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Abstract. We investigate time harmonic Maxwell equations in heterogeneous media,

where the permeability µ and the permittivity ε are piecewise constant. The associated

boundary value problem can be interpreted as a transmission problem. In a very natural way

the interfaces can have edges and corners. We give a detailed description of the edge and

corner singularities of the electromagnetic fields.

Introduction

Physical objects interacting with electromagnetic waves not only tend to have
corners and edges, but are frequently composed of several materials with different
electric and magnetic properties. The electromagnetic fields then have singularities
not only at the exterior corners and edges, but also at the singular points of the
interfaces between the different materials.

We show how these singularities can be analyzed using the classical Kon-

drat’ev method [13]. In the paper [8], we studied the singularities at corners and
edges of a homogeneous material. Here we continue this investigation of the singu-
larities of solutions of the time-harmonic Maxwell equations by studying the case
of piecewise constant coefficients ε (electric permittivity) and µ (magnetic perme-
ability). For the case of two materials separated by a plane, see also A. Bonnet-

BenDhia, C. Hazard, S. Lohrengel [5].

We try to describe as explicitly as possible the principal parts of all singular
functions of the electric and magnetic fields. We show that all the singular func-
tions can be obtained from those of associated transmission problems for the scalar
Laplace operator. Thus one can benefit from the many results that are available on
this subject, see [10, 16, 15, 19].

In the case of a homogeneous body [8], the singular functions are generated by
those of the Dirichlet and Neumann boundary value problems for the Laplacian. In
our heterogeneous case, we also have to consider two problems for the Laplacian.
They correspond to the equations for the electrostatic and the magnetostatic po-
tentials. The electrostatic problem is an interface problem for the Laplace operator
with exterior Dirichlet boundary conditions and jumps of the normal derivatives at



the interfaces determined by the discontinuities of the coefficient ε (operator ∆Dir
ε ,

see (1.7) and Notation 3.3). For the magnetostatic problem, we have to consider
the operator ∆Neu

µ (see (1.8) and Notation 3.3) with Neumann boundary conditions
and jumps determined by the discontinuities of the coefficient µ .

As in the homogeneous case [8], we find three types of singularities (type 1, 2
and 3). There may be strong singularities that are not even in H1 . We show that
these are of type 1, i.e. gradients of singular functions of the corresponding static
problems.

For the singular functions of type 2, there is a difference to the homogeneous
case: In [8], we obtained an explicit formula (a differential operator, see [8, Lemma
7.5]) that gives the Maxwell singularity in terms of the singularity of the opposite
static potential problem. In our heterogeneous case, the exponent of the singularity
is still equal to an exponent of the opposite static potential problem. For the angular
part of the singular function, however, we find an additional term, see (5.3), that
involves the solution of an inhomogeneous scalar interface problem. Thus the type
2 singularities of the electric fields have the same exponents as the magnetostatic
potentials, but their angular parts contain a term corresponding to an electrostatic
field generated by interface charges depending on the jumps [εµ] of the index of
refraction.

Another important difference to the homogeneous case is that the regularity for
the interface problems can be much lower, even with regular data. Thus, in the
homogeneous case, one has at least H1/2 regularity for Lipschitz domains [6] and
H1 regularity for convex domains [20]. Here, we find only 0 as a limit for the
regularity. Thus for any s > 0 there are examples where the solution is not in
Hs . If there are only two materials the lower limit of regularity is 1

4
for arbitrary

polyhedra and 1
2

for convex domains.

For the two-dimensional case (which governs also the edge singularities in di-
mension 3 ), one has simple formulas in the homogeneous case: They show that
the strongest singularity is of type 1 and that the lower limit of regularity is π

ω
if

ω ∈ (0, 2π) is the largest opening angle. This holds for both the electric and the
magnetic field.

In the heterogeneous case, due to the different behaviors of the coefficients ε and
µ , the electric and magnetic fields will have, in general, different regularities. As
usual their regularity is limited by the leading singularity. If this leading singularity
is of type 1, the regularity is s−1 , with s the regularity of the corresponding static
problem. If not, the leading singularity is of type 2, and the regularity is the same as
the regularity of the opposite static problem. In the two-dimensional homogeneous
case, the second possibility never happens, while in the heterogeneous case, there
are cases where the leading singularity is not of type 1, but of type 2.

Let us give an example. In a typical case of several dielectric materials (three
are sufficient) with strongly varying ε , but constant µ , in a convex polygon with
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largest opening ω , one has H2+γ regularity for the magnetostatic potential, with
γ > 0 any number < π

ω
− 1 . For the electrostatic potential one may have only

H1+δ regularity with any δ > 0 . Thus the type 1 singularity for the magnetic field
has regularity H1+γ , compared to the H1+δ regularity for the type 2 singularity.
It is easy to have δ < γ (take three adjacent sectors of opening π

4
and ε equal to

1 in the exterior sectors and to 100 in the middle sector: then γ = 0.3333 and
δ = 0.1793 ). In such a situation, the electric field has only Hδ regularity (type
1) while the magnetic field has H1+δ regularity. Such a difference of 1 between
these two regularities is the maximum possible. (See also Remark 8.2 for an example
where γ = +∞ and δ is close to 0 .)

In section 1, we recall the regularized variational formulation of Maxwell’s equa-
tions for heterogeneous materials. We define the two associated scalar potential
operators ∆Dir

ε and ∆Neu
µ .

In section 2, we characterize the closure of the subspace of smooth functions in
the natural variational spaces associated with the electric and magnetic fields.

In section 3, we give two different decompositions of the variational spaces. In
the first case, the regular part is in H1 on the whole domain, thus has no jumps
across the interfaces, whereas in the second case, the regular part has jumps in the
components normal to the interfaces. In both cases, the singular parts are gradients.

In section 4, we state the necessary results on scalar interface problems for the
Laplacian. In section 5, the three types of Maxwell corner singularities and in section
6, the edge singularities are studied.

Section 7 gives some conclusions about Hs regularity in general and in several
particular cases. We give in section 8 proofs for the results about minimal edge
regularity for the Laplace interface problems on which the Maxwell regularity results
are based.

We shall use the following geometric and analytic setting: We assume that Ω is
a Lipschitz polyhedron, which means that Ω is a bounded Lipschitz domain with
piecewise plane boundary. We also assume that ε and µ are piecewise constant
> 0 on Ω , determining a partition P of Ω in a finite set of Lipschitz polyhedra
Ω1, . . . ,ΩJ : on each Ωj , ε = εj and µ = µj with εj and µj positive constants.
We denote by Fjk the (open) faces of Ωj . Let Fint be the set of the interior faces
(contained in Ω ) and Fext the set of the exterior faces (contained in ∂Ω ).

In general, we will denote by bold letters the functional spaces for the fields.
Thus Hs(Ω) denotes the usual Sobolev space on Ω and Hs(Ω) denotes Hs(Ω)3 .
We also need for s ≥ 1

2
piecewise Hs functions relative to the partition P

PHs(Ω,P) = {ϕ ∈ L2(Ω) | ϕj ∈ Hs(Ωj), j = 1, . . . , J}.
Here, of course, ϕj denotes the restriction of ϕ to Ωj . For the fields we set

PHs(Ω,P) = PHs(Ω,P)3.
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We will also denote by PH1/2(Fint) the product of the spaces H1/2(F ) for F ∈ Fint

and similarly for Fext . Finally, as usual for Maxwell equations, we need spaces of
fields with square integrable curls:

H(curl ; Ω) = {u ∈ L2(Ω)3 | curlu ∈ L2(Ω)3}, (0.1)

and with square integrable divergences (here ξ = ε or µ )

H(div ; ξ ; Ω) = {u ∈ L2(Ω)3 | div(ξu) ∈ L2(Ω)}. (0.2)

As usual, if ξ ≡ 1 , H(div ; ξ ; Ω) is denoted H(div ; Ω) for short.

1 Maxwell formulations

Classical time harmonic Maxwell equations are given by

curlE − iω µH = 0 and curlH + iω εE = J in Ω. (1.1)

Here E is the electric part and H the magnetic part of the electromagnetic field.
The right hand side J is the current density. The exterior boundary conditions on
∂Ω are those of the perfect conductor (n denotes the unit outer normal on ∂Ω ):

E × n = 0 and H · n = 0 on ∂Ω. (1.2)

The natural variational spaces are XN (Ω, ε) for the electric field and XT (Ω, µ)
for the magnetic field according to

XN(Ω, ε) = {u ∈H(curl ; Ω) ∩H(div ; ε ; Ω) | u× n = 0 on ∂Ω}

and

XT (Ω, µ) = {u ∈H(curl ; Ω) ∩H(div ;µ ; Ω) | u · n = 0 on ∂Ω}.

Any field u belonging to one of these spaces is in H(curl ; Ωj) ∩H(div ; Ωj) for
each j and satisfies additional jump conditions at the interior interfaces F ∈ Fint :

XN(Ω, ε) =
{
u ∈ L2(Ω)3 | curluj ∈ L2(Ωj)

3, divuj ∈ L2(Ωj),

[u× n]F = 0, [εu · n]F = 0, ∀F ∈ Fint

u× n|F = 0, ∀F ∈ Fext

}
(1.3)

and

XT (Ω, µ) =
{
u ∈ L2(Ω)3 | curluj ∈ L2(Ωj)

3, divuj ∈ L2(Ωj),

[u× n]F = 0, [µu · n]F = 0, ∀F ∈ Fint

u ·n|F = 0, ∀F ∈ Fext

}
(1.4)
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where the jump [v × n]
F

is equal to (vj × nj − vj′ × nj)|F if F belongs to ∂Ωj

and to ∂Ωj′ , with vj the restriction of v to Ωj and with nj the exterior unit
normal to ∂Ωj .

We can formulate elliptic variational problems either for E or H . We introduce
the following two formulations:

u ∈XN (Ω, ε), ∀v ∈XN(Ω, ε),
∫

Ω

µ−1 curlu · curlv + div εu div εv − ω2 εu · v =
〈
f ,v

〉
,

(1.5)

where
〈
f ,v

〉
= iω

〈
J ,v

〉
+ 1

iω

〈
divJ , div εv

〉
, and

u ∈XT (Ω, µ), ∀v ∈XT (Ω, µ),
∫

Ω

ε−1 curlu · curlv + div µu divµv − ω2 µu · v =
〈
h,v

〉
,

(1.6)

where
〈
h,v

〉
=
〈
ε−1J , curlv

〉
. If (E,H) solves the Maxwell equations (1.1)-(1.2),

then E is solution of (1.5) and H of (1.6). The converse also holds, see [8], if
ω2 does not belong to the spectrum of the operators −∆Dir

ε and −∆Neu
µ naturally

associated with equations (1.1):

• −∆Dir
ε is defined from

◦

H1(Ω) into its dual H−1(Ω) by

∀Φ, Ψ ∈
◦

H1(Ω), −〈∆Dir
ε Φ,Ψ

〉
=

∫

Ω

ε gradΦ gradΨ ; (1.7)

• −∆Neu
µ is defined from H1(Ω) into its dual by

∀Φ, Ψ ∈ H1(Ω), −〈∆Neu
µ Φ,Ψ

〉
=

∫

Ω

µ gradΦ gradΨ . (1.8)

We end this section by a regularity result for the divergence, see also [8].

Theorem 1.1 If u solves (1.5) with f in L2(Ω)3 , then div εu belongs to
◦

H1(Ω) .
If u solves (1.6) with h in L2(Ω)3 , then div µu belongs to H1(Ω) .

Proof. Let u be solution of (1.5). Taking as test functions v = gradΦ with Φ
in the domain D(∆Dir

ε ) of ∆Dir
ε we obtain

∀Φ ∈ D(∆Dir
ε ),

〈
div εu , ∆Dir

ε Φ + ω2Φ
〉

Ω
=
〈
f , gradΦ

〉
Ω
.

Let q be a solution of the Dirichlet problem (if ω2 is an eigenvalue of −∆Dir
ε the

above equation ensures the solvability of this problem)

∀Ψ ∈
◦

H1(Ω), −
〈
ε grad q , grad Ψ

〉
Ω

+
〈
ω2q ,Ψ

〉
Ω

=
〈
f , gradΨ

〉
Ω
.
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Whence
∀Φ ∈ D(∆Dir

ε ),
〈
q , ∆Dir

ε Φ + ω2Φ
〉

Ω
=
〈
f , gradΦ

〉
Ω
.

Thus div εu− q is orthogonal to the range of ∆Dir
ε + ω2 , therefore is either 0 or

an eigenvector of −∆Dir
ε associated with ω2 . Either way, div εu − q belongs to

◦

H1(Ω) , hence div εu too. The proof for the “magnetic” problem (1.6) is similar.

2 The closure of piecewise-smooth functions in XN (Ω, ε) and

XT (Ω, µ)

It is clear that the bilinear forms associated with problems (1.5) and (1.6) are
coercive on XN(Ω, ε) and XT (Ω, µ) respectively. When ε is smooth, it is proved
in [7] that XN (Ω, ε) ∩H1(Ω) is a closed subspace of XN (Ω, ε) . In our situation,
the corresponding spaces are

HN(Ω, ε) := XN (Ω, ε) ∩ PH1(Ω,P) and HT (Ω, µ) := XT (Ω, µ) ∩ PH1(Ω,P).

From (1.4) and (1.3), we immediately obtain

HN(Ω, ε) =
{
u ∈ L2(Ω)3 | uj ∈H1(Ωj),

[u× n]F = 0, [εu · n]F = 0, ∀F ∈ Fint

u× n|F = 0, ∀F ∈ Fext

}
(2.1)

and

HT (Ω, µ) =
{
u ∈ L2(Ω)3 | uj ∈H1(Ωj),

[u× n]F = 0, [µu · n]F = 0, ∀F ∈ Fint

u ·n|F = 0, ∀F ∈ Fext

}
(2.2)

In this section we are going to prove that not only HN(Ω, ε) is closed in
XN (Ω, ε) , but still HN(Ω, ε) is the closure in XN (Ω, ε) of piecewise-smooth func-
tions. To this aim, let us introduce for any s , 1 ≤ s ≤ ∞ , the spaces Hs

N(Ω, ε)
and Hs

T (Ω, µ) :

Hs
N(Ω, ε) := XN(Ω, ε) ∩ PHs(Ω,P) and Hs

T (Ω, µ) := XT (Ω, µ) ∩ PHs(Ω,P).

Of course their elements are the piecewise-Hs fields satisfying the boundary and
transmission conditions of (2.1) and (2.2).

Our main result in this section is

Theorem 2.1 The closure of H∞
N (Ω, ε) in XN (Ω, ε) is HN (Ω, ε) , and the closure

of H∞
T (Ω, µ) in XT (Ω, µ) is HT (Ω, µ) .
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The proof follows from a succession of lemmas.

Lemma 2.2 Let CN = maxj{ε−1
j , εjµj} and CT = maxj{µ−1

j , εjµj} . Then for
any v ∈H2

N(Ω, ε) there holds

∫

Ω

ε | gradv|2 ≤ CN

∫

Ω

(
µ−1| curlv|2 + | div εv|2

)
, (2.3)

and for any v ∈H2
T (Ω, µ) there holds

∫

Ω

µ | gradv|2 ≤ CT

∫

Ω

(
ε−1| curlv|2 + | divµv|2

)
. (2.4)

Note that the left hand sides of (2.3) and (2.4) are the bilinear forms of the op-
erators ∆Dir

ε and ∆Neu
µ respectively and that their right hand sides are the Maxwell

bilinear forms, cf (1.5) and (1.6).

Proof. For any j and any v ∈ H2(Ωj) two successive integrations by parts
yield:

∫

Ωj

εj | gradv|2 = −
∫

Ωj

εj∆v · v +

∫

∂Ωj

εj∂nv · v

=

∫

Ωj

εj

(
| curlv|2 + | div v|2

)

+

∫

∂Ωj

εj

(
∂nv · v − (curlv × n) · v − div v (v · n)

)

On each face of ∂Ωj , let us denote by vn the normal component v · n of v and
by v⊤ its tangential component v− vnn . The tangential parts of the gradient and
of the divergence are denoted by grad⊤ and div⊤ . Using that the faces of Ωj are
plane and relying in particular on the identity − curlv × n = grad⊤ vn − ∂nv⊤
which holds on each face, we arrive at

∫

Ωj

εj | gradv|2 =

∫

Ωj

εj

(
| curlv|2 + | div v|2

)

+

∫

∂Ωj

grad⊤(εjvn) · v⊤ − div⊤ v⊤ (εjvn).

If v belongs to PH2(Ω,P) and is such that for any interface F ∈ Fint , [v×n] =
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0 , we deduce from the above equality that
∫

Ω

ε | gradv|2 =

∫

Ω

ε
(
| curlv|2 + | div v|2

)

+
∑

F∈Fext

∫

F

grad⊤(εvn) · v⊤ − div⊤ v⊤ (εvn)

+
∑

F∈Fint

∫

F

grad⊤[εvn]
F
· v⊤ − div⊤ v⊤ [εvn]

F
.

Thus, if v ∈ H2
N (Ω, ε) ,

∫
Ω
ε | gradv|2 is equal to

∫
Ω
ε(| curlv|2 + | div v|2) and

similarly, if v ∈ H2
T (Ω, µ) ,

∫
Ω
µ | gradv|2 is equal to

∫
Ω
µ(| curlv|2 + | div v|2) .

Estimates (2.3) and (2.4) are now straightforward.

Now we are going to prove density results. For this, we go through several steps.

Lemma 2.3 Let ω be a bounded sector of radius 1 in R2 and let r be the distance
to its vertex. Let h belong to H1(ω) . Then rαh tends to h in H1(ω) as α → 0 .

Proof. By the dominated convergence theorem, we obtain immediately that rαh ,
rα∂xh and rα∂yh tend to h , ∂xh and ∂yh respectively in L2(ω) as α → 0 . It
remains to prove that h ∂rr

α tends to 0 in L2(ω) as α→ 0 .

The difficulty lying in r = 0 , we can assume that h = 0 on r = 1 . With the help
of an integration by parts, we obtain

∫ 1

0

|h ∂rr
α|2 rdr =

1

2

∫ 1

0

αh2 ∂rr
2α dr = −

∫ 1

0

αh∂rh r
2α dr

= −
∫ 1

0

αrα−1h rα∂rh rdr,

from which we deduce

‖h ∂rr
α‖2

L2(ω)
≤ ‖h ∂rr

α‖
L2(ω)

‖rα∂rh‖L2(ω)
.

Thus, setting
X(α) = ‖h ∂rr

α‖2

L2(ω)
,

we have obtained that X(α) is bounded as α→ 0 . Similarly as above, we have

X(α) − 2X(α
2
) = −

∫

ω

αrα−1h (rα∂rh− ∂rh) dx dy,

from which we deduce

|X(α) − 2X(α
2
)| ≤

√
X(α) ‖rα∂rh− ∂rh‖L2(ω)

.
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Thus, |X(α)−2X(α
2
)| tends to 0 as α→ 0 . As X(α) is bounded, we can deduce

from this what we wanted, i.e. that X(α) → 0 .

Lemma 2.4 Let ω be as in Lemma 2.3 and let χ = χ(r) a smooth function in
C ∞

0 (−1, 1) equal to 1 in a neighborhood of 0 . Let h belong to H1(ω) . Then h
belongs to the closure in H1(ω) of the set

S(h) :=
{
rα(1 − χ(nr))h | α ∈ (0, 1), n ∈ N

}
. (2.5)

Proof. With Lemma 2.3 we have only to prove that we can choose α and
n so that the norm of rαχ(nr)h in H1(ω) is as small as we want. Obviously,
rαχ(nr)h , rαχ(nr)∂xh and rαχ(nr)∂yh tend to 0 in L2(ω) as n→ ∞ uniformly
in α ∈ (0, 1) . From the proof of Lemma 2.3, we have that h∂rr

α tends to 0 , thus
χ(nr)h∂rr

α tends to 0 in L2(ω) as α→ 0 , uniformly in n . It remains to evaluate
the norm of rαh∂rχ(nr) in L2(ω) . We start from the estimate

∃C > 0, ∀r ∈ (0, 1), ∀n ∈ N, |∂rχ(nr)| ≤ C

r
.

Then, as the support of ∂rχ(nr) is contained in (0, 1
n
) , we have

‖rαh∂rχ(nr)‖
L2(ω)

≤ n−α/2‖rα/2h∂rχ(nr)‖
L2(ω)

≤ C n−α/2‖r−1+α/2h‖
L2(ω)

.

Since, for any α > 0 , by Hardy’s inequality, r−1+α/2h belongs to L2(ω) , for any
fixed α , we can choose n so that ‖rαh∂rχ(nr)‖

L2(ω)
is as small as we want.

As a straightforward corollary of the previous lemma, we obtain the correspond-
ing result in R3 :

Lemma 2.5 Let W = ω × I where ω is a plane sector and I an open interval.
Let h belong to H1(W ) . Then h belongs to the closure in H1(W ) of the set S(h)
defined by (2.5) where r is still the distance to the vertex in ω .

Lemma 2.6 Let Ωj be a polyhedral partition of Ω and let Σ be the skeleton formed
by the union of the closed edges of all the Ωj . Then the subspace of H∞

N (Ω, ε) of
the fields which are zero on Σ , is dense in HN (Ω, ε) , and similarly for the spaces
HT (Ω, µ) .

Proof. Let h ∈ HN(Ω, ε) and ε > 0 . The proof of the existence of a h̃ ∈
H∞

N (Ω, ε) such that h̃ = 0 on Σ and ‖h− h̃‖
PH1(Ω,P)

< ε is organized in three
steps.

Step 1. Let χ be a function like in Lemmas 2.4 and 2.5. For each vertex S ∈ Σ
let ρS be the distance to S . Then χ(nρS)h tends to 0 in PH1(Ω,P) for each
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vertex S as n→ ∞ . Thus we can choose n large enough so that

h1 := h−
∑

S

χ(nρS)h is such that ‖h− h1‖PH1(Ω,P)
< ε/4.

Then we can apply Lemma 2.5 to h1 in the neighborhood of each edge in Σ , and
we obtain a new field h2 in H1

N(Ω, ε) such that

h2 = 0 in a neighborhood V of Σ and ‖h− h2‖PH1(Ω,P)
< ε/2.

Step 2. Let V0 be a neighborhood of Σ such that V 0 ⊂ V . We can then
introduce independent lifting of traces RF on each face F ∈ Fint∪Fext acting from
the subspace of H1/2(F ) of functions g which are zero on V0 , into PH1(Ω,P) ,
so that RF (g) is zero in a neighborhood of all the other faces. With these liftings,
we can construct a lifting RN of the trace and jump operator γN

γN : PH1(Ω,P) −→ ∏
F∈Fext

H1/2(F )2 × ∏
F∈Fint

H1/2(F )3

v 7−→
(
g⊤,F = v × n|F , g⊤,F = [v × n]F , gn,F = [εv · n]F

)
,

such that γNRNg = g for all set of traces and jumps which are zero on V0 . Let
CR be the norm of RN .

Step 3. We regularize h2 in each Ωj by convolution by a regularizing sequence
χn . For n large enough, the regularized field h3 is zero on V0 and

‖h2 − h3‖PH1(Ω,P)
< ε/4 and ‖γNh3‖PH1/2

< ε/(4CR)

Setting h̃ = h3 − RNγNh3 yields the desired approximation of h . The proof for
the other boundary conditions is similar.

Now, Theorem 2.1 is clearly a consequence of lemmas 2.2 and 2.6.

3 Singularities of the variational spaces

In this section we establish continuous decompositions of the spaces XN (Ω, ε)
and XT (Ω, µ) into a H1 or PH1 field and a gradient. Such a decomposition
is well known for the homogeneous Maxwell’s equations, i.e. when ε and µ are
constant or sufficiently regular (e.g. Lipschitz) [3, 4, 12, 2, 17], and was extended to
the heterogeneous case by [5] under the assumption of two materials with a plane
interface. We prove here two sorts of decompositions in our general framework.

We begin with two lemmas giving the existence of regular vector potentials:

Lemma 3.1 Let us assume that Ω is simply connected. Let u be a divergence-free
L2 field. Then there exists ψ ∈HT (Ω, 1) such that curlψ = u .
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This Lemma is simply obtained by the combination of [1, Th.3.12] which yields
a potential ψ0 in XT (Ω, 1) and a decomposition of this ψ0 in a regular ψ ∈
HT (Ω, 1) and a gradient according to [3]. Of course this gradient part does not
contribute to the curl!

Similarly, relying on [1, Th.3.17] and [3], we obtain

Lemma 3.2 Let us assume that Ω is simply connected. Let u be a divergence-free
L2 field such that u ·n is zero on ∂Ω . Then there exists ψ ∈HN(Ω, 1) such that
curlψ = u .

We also introduce the following notation:

Notation 3.3 For g = (gF )
F
∈ PH1/2(Fint) and f ∈ L2(Ω) we write

−∆Dir
ε Φ = f +

∑

F∈Fint

gF ⊗ δF

if we have the variational formulation (1.7):

Φ ∈
◦

H1(Ω), ∀Ψ ∈
◦

H1(Ω),

∫

Ω

ε gradΦ grad Ψ =

∫

Ω

fΨ dx+
∑

F∈Fint

∫

F

gFΨ dσ.

We use the analogous notation for ∆Neu
µ based on the variational formulation (1.8)

with the same right hand side as above:

Φ ∈ H1(Ω), ∀Ψ ∈ H1(Ω),

∫

Ω

µ gradΦ grad Ψ =

∫

Ω

fΨ dx+
∑

F∈Fint

∫

F

gFΨ dσ.

Our first decomposition result yields a “regular” part in H1(Ω) and a “singular”
part in the form of a gradient, which contains in particular all the jumps through
the interfaces.

Theorem 3.4 Any field v ∈XT (Ω, µ) admits a decomposition

v = ψ + gradΦ, (3.1)

where ψ ∈HT (Ω, 1) and Φ ∈ H1(Ω) satisfies −∆Neu
µ Φ = f +

∑
Fint

gF ⊗ δF with

f ∈ L2(Ω) , g ∈ PH1/2(Fint) . Similarly any v ∈XN (Ω, ε) admits a decomposition

(3.1) where ψ ∈HN(Ω, 1) and Φ ∈ ◦

H1(Ω) satisfies −∆Dir
ε Φ = f +

∑
Fint

gF ⊗ δF .
In both cases there holds

‖ψ‖
H1(Ω)

+ ‖f‖
L2(Ω)

+ ‖g‖
PH1/2(Fint)

≤ C‖v‖
X
. (3.2)
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Proof. We first note that with the help of a partition of unity, we can reduce to
the case when Ω is simply connected.

Let v ∈ XT (Ω, µ) . Since its curl is a L2 divergence-free field we can apply
Lemma 3.1 to u = curlv and find ψ ∈ HT (Ω, 1) such that curlψ = curlv .
Then v−ψ is a curl-free field. As Ω is simply connected, this is a gradient: there
exists Φ ∈ H1(Ω) such that v −ψ = gradΦ . Obviously Φ satisfies

∀Ψ ∈ H1(Ω),

∫

Ω

µ gradΦ grad Ψ =

∫

Ω

µ(v −ψ) gradΨ dx,

which enters the framework of Notation 3.3 with f = − div µv + d̃iv µψ , where
the operator d̃iv is the divergence in ∪jΩj (and not in Ω ), and for all F ∈ Fint ,
gF = −[µ]

F
ψ · n .

Now, if v ∈ XN (Ω, ε) , we note that curlv satisfies also curlv · n = 0 on
∂Ω . Thus we can apply Lemma 3.2 to obtain ψ ∈ HN(Ω, 1) such that curlψ =
curlv . Then, as above, there exists Φ ∈ H1(Ω) such that v −ψ = gradΦ . Since

(v −ψ) × n = 0 on ∂Ω , Φ belongs to
◦

H1(Ω) and the proof ends as above.

Our second decomposition result is more in the spirit of the splittings given
in [3, 4, 12] and [5]. It consists in obtaining a “regular” part in HT (Ω, µ) or
HN(Ω, ε) instead of HT (Ω, 1) or HN(Ω, 1) . For the assumptions and the proof
of this statement we use some facts and terminology about the behavior of the
operators ∆Neu

µ and ∆Dir
ε with respect to the corners and edges of Ω and of its

subdomains Ωj which we describe in the next section.

Theorem 3.5 (i) Let us assume that the operator ∆Neu
µ has no edge exponent equal

to 1 and no corner exponent equal to 1
2
. Then any field v ∈ XT (Ω, µ) admits a

decomposition
v = w + gradΦ0, (3.3)

where w ∈HT (Ω, µ) and Φ0 ∈ H1(Ω) satisfies −∆Neu
µ Φ0 ∈ L2(Ω) .

(ii) Let us assume that the operator ∆Dir
ε has no edge exponent equal to 1 and no

corner exponent equal to 1
2
. Then any field v ∈ XN (Ω, ε) admits a decomposition

(3.3) where w ∈HN(Ω, ε) and Φ0 ∈
◦

H1(Ω) satisfies −∆Dir
ε Φ0 ∈ L2(Ω) .

Proof. (i) We start from the first decomposition (3.1) and split Φ into two parts,
each belonging to H1(Ω) (see Theorem 4.1):

Φ = Φ0 + Φ1, with ∆Neu
µ Φ0 ∈ L2(Ω) and Φ1 ∈ PH2(Ω,P).

We then set w = ψ + gradΦ1 which belongs to PH1(Ω,P) . Since ∆Neu
µ Φ0 ∈

L2(Ω) , grad Φ0 belongs to XT (Ω, µ) . Thus w also belongs to XT (Ω, µ) , there-
fore to HT (Ω, µ) . The proof for (ii) is similar.
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4 Laplace interface singularities

As a synthesis of the thorough treatment of bidimensional interface problems in
[18] and of tridimensional monodomain boundary value problems in [9], we briefly
present in this section the regularity and splitting results for the Laplace interface
operators ∆Dir

ε and ∆Neu
µ .

The notion of corner and edge is clear for a polyhedron in R3 . Concerning Ω
with its polyhedral partition P , we call corner of (Ω,P) any point c which is a
corner of (at least) one of the Ωj and edge any segment e which is an edge of one
of the Ωj and either disjoint from the other Ωk or contained in one of their edges.

Let us give an illustrative example: Ω1 and Ω2 are the unit cubes (0, 1)3 and
(−1, 0) × (0, 1)2 , and Ω3 is the parallelepiped (−1, 1)2 × (−1, 0) . Finally Ω is
the interior of Ω1 ∪ Ω2 ∪ Ω3 . The corners are the corners of Ω and the points
c1 = (0, 0, 0) , c2 = (0, 1, 0) , c3 = (0, 1, 1) , c4 = (0, 0, 1) , c5 = (1, 1, 0) and
c6 = (−1, 1, 0) . With the two other corners c7 = (1, 0, 0) and c8 = (−1, 0, 0) ,
the interface edges are [c1, c2] (triple), [c2, c3] , [c3, c4] , [c4, c1] , [c1, c7] , [c7, c5] ,
[c5, c2] , [c1, c8] , [c8, c6] , [c6, c2] (double).

Note that it is possible to have corners and edges contained in the interior
of Ω . This would happen if we add to the example above the fourth domain
Ω4 = (−1, 1) × (−1, 0) × (0, 1) . Then Ω is the cube (−1, 1)3 , c1 is an interior
corner and is the end of interior edges.

The general principle governing the properties of the operators ∆Dir
ε and ∆Neu

µ

relies on the knowledge of the exponents λ attached to each corner and edge of
(Ω,P) , which are the (here real) numbers such that there exist non-polynomial
pseudo-homogeneous solutions of degree λ to model problems on the cones or sectors
Γ associated with the corresponding corner or edge.

4.a Corner exponents

If c is one fixed corner of (Ω,P) , we shall use polar coordinates (ρ, ϑ) centered
at c and denote by Γc the polyhedral cone which coincides with Ω near c . To
each Ωj containing c there corresponds a unique cone Γc,j ⊂ Γc and we denote
by Fint,c the set of interior (to Γc ) faces of ∂Γc,j .

We then denote by Gc the intersection of Γc with the unit sphere. For any
λ ∈ C , let us set

Sλ(Γc) =
{
Ψ = ρλ

Q∑

q=0

logqρ ψq(ϑ) | ψq ∈ H1(Gc)
}
, (4.1)

which is the space of pseudo-homogeneous functions whose angular regularity is
compatible with the H1 regularity of variational solutions. Fitting to the operator
∆Dir

ε , we consider the subspace Sλ
0 (Γc) of Sλ(Γc) of the functions which are zero

13



on ∂Γc . When λ ∈ N , we need two further families of polynomial spaces (which
are reduced to {0} if λ 6∈ N ) corresponding to solutions and right hand sides
respectively. Let P λ

0 (Γc,P) be the subspace of Sλ
0 (Γc) of the functions which are

polynomial in each Γc,j and let Qλ(Γc,P) be the space of the couples (f, g) with
f homogeneous polynomial of degree λ−2 in each Γc,j and g = (gF )

F∈Fint,c
with

gF homogeneous polynomial of degree λ− 1 in the interface F .

The set ΛDir
ε (Γc) of the corner exponents of the Dirichlet operator ∆Dir

ε is then
the set of the λ ∈ C such that there exist solutions Ψ ∈ Sλ

0 (Γc) \ P λ
0 (Γc,P) to

−∆Dir
ε Ψ = f +

∑

F∈Fint,c

gF ⊗ δF , with (f, g) ∈ Qλ(Γc,P), (4.2)

(cf Notation 3.3). We denote the space of these solutions by Zλ
Dir(Γc, ε) . The sets

ΛNeu
µ (Γc) and Zλ

Neu(Γc, µ) are defined similarly. Note that if c is an interior corner,
the spaces Sλ

0 (Γc) and Sλ(Γc) coincide and there is no influence of the external
boundary conditions.

Since there holds

∆Dir
ε (ρλψ(ϑ)) = 0 ⇐⇒ div

⊤
ε grad

⊤
ψ + λ(λ+ 1) ε ψ = 0 (4.3)

with grad
⊤

and div
⊤

the tangential gradient and divergence on Gc , the set of
corner exponents in c is related to the spectrum of the positive Dirichlet Laplace-
Beltrami operator LDir

ε,c associated with the quadratic form

(ψ, ϕ) 7−→ (grad
⊤
ψ, grad

⊤
ϕ)ε

on the space L2(Gc, ε) with scalar product

(ψ, ϕ) 7−→ (ψ, ϕ)ε =

∫

Gc

ε ψ ϕ dσ.

The operator LDir
ε,c is self-adjoint on L2(Gc, ε) with a compact inverse. Let ν1 <

ν2 ≤ · · · be its eigenvalues and ψj be the corresponding eigenfunctions. Then one
can show that

ΛDir
ε (Γc) \ N =

{
−1

2 −+
√
νj + 1

4
, j ≥ 1

}
\ N, (4.4)

and, if λ 6∈ N

Zλ
Dir(Γc, ε) = span

{
ρλψj(ϑ) | λ = −1

2 −+
√
νj + 1

4

}
. (4.5)

The situation is similar for ΛNeu
µ (Γc) and Zλ

Neu(Γc, µ) .

Relying on (4.3), we can prove that for any corner c , 0 6∈ ΛDir
ε (Γc) and 0 6∈

ΛNeu
µ (Γc) .
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4.b Edge exponents

Fix one edge e of Ω and denote by Γe the two-dimensional plane sector such
that Γe × R coincides with Ω in a neighbourhood of an interior point of e . The
polar coordinates in Γe are denoted (r, θ) , the cartesian coordinates in the plane of
Γe are denoted y , and z is the perpendicular coordinate. To each Ωj containing
e there corresponds a unique sector Γe,j ⊂ Γe and we denote by Fint,e the set of
interior faces of ∂Γe,j .

Like above, we can introduce the spaces Sλ(Γe) , Sλ
0 (Γe) and P λ

0 (Γe,P) of
homogeneous functions of degree λ in the sector Γe and the corresponding space
for the right-hand sides Qλ(Γe,P) . Then the set ΛDir

ε (Γe) of the edge exponents
of the Dirichlet transmission operator is defined exactly like above as the set of the
λ ∈ C such that there exist solutions Ψ ∈ Sλ

0 (Γe) \ P λ
0 (Γe,P) to

−∆Dir
ε Ψ = f +

∑

F∈Fint,e

gF ⊗ δF , with (f, g) ∈ Qλ(Γe,P), (4.6)

where ∆Dir
ε acting in the sector Γe is simply the operator obtained from the cor-

responding three-dimensional operator by dropping the variable z . Thus the edge
exponents are the same as the singularity exponents for two-dimensional interface
problems, see [10, 16, 15, 19].

The intersection between Γe and the unit circle being denoted Ge , with (νj)j≥1

the spectrum of the positive Laplace-Beltrami operator LDir
ε,e associated with the

quadratic form (ψ, ϕ) 7→ (∂θψ, ∂θϕ)ε on the space L2(Ge, ε) , we have:

ΛDir
ε (Γe) =

{
−+
√
νj , j ≥ 1

}
. (4.7)

Indeed, when λ 6∈ N , this can be proved like (4.4) from the equivalence

∆Dir
ε (rλψ(θ)) = 0 ⇐⇒ ∂θ ε ∂θψ + λ2 ε ψ = 0 (4.8)

and when λ ∈ N , this also relies on the equality for the dimensions of the polynomial
spaces

dimP λ
0 (Γe,P) = dimQλ(Γe,P) = λJe − Ie, (4.9)

where Je is the number of the sectors Γe,j and Ie = 0 if e is an internal edge and
Ie = 1 if not, see [9, Cor. (4.9)].

4.c Regularity and singularities

We first give a global statement, then provide a description of the singular
solutions, which requires the introduction of further notations.
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Theorem 4.1 Let s > 0 , s 6= 1
2
, f ∈ PHs−1(Ω,P) and g ∈ PHs−1/2(Fint) . Let

Φ be the solution of the problem

−∆Dir
ε Φ = f +

∑

F∈Fint

gF ⊗ δF .

(i) If for any corner c and any edge e

ΛDir
ε (Γc) ∩ (−1

2
, s− 1

2
] = ∅ and ΛDir

ε (Γe) ∩ (0, s] = ∅,

then Φ belongs to PHs+1(Ω,P) .

(ii) If for any corner c and any edge e

ΛDir
ε (Γc) 6∋ s− 1

2
and ΛDir

ε (Γe) 6∋ s,

then Φ admits a splitting Φ0 + Φ1 into a regular part Φ1 ∈ PHs+1(Ω,P) and a
singular part Φ0 ∈ H1(Ω) generated by the spaces Zλ

Dir(Γc, ε) and Zλ
Dir(Γe, ε) for λ

in ΛDir
ε (Γc)∩ (−1

2
, s− 1

2
) and ΛDir

ε (Γe)∩ (0, s) respectively. In particular, if s ≤ 1 ,
∆Dir

ε Φ0 = f0 with f0 ∈ PHs−1(Ω,P) .

For c in the set C of corners of (Ω,P) and λ ∈ ΛDir
ε (Γc) , let Ψλ,p

c be a basis
of Zλ

Dir(Γc, ε) and denote by Φλ,p
c the function defined as

Φλ,p
c (x) = χc(ρc) Ψλ,p

c (ρc, ϑc), (4.10)

with a smooth cut-off function χc equal to 1 in a neighborhood of 0 and (ρc, ϑc)
the polar coordinates associated with c .

Similarly, for e in the set E of edges of (Ω,P) and λ ∈ ΛDir
ε (Γe) , let Ψλ,p

e

be a basis of Zλ
Dir(Γe, ε) and denote by Φλ,p

e the function defined as

Φλ,p
e (x) = χe(ρe) Ψλ,p

e (ρe, ϑe), with ρe =
re
de

(4.11)

where χe is a smooth cut-off function equal to 1 in a neighborhood of 0 , de a
smooth function on the closed edge ē , which is equivalent to the distance to the
endpoints of e and (re, θe, ze) the cylindrical coordinates associated with e .

In order to give a precise statement, we still need weighted Sobolev spaces for
the edge singularity coefficients and a smoothing operator, exactly as in [8]: Let for
m ∈ N and η ∈ R , Vm

η (e) be defined as

V
m
η (e) =

{
γ ∈ L2(e) | (de)

η+k ∂k
zeγ ∈ L2(e), k = 0, 1, . . . , m

}

and by interpolation for non-integer m . The smoothing operator K [ · ] acts like a
lifting of functions on e into Ω : in order to define it, we introduce the stretched
variable

z̃e =

∫ ze

0

1

de(z)
dz,
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where z = 0 corresponds to an interior point of e . The change of variable ze 7→ z̃e
is one to one e→ R and for any function γ defined on e , we set γ̃(z̃e) = γ(ze) .
Then K [γ](ρe, θe, ze) is the convolution operator with respect to z̃e :

K [γ](ρe, θe, ze) =

∫

R

1

ρe
ϕ
( t
ρe

)
γ̃(t− z̃e) dt with ρe =

re
de
,

where ϕ is a smooth function in S (R) such that
∫

R
ϕ = 1 .

Proposition 4.2 Let the assumptions of (ii) in Theorem 4.1 be satisfied. We as-
sume moreover that for any edge e , the set ΛDir

ε (Γe) ∩ [0, s] is contained in an
interval of length < 1 (this is a technical assumption to avoid the “shadows” of the
main singularities Ψλ,p

e ). Then the singular part Φ0 has the expansion

Φ0 =
∑

c∈C

∑

λ∈[− 1

2
,s− 1

2
]

∑

p

γλ,p
c Φλ,p

c +
∑

e∈E

∑

λ∈[0,s]

∑

p

K [γλ,p
e ] Φλ,p

e (4.12)

with the coefficients γλ,p
c in R and γλ,p

e in Vs−λ
−s (e) . The sums extend over λ in

[−1
2
, s− 1

2
] ∩ ΛDir

ε (Γc) and [0, s] ∩ ΛDir
ε (Γe) , respectively.

5 Maxwell interface corner singularities

For shortness, we here describe the corner singularities of problem (1.5) (the
singularities of problem (1.6) are obtained similarly by exchanging Dir, ε and Neu,
µ respectively). We further assume that Ω is simply connected.

We fix a corner c of (Ω,P) and drop the index c in the notations. At this
stage, we look for solutions of the homogeneous Maxwell interface systems in the
spaces of pseudo-homogeneous functions

Sλ
N(Γ, ε) =

{
u ∈X loc

N (Γ∗, ε) | div(εu) ∈ H1
loc(Γ

∗), u(x) = ρλ
Q∑

q=0

logqρ Uq(ϑ)
}
,

where u ∈X loc
N (Γ∗, ε) means that u ∈X loc

N (Γ∩V, ε) , for all bounded open sets V
such that c 6∈ V : this space requires exactly the angular regularity corresponding
to the effective regularity of the variational solution (in particular, for the condition
div(εu) ∈ H1

loc(Γ
∗) , we rely on Theorem 1.1). In other words, we have to find the

non-polynomial solutions of the system





curl(µ−1 curlu) − ε grad div(εu) = f in Γ,
div(εu) = 0 on ∂Γ,
u ∈ Sλ

N(Γ, ε),
(5.1)

when f is a homogeneous polynomial of degree λ − 2 (thus it is zero if λ 6∈
{2, 3, . . .} ). The corresponding λ are the Maxwell (Dirichlet) corner exponents.
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Like in [8], this problem is split into three subproblems by introducing the aux-
iliary unknowns

ψ = µ−1 curlu and q = div(εu).

Using also the space Sλ
T (Γ, µ) defined like Sλ

N(Γ, ε) and the space Sλ
0 (Γ) introduced

in section 4.a, we then see that for λ 6∈ {2, 3, . . .} , problem (5.1) is equivalent to
finding non-polynomial solutions to the system

−∆Dir
ε q = 0 in Γ with q ∈ Sλ−1

0 (Γ). (5.2a)

curlψ = ε grad q and div(µψ) = 0 in Γ with ψ ∈ Sλ−1
T (Γ, µ). (5.2b)

curlu = µψ and div(εu) = q in Γ with u ∈ Sλ
N(Γ, ε). (5.2c)

Thus, the solutions of the system (5.2) belong to one of the three types:

Type 1. q = 0 , ψ = 0 and u general non-zero solution of (5.2c).

Type 2. q = 0 , ψ general non-zero solution of (5.2b) and u particular solution of
(5.2c).

Type 3. q general non-zero solution of (5.2a), ψ particular solution of (5.2b) and
u particular solution of (5.2c).

These three types of Maxwell singularities are now described with the help of
the corner singularities of ∆Dir

ε and ∆Neu
µ . The singularities of type 1 are treated

exactly as in [8, Lemma 7.4].

Lemma 5.1 We assume that λ 6= −1 . Then (i) is equivalent to (ii):
(i) u ∈ Sλ

N (Γ, ε) is a solution of (5.2) of type 1,
(ii) λ+ 1 belongs to ΛDir

ε (Γ) and u = gradΦ where Φ belongs to Zλ+1
Dir (Γ, ε) .

For singularities of type 2 and 3, the jumps of the product εµ through the
interfaces require a special attention.

Lemma 5.2 We assume that λ is not an integer. Then (i) is equivalent to (ii):
(i) u ∈ Sλ

N (Γ, ε) is a solution of (5.2) of type 2,
(ii) λ belongs to ΛNeu

µ (Γ) and curlu = µ gradΨ where Ψ belongs to Zλ
Neu(Γ, µ) .

In that case, a representative of type 2 is given by

u =
1

λ+ 1

(
µ (gradΨ × x) + grad rN

)
, (5.3)

where rN ∈ Sλ+1(Γ) is a solution of

∆Dir
ε rN =

∑

F∈Fint,c

[εµ]
F

(
(gradΨ × n) · x

)∣∣∣
F
⊗ δF . (5.4)
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Proof. We simply need to investigate the non-zero solutions (ψ,u) of (5.2) of
type 2. First a non-zero Ψ in Zλ

Neu(Γ, µ) yields a non-zero requested ψ = grad Ψ
(because λ 6= 0 ). It then remains to find u ∈ Sλ

N (Γ, ε) such that

curlu = µψ and div(εu) = 0 in Γ.

We are then looking for u of the form (5.3). In that case, we have

(λ+ 1) curlu = curl(µ gradΨ × x)

= x · grad(µψ) − µψ · gradx+ µψ divx− x div(µψ),

due to the identity (7.5b) of [8]. This yields

curlu = µψ,

because ψ is homogeneous, div(µψ) = 0 and one can show that

x · grad(µψ) = µx · gradψ in the distributional sense.

On the other hand, the conditions div(εu) = 0 and u× n = 0 on ∂Γ will hold if
(5.4) holds since

div
(
εµ (gradΨ × x)

)
=

∑

F∈Fint,c

gF ⊗ δF ,

where

gF = [εµ(gradΨ × x) ·n]F

= −[εµ(gradΨ × n) · x]F = −[εµ]
F

(
(gradΨ × n) · x

)∣∣∣
F
,

since gradΨ × n has no jump across the interfaces. By Theorem 4.14 of [18],
problem (5.4) has a solution rN ∈ Sλ+1(Γ) (in view of that Theorem, one sees that
rN is homogeneous if λ + 1 6∈ ΛDir

ε (Γ) and has the form rN = r0 + r1 log ρ , with
homogeneous r0 and r1 if not).

This guarantees the existence of u .

Similarly, we can show:

Lemma 5.3 We assume that λ is not integer. Then (i) is equivalent to (ii):
(i) u ∈ Sλ

N (Γ, ε) is a solution of (5.2) of type 3,
(ii) λ− 1 belongs to ΛDir

ε (Γ) and div(εu) = q where q belongs to Zλ−1
Dir (Γ, ε) .

To each q ∈ Zλ−1
Dir (Γ, ε) , a representative of type 3 is given by

ψ =
1

λ

(
ε (grad q × x) + grad rT

)
,
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where rT ∈ Sλ(Γ) is a solution of

∆Neu
µ rT =

∑

F∈Fint,c

[εµ]
F

(
(grad q × n) · x

)∣∣∣
F
⊗ δF ,

and, if λ 6∈ ΛNeu
µ (Γ) , by

u =
1

λ+ 1

(
µ (ψ × x) + grad rN

)

where rN ∈ Sλ+1(Γ) is a solution of

∆Dir
ε rN =

∑

F∈Fint,c

[εµ]
F

(
(ψ × n) · x

)∣∣∣
F
⊗ δF +

(
(1 − ε2µ)λ+ 1 + ε2µ

)
q.

It remains to investigate the singularities of type 1 for λ = −1 and of type 2
for λ = 0 .

Lemma 5.4 (i) There is no singularity of type 1 for λ = −1 .
(ii) There is no singularity of type 2 for λ = 0 .

Proof. Since Γ is simply connected, the first assertion is proved exactly as in
Lemma 7.8 of [8]: we obtain that if u belongs to S−1

N (Γ, ε) (resp. S−1
T (Γ, µ) ) and

satisfies curlu = 0 and div(εu) = 0 (resp. div(µu) = 0 ), then u = 0 .

For the second one, we simply remark that if u is a singularity of type 2 in S0
N(Γ, ε) ,

then
ψ = µ−1 curlu ∈ S−1

T (Γ, µ)

is a solution of type 1 for magnetic boundary conditions. Therefore the first assertion
yields ψ = 0 and the conclusion follows.

Remark 5.5 The case Γ not simply connected can be treated as in [8] and would
yield topological singular exponents. This case was avoided for brevity and is left to
the reader. For other problems with multiply-connected domains, see also [1, 11].

Among the singular exponents obtained before, we select the subset ΛN(Γ) of
λ satisfying λ > −3

2
such that there exists a non-zero u ∈ Sλ

N (Γ, ε) solution of
(5.1) and satisfying (cf Theorem 1.1)

χu ∈ XN(Γ, ε), div(χεu) ∈ H1(Γ),

with a cut-off function χ which is equal to 1 in a neighborhood of the corner c .
We examine the effect of this condition on the three types of singularities.
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Type 1. λ+1 belongs to ΛDir
ε (Γ) . Since ΛDir

ε (Γ)∩[−1, 0] is empty, with Lemma 5.4
we get the condition λ > −1 .

Type 2. λ ∈ ΛNeu
µ (Γ) . Since curl(χu) = χ curlu + gradχ × u has to be in

L2(Γ)3 , we have the condition λ > −1
2
. With Lemma 5.4, this yields λ > 0 ,

because the set ΛNeu
µ (Γ) ∩ [−1, 0] is empty.

Type 3. Here λ − 1 belongs to ΛDir
ε (Γ) . Thus condition div(χεu) in H1(Γ) im-

plies that χq belongs to H1(Γ) , thus λ − 1 > −1
2
, whence λ − 1 > 0 , or

equivalently λ > 1 .

Type λ > Generator u ψ q

1 λ+ 1 ∈ ΛDir
ε (Γ) −1 Φ ∈ Zλ+1

Dir (Γ, ε) grad Φ 0 0

2 λ ∈ ΛNeu
µ (Γ) 0 Ψ ∈ Zλ

Neu(Γ, µ) cf Lem. 5.2 gradΨ 0

3 λ− 1 ∈ ΛDir
ε (Γ) 1 q ∈ Zλ−1

Dir (Γ, ε) cf Lem. 5.3 cf Lem. 5.3 q

Table 1

Going back to the primitive Maxwell equations (1.1), we see that for a regular
current density J , div(εE) and div(µH) are regular too, thus only the singular-
ities of types 1 and 2 can occur and they exchange each other between the electric
and magnetic fields (here λ denotes the degree of homogeneity of the generator and
is either the degree of E or H and κ = iω

λ+1
):

Type Generator λ ∈ E H

Elec. Φ ∈ Zλ
Dir,ε ΛDir

ε gradΦ −κ (εgradΦ×x+ gradrT )

Magn. Ψ ∈ Zλ
Neu,µ ΛNeu

µ κ (µgradΨ×x+ gradrN ) gradΨ

Table 2

This table gives the principal parts of the singularities, indeed from (1.5) and
(1.6) we see that the operators are not homogeneous and therefore the singularities
have an asymptotic expansion [13, 9].
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6 Maxwell interface edge singularities

In this section, our aim is to describe shortly the edge singularities of problem
(1.5). Fix one edge e of (Ω,P) , see §4.b for the associated definitions (we drop
here the index e ). Let λ ∈ C . According to the general rule [9], we search for
(non-polynomial) solutions u ∈ Sλ

N(Γ × R, ε) independent of z of the system

curl(µ−1 curlu) − ε graddiv(εu) = f in Γ × R,

with f independent of z and polynomial in the y variable. The corresponding λ
are the Maxwell (Dirichlet) edge exponents. Let now (v, w) be the decomposition
of the field u in the system of cartesian coordinates (y, z) . Then this system is
split into 2 two-dimensional independent problems in the sector Γ :





curl(µ−1 curlv) − ε graddiv(εv) = f in Γ, f polynomial,
v × n = 0 and div(εv) = 0 on ∂Γ,
v ∈ Sλ

N(Γ, ε),
(6.1)

and 



− div(µ−1 gradw) = f in Γ, f polynomial,
w = 0 on ∂Γ,
w ∈ Sλ(Γ).

(6.2)

The problem (6.1) is simply the problem attached to two-dimensional Maxwell equa-
tions in a polygonal domain, and (6.2) is the transmission Dirichlet problem whose
set ΛDir

µ−1(Γ) of singularities is well known.

For the two-dimensional “Maxwell-type” problem (6.1), as in 3D, we introduce
two auxiliary (scalar) variables

ψ = µ−1 curl v and q = div(εv). (6.3)

Then for λ 6∈ N , we get the equivalent system

−∆Dir
ε q = div f in Γ with q ∈ Sλ−1

0 (Γ). (6.4a)

curlψ = ε grad q in Γ with ψ ∈ Sλ−1(Γ). (6.4b)

curlv = µψ, div(εv) = q in Γ with u ∈ Sλ
N(Γ, ε). (6.4c)

If λ is not a positive integer, as in the previous section, this system (6.4) is
reduced to a homogeneous one and the solutions split into singularities of types 1,
2 and 3. As in [8], the singularities of type 2 do not exist (they appear in fact
as singularities of the problem (6.2)), while the singularities of type 1 and 3 are
obtained like in §5 in relation with the edge exponents of ∆Dir

ε .

If λ is a positive integer, as in §4.b, we can check that the spaces of homogeneous
polynomials associated with the right hand sides and with the solutions have the
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same dimension. Thus the Maxwell edge exponents are the λ ∈ C such that the
system (6.4) has non-trivial solutions.

In view of (4.7), we can state:

Lemma 6.1 The set of the edge exponents associated with the edge e is
{
λ ∈ R | λ− 1 or λ+ 1 belongs to ΛDir

ε (Γ)
}

∪ ΛDir
µ−1(Γ).

If λ 6∈ N∗ , the corresponding singular functions u = (v, w) are as follows:

(i) If λ + 1 ∈ ΛDir
ε (Γ) , then w = 0 and v is a Maxwell singularity of type 1,

given by
v = grad

(
rλ+1ϕ(θ)

)
,

when ϕ is an eigenvector of LDir
ε,e associated with the eigenvalue (λ+ 1)2 .

(ii) If λ ∈ ΛDir
µ−1(Γ) , then v = 0 and w is a singularity associated with ∆Dir

µ−1 :

w = rλϕ(θ),

when ϕ is an eigenvector of LDir
µ−1,e associated with the eigenvalue λ2 .

(iii) If λ− 1 ∈ ΛDir
ε (Γ) , then w = 0 and v is a Maxwell singularity of type 3.

The singularities in point (ii) of the lemma are, in fact, closely related to the
type 2 corner singularities. This is seen from the following result.

Lemma 6.2 We have the identity between the sets of Laplace edge exponents

ΛDir
µ−1(Γ) = ΛNeu

µ (Γ)

and more precisely we have the equivalence between the singular functions

rλψ(θ) ∈ Zλ
Neu(Γ, µ) ⇐⇒ µ rλ ∂θψ ∈ Zλ

Dir(Γ, µ
−1).

Proof. The proof uses the fact that in dimension 2 the passage to the conjugate
harmonic functions interchanges tangential and normal derivatives. This implies
that a singular function Ψ belongs to Zλ

Neu(Γ, µ) if and only if µΨ̃ ∈ Zλ
Dir(Γ, µ

−1) ,
where on each sector Γj , Ψ̃ is the harmonic conjugate of Ψ . Since for our homo-
geneous functions, Ψ̃ can be expressed by the angular derivative, we can make this
idea more precise as follows: Let ∆Neu

µ (rλψ(θ)) = 0 in Γ . This means that

∂θµ∂θψ + λ2µψ = 0, thus µ−1∂θ(µ∂θψ) + λ2ψ = 0.

Setting ϕ = µ∂θψ , the interface conditions [ψ] = 0 and [µ∂θψ] = 0 imply therefore
that [ϕ] = 0 and [µ−1∂θϕ] = 0 . Whence the lemma.
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As before, we have to consider the subset of the edge exponents λ satisfying
λ > −1 such that there exists a non-zero u ∈ Sλ

N(Γ × R, ε) independent of the
variable z , solution of the homogeneous system (6.1)-(6.2) and satisfying

curl(χu) ∈ L2(Γ)3, divy(χεu) ∈ H1(Γ),

with χ a cut-off function which is equal to 1 in a neighborhood of the corner of
Γ . The effect of this condition on each of the singularities (i), (ii) and (iii) in
Lemma 6.1 is easily checked and can be summarized as follows:

(i) In this case λ1 = λ̃− 1 , with λ̃ ∈ ΛDir
ε (Γ) and the condition is λ1 > −1 .

(ii) In this case λ2 ∈ ΛDir
µ−1(Γ) , thus λ2 has to be positive.

(iii) In this case λ3 = λ̃+ 1 , with λ̃ ∈ ΛDir
ε (Γ) , then the condition is λ3 > 1 .

7 Conclusions

7.a Regularity

Taking advantage of the information about corner and edge exponents and sin-
gularities collected in sections 4 to 6 and using Theorems 4.1 of [8] (which also hold
in our setting with the natural adaptations due to the interfaces), we are now able
to give regularity results.

As always, the regularity depends on the smallest corner and edge exponents.
So, for any edge e in the set E of the edges of (Ω,P) , we introduce the smallest
exponent attached to ∆Dir

ε

λDir
ε,e =

√
ν, with ν the first eigenvalue of LDir

ε,e

and the smallest exponent attached to ∆Neu
µ

λNeu
µ,e =

√
ν, with ν the first non-zero eigenvalue of LNeu

µ,e .

We have the following lower estimates for λDir
ε,e (and similar ones for λNeu

µ,e ). Proofs
are given in §8.

(i) With ρe the quotient of the minimum of ε by its maximum in the neighbor-
hood of e , a lower estimate of the Rayleigh quotient of LDir

ε,e yields

λDir
ε,e ≥ ρe λ

Dir
1,e . (7.1)

(ii) If e is an external edge:

• For two subdomains in a convex angle λDir
ε,e >

1
2
.

• For two subdomains in a non-convex angle λDir
ε,e >

1
4
, [19].
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• For three subdomains (even in a convex angle) λDir
ε,e > 0 , [14].

(iii) If e is an internal edge:

• For two subdomains λDir
ε,e >

1
2
.

• For three subdomains λDir
ε,e >

1
4
.

• For four subdomains λDir
ε,e > 0 .

The estimates in (ii) and (iii) are generically optimal in the sense that there exist
choices of Γ and ε so that λDir

ε,e is arbitrarily close to the lower bound.

Similarly, for any corner c in the set C of the corners of (Ω,P) , we introduce
the smallest exponent attached to ∆Dir

ε (see §4.a)

λDir
ε,c = min

(
ΛDir

ε,c ∩ (−1
2
,∞)

)

and the smallest exponent attached to ∆Neu
µ

λNeu
µ,c = min

(
ΛNeu

µ,c ∩ (−1
2
,∞)

)
.

In general λDir
ε,c is the minimum of 2 and of −1

2
+
√
ν + 1

4
, with ν the first eigenvalue

of LDir
ε,c , and similarly for λNeu

µ,c . In any case, λDir
ε,c and λNeu

µ,c are > 0 and satisfy a
lower estimate like (7.1) by the exponents associated with one material in the same
corner.

Let now set

σDir
ε = min

(
min
e∈E

λDir
ε,e , min

c∈C
λDir

ε,c + 1
2

)

and σNeu
µ = min

(
min
e∈E

λNeu
µ,e , min

c∈C
λNeu

µ,c + 1
2

)
.

In fact, the regularity result (i) of Theorem 4.1 holds with any s < σDir
ε for the

operator ∆Dir
ε and with any s < σNeu

µ for the operator ∆Neu
µ .

Theorem 7.1 Let s ≥ 1 and f ∈ PHs−1(Ω,P) . Let u ∈ XN(Ω, ε) be the
solution of problem (1.5). For any τ ∈ (0, s+ 1] such that

τ < min{σDir
ε , σNeu

µ + 1},
u belongs to PHτ (Ω,P) .

Examples

(i) If Ω contains only two subdomains, then u ∈ PHτ (Ω,P) for all τ ≤ 1
4
.

(ii) If Ω is convex and has two subdomains, then u ∈ PHτ (Ω,P) for all τ ≤ 1
2
.

(iii) If Ω is a parallelepiped divided into two subdomains separated by a plane
parallel to two faces, then u ∈ PHτ (Ω,P) for all τ < 2 .

But note that, as soon as three subdomains have an exterior common edge, or four
subdomains have an interior common edge, the regularity of u can be arbitrarily
low (near L2 ). Such a situation occurs when the ratio ρe is very small.

25



7.b Singularities

In this whole subsection s ≥ 1 , the data f belongs to PHs−1(Ω,P) and u

is the solution of problem (1.5).

A. We assume that s is such that there is no Maxwell Dirichlet corner exponent
equal to s− 1

2
and no Maxwell Dirichlet edge exponent equal to s . Then u can be

split in u0 + u1 where u1 belongs to PHs+1(Ω,P) and u0 is the sum of contri-
butions of the corners and the edges. If we assume moreover like in Proposition 4.2,
that for any edge e , the set of the edge exponents ∈ [−1, s] is contained in an
interval of length < 1 , the function u0 has a structure like Φ0 in (4.12)

u0 =
∑

c∈C

∑

λ∈[− 3

2
,s− 1

2
]

∑

p

γλ,p
c uλ,p

c +
∑

e∈E

∑

λ∈[−1,s]

∑

p

K [γλ,p
e ] uλ,p

e (7.2)

with uλ,p
c and uλ,p

e defined like (4.10) and (4.11) from bases Uλ,p
c and Uλ,p

e of non-
polynomial solutions of problems (5.1) and (6.1)-(6.2). If Uλ,p

e has no logarithmic
term, then the coefficient belongs to Vs−λ

−s (e) . For non-integer λ , the functions
Uλ,p
c and Uλ,p

e are described in Lemmas 5.1 - 6.1.

B. Let us fix σ ∈ [0, s] such that for any edge e , the set of the edge exponents
belonging to [−1, σ] is contained in an interval of length < 1 . Then for suitable
coefficients γλ,p

c ∈ R and γλ,p
e ∈ Vs−λ

−σ (e) the difference

u −
(
∑

c∈C

∑

λ∈[− 3

2
,σ− 1

2
]

∑

p

γλ,p
c uλ,p

c +
∑

e∈E

∑

λ∈[−1,σ]

∑

p

K [γλ,p
e ] uλ,p

e

)
(7.3)

belongs to PHσ+1(Ω,P) .

If we take σ = 0 , or more generally

σDir
ε − 1 < σ < min(σDir

ε , σNeu
µ ) (7.4)

then the corner and edge singularities of type 2 and 3 disappear, therefore it only
gradients remain in the singular part, which can be written as (cf §4.c)
∑

c∈C

∑

λ∈[− 3

2
,σ− 1

2
]

∑

p

γλ,p
c χc(ρc) gradΨλ+1,p

c (ρc, ϑc)

+
∑

e∈E

∑

λ∈[−1,σ]

∑

p

K [γλ,p
e ]χe(ρe) gradeΨλ+1,p

e (ρe, θe),
(7.5)

with grade the gradient in the variable ỹe = ye/de .

Remark 7.2 In the splitting (7.5), the singular generators can also be expressed
as curls since for a homogeneous function Ψ of degree λ satisfying ∆Dir

ε Ψ = 0 , we
have:

ε(λ+ 1) gradΨ = curl(ε gradΨ × x)
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and
grade

(
ρλ
eϕ(θe)

)
= curle

(
ρλ
eψ(θe)

)
,

when ψ = − 1
λ
ϕ′ (recalling that ϕ satisfies (εϕ′)′ = −λ2εϕ ), with curle the

two-dimensional vectorial curl in the ỹe plane, completed by a zero tangential
component along the edge.

As in [8], we can write the singular part (7.5) as a gradient in a global way,
because Lemmas 8.2 and 8.4 of [8] are (mainly) independent of the operator in
consideration. Consequently, in connection with the splitting (4.12), we have

Theorem 7.3 Assume that s ≥ 1 , the data f belongs to PHs−1(Ω,P) and u

is the solution of problem (1.5). Let σ < s+1 so that (7.4) holds. Then there exists

Φ ∈ ◦

H1(Ω) satisfying −∆Dir
ε Φ ∈ PHσ(Ω,P) such that

u− grad Φ ∈ PHσ+1(Ω,P).

When σ = 0 , the above statement reduces to Theorem 3.5 (ii).

8 Appendix

In this section, we prove some lower estimates for the exponents of singularity
for transmission problems for the Laplacian in dimension two. We have to consider
the following situation:

Γ is described in polar coordinates (r, θ) by 0 < θ < ω ( 0 < ω < 2π ) or
by 0 ≤ θ < 2π ( ω = 2π ). The interval [0, ω] is divided in J subintervals by
0 = ω0 < ω1 < . . . < ωJ = ω . The function ε is positive and constant on each
subinterval: ε = εj for θ ∈ (ωj−1, ωj) .

The function u is homogeneous in Γ and satisfies

∆Dir
ε u = 0 [ or ∆Neu

ε u = 0 ].

Thus u(r, θ) = rλv(θ) with λ > 0 and v is a linear combination of sinλθ and
cosλθ in each (ωj−1, ωj) satisfying the boundary conditions

v(0) = v(ω) = 0 [ or v′(0) = v′(ω) = 0 ],

and the transmission conditions

[v] = 0 and [εv′] = 0 at θ = ωj .

Under these conditions, we have the following result
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Theorem 8.1

(i) (External edge)
If ω < 2π and J = 2 , then λ > π

2ω
.

(ii) (Internal edge)
If ω = 2π and J = 2 , then λ > 1

2
;

If ω = 2π and J = 3 , then λ > 1
4
.

(iii) If ω < 2π and J ≥ 3 or if ω = 2π and J ≥ 4 , then for any λ0 > 0 there
exist ε1, . . . , εJ and a function u 6= 0 with 0 < λ < λ0 .

Proof. (i) Consider first the case of Dirichlet conditions: The function v is
continuous on [0, ω] , piecewise analytic, vanishes at 0 and ω , and its derivative
satisfies ε1v

′(ω−
1 ) = ε2v

′(ω+
1 ) . One can assume that v has a positive maximum

in ω∗ ∈ (0, ω) . It follows that v′(ω∗) = 0 , even if ω∗ = ω1 , because v′ does not
change its sign there. In one of the two sectors (0, ω∗) (if ω∗ ≤ ω1 ) or (ω∗, ω) (if
ω∗ > ω1 ), the function u therefore satisfies a mixed Dirichlet-Neumann problem
without interface, for which one knows the lowest singularity exponent π/2ω∗ or
π/2(ω − ω∗) . Thus

λ ≥ π

2ω∗
≥ π

2ω1
>

π

2ω
or λ ≥ π

2(ω − ω∗)
≥ π

2(ω − ω1)
>

π

2ω
.

For exterior Neumann conditions, we have v′(0) = v′(ω) = 0 . Since v is an eigen-
function of the Laplace-Beltrami Neumann problem, it is orthogonal to constants:

∫ ω

0

v(θ) ε(θ) dθ = 0.

As ε is positive, v has at least one zero: v(ω∗) = 0 . Once again, on either (0, ω∗)
or (ω∗, ω) , we obtain a mixed Dirichlet-Neumann problem and the estimate

λ ≥ min
{ π

2ω1
,

π

2(ω − ω1)

}
>

π

2ω
.

(ii) If ω = 2π , we can again use that v is orthogonal to constant functions:∫ 2π

0
vε dθ = 0 . This time, we conclude that v has at least two distinct zeros

0 ≤ ω∗ < ω∗∗ < 2π ; v(ω∗) = v(ω∗∗) = 0 . In the two sectors

Γ∗ = {(r, θ) | ω∗ < θ < ω∗∗} and Γ∗∗ = {(r, θ) | ω∗∗ < θ < 2π + ω∗}

our function u solves therefore the transmission problem with exterior Dirichlet
conditions, and we are back to case (i).

If J = 2 , we can either argue that one of Γ∗ or Γ∗∗ is convex, or that one of the
two sectors contains only one material. Both arguments give the result λ > 1

2
.

28



If J = 3 , then one of the two sectors contains at most two materials, thus from (i)
follows λ > 1

4
.

(iii) For the case J = 4 , we give the following explicit example: let

G1 = (−π
4
, π

4
), G2 = (π

4
, 3π

4
), G3 = (3π

4
, 5π

4
), G4 = (−3π

4
,−π

4
).

and
ε1 = ε3 = h and ε2 = ε4 = 1.

Let v be defined as sinλθ in G1 , η cosλ(π
2
− θ) in G2 , sin λ(π − θ) in G3 ,

−η cosλ(π
2

+ θ) in G4 . Then u(r, θ) = rλv(θ) is a singular function for our trans-
mission problem if and only if

η = tan
λπ

4
and h = η2.

We see that λ→ 0 as h→ 0 .

Since u satisfies Dirichlet conditions at θ = 0 and θ = π , the same example solves
a 3-material problem with exterior Dirichlet conditions.

This example can be easily adapted to more general geometries.

Remark 8.2 In the example of the proof of (iii), we have a three-material Dirichlet
problem with a smooth exterior boundary. If we assume homogeneous magnetic
properties, we have no type 1 edge singularity for the magnetic field there. The
type 2 edge singularity has only regularity H1+δ for δ < λ0 .
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