due to the singular perturbation.
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If we have a corner at a transition point c , let us suppose that Ω coincides
with a sector Πω of opening ω in the neighborhood of c . Then we can
still construct an asymptotics for uε in a similar way, but taking account of
the following changes (for the sake of simplicity, we assume that π/ω is not
rational):

1. The set of the singular exponents λ of the mixed Dirichlet-Neumann
problem is

Λ = {λ | λ =
kπ

ω
+

π

2ω
, k ∈ Z}

and the singular functions Sλ = rλ sin λθ are associated to functions
Sλ,p which are homogeneous of degree λ− p , like in Lemma 3.3 (if π/ω
is rational, there are some logarithmic terms);

2. The homogeneous solutions Kλ of problem (P1) on Πω can be defined
so that for any λ ∈ Λ , λ > 0 :

Y λ := Kλ −
[λ]∑

p=0

Sλ,p = O
(
rλ−1−[λ]

)

with [λ] the integral part of λ .

3. The regular part of order 1, ureg(1) is obtained by subtracting the singular
parts with exponent ν ∈ (0, 1] .

Then, instead of (7.4b), we obtain in a neighborhood of c , an asymptotics
of the form

uε(x) ∼
∑
n∈N

εnun(x) +
∑
λ∈Λ
λ>0

∑
p∈N

ελ+pcλ,p Y λ(
x

ε
). (9.3)

If we have a corner inside the Robin region ΓN , we have a similar analysis:
the model profiles Kλ are now constructed from the homogeneous Dirichlet
problem on the sector Πω and the exponents λ are those of the Dirichlet
problem kπ/ω .
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