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http://perso.univ-rennes1.fr/Monique.Dauge



✬

✫

✩

✪

Situation

ΩE

ΩC

Conductor body ΩC :

polyhedron with boundary B .

Conductivity σC ,

permittivity εC and permeability µC .

Exterior region ΩE := B(0, R) \ ΩC .

Conductivity σE = 0 ,

permittivity εE and permeability µE .

Region of interest

Ω = B(0, R) = ΩC ∪ ΩE

with σ , ε and µ defined on Ω .

Perfect conductor boundary conditions on

∂Ω = ∂ΩE \ B
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✫

✩

✪

Outline

� Maxwell problem for an imperfect conductor.

• Gauge conditions – Regularized variational form.

• Singularities of Type 1 and 2.

• Sobolev and weighted Sobolev regularity.

�� Eddy current problem.

• Gauge conditions – Regularized variational form.

• Eddy current pb as a limit of Maxwell (as δ � ωεσ−1 → 0 ).

• Singularities of Type 1 and 2 (are also limits as δ → 0 ).

• Regularity: The field inside a convex conductor is more regular than outside.
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✬

✫

✩

✪

Maxwell problem for a conductor

Conductor body ΩC : polyhedron with boundary B (connected components Bi ).

Conductivity σC , permittivity εC and permeability µC .

Exterior region ΩE := B(0, R) \ ΩC for R large enough.

Conductivity σE = 0 , permittivity εE and permeability µE .

Region of interest Ω = B(0, R) = ΩC ∪ ΩE .

Conductivity σ , permittivity ε and permeability µ defined on Ω . Frequency ω , fixed.

Perfect conductor boundary conditions on ∂Ω = ∂ΩE \ B .

Source current density j0 in L2(R3)3 , with support in ΩC and divergence free, i.e.

div j0 = 0 in ΩC and j0 · n = 0 on B .

Find the electromagnetic field (E,H)

(Maxwell)




(i) curlE = −iω µH in Ω,

(ii) curlH = (σ + iω ε)E + j0 in Ω,

(iii) E × n = 0 & H · n = 0 on ∂Ω.
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✬

✫

✩

✪

Conditions on the divergence of the electric field

Taking the divergence of equation (ii)

divαE = 0, with αC = σC + iω εC and αE = iω εE.

Therefore

(1) divEC = 0 and divEE = 0

(2) αCEC · n = αEEE · n on B.

Equation (ii) also yields that EC = curlψ with ψ = (iωεC + σC)−1(H − J0)
where J0 is a vector potential for j0 . By localization around Bi :∫

Bi

EC · n dS =
∫
ΩC

div{curl(µiψ)} dx = 0.

Combining with (2) ∫
Bi

EE · n dS = 0
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✬

✫

✩

✪

Regularized variational formulation

We propose a variational space independent of σ , ε and ω :

Y(Ω) =
{
u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3,

div uC ∈ L2(ΩC), div uE ∈ L2(ΩE)

u × n = 0 on ∂Ω,
∫

Bi
uE · n dS = 0

}
.

The associate variational forms are for u , v ∈ Y(Ω)

a(u, v) =
∫
Ω

(
µ−1 curlu · curl v − ω2εu · v

)
dx + iω

∫
ΩC

σCuC · vC dx

areg(u, v) = a(u, v) +
∫
ΩC

div uC div vC dx +
∫
ΩE

div uE div vE dx.

The electric field E solution of (Maxwell) is the only solution of

E ∈ Y(Ω), ∀v ∈ Y(Ω), areg(E, v) = −iω(j0, v)ΩC .
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✬

✫

✩

✪

Corner singularities, general recipe

Fix a corner O (here O ∈ B ). Let (ρ, ϑ) be polar coordinates centered in O.

Around O, the 3D space is shared into two complementary cones ΓC and ΓE

reproducing the sharing by ΩC and ΩE :

R
3 = ΓC ∪ ΓE.

The general recipe consists in looking for solutions u of the form ρλU(ϑ) of the

principal part of the associated elliptic bvp, with zero RHS:


curl(µ−1
C curluC) − ∇ div uC = 0 in ΓC,

curl(µ−1
E curluE) − ∇ div uE = 0 in ΓE,

[u × n] = 0, [αu · n] = 0 on I := ∂ΓC = ∂ΓE,

[µ−1 curlu × n] = 0, [curlu · n] = 0 on I,

[divαu] = 0, [α−1∂n divαu] = 0 on I.
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✬

✫

✩

✪

Corner singularities, Maxwell recipe

Set qC = divαCuC , qE = divαEuE and ψC = µ−1
C curluC , ψE = µ−1

E curluE .




∆qC = 0 in ΓC,

∆qE = 0 in ΓE,

[q] = 0, [α−1∂nq] = 0 on I.

Type 3:




general q

particular ψ,

particular u




curlψC = ∇qC, div(µCψC) = 0 in ΓC,

curlψE = ∇qE, div(µEψE) = 0 in ΓE,

[ψ × n] = 0, [µψ · n] = 0 on I.

Type 2:




q = 0,

general ψ,

particular u




curluC = µCψC, divαCuC = qC in ΓC,

curluE = µEψE, divαEuE = qE in ΓE,

[u × n] = 0, [αu · n] = 0 on I.

Type 1:




q = 0,

ψ = 0,

general u
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✬

✫

✩

✪

Maxwell Corner Singularities of Type 1

uC = ∇ΦC and uE = ∇ΦE with


div ∇ΦC = 0 in ΓC,

div ∇ΦE = 0 in ΓE,

[Φ] = 0, [α∂nΦ] = 0 on I.

The singular density Φ is in H1
loc(R

3) and is a singularity of the Laplace transmission

problem with α : α = αC = σC + iω εC in ΓC and α = αE = iω εE in ΓE .

The singularities Φ = ρλϕ(ϑ) with Reλ > 0 and λ(λ + 1) = ν eigenvalue and

ϕ eigenvector of the problem (with GC = ΓC ∩ S
2 and GE = ΓE ∩ S

2 )

ϕ ∈ H1(S2), ∀ψ ∈ H1(S2)∫
GC

αC∇�ϕ · ∇�ψ +
∫

GE

αE∇�ϕ · ∇�ψ = ν

{∫
GC

αCϕψ +
∫

GE

αEϕψ

}

For wedges, this reduces to a 1D angular version: ∇� → ∂θ and λ2 = ν .
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✬

✫

✩

✪

Maxwell Corner Singularities of Type 2

ψC = ∇ΨC and ψE = ∇ΨE with



div ∇ΨC = 0 in ΓC,

div ∇ΨE = 0 in ΓE,

[Ψ] = 0, [µ∂nΨ] = 0 on I.

The density Ψ is a singularity ρλψ(ϑ) of the Laplace transmission problem with µ :

µ = µC in ΓC and µ = µE in ΓE .

Then u = (λ + 1)−1(µ∇Ψ × x − ∇r) with r solution of




∆rC = 0 in ΓC,

∆rE = 0 in ΓE,

[r] = 0, [α∂nr] = [αµ](∇Ψ × x) · n on I.
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✬

✫

✩

✪

Sobolev regularity

Let βα and βµ be the limiting regularity Sobolev exponents for the transmission

Laplace operators divα∇ and divµ∇ respectively. Note that

3

2
< βµ < 2 and 1 < βα.

Then

EC ∈ Hs(ΩC) and EE ∈ Hs(ΩE), ∀s < min{βα − 1, βµ}.
Moreover

E = ∇Φ + Ereg

with

Ereg
C ∈ Hs(ΩC) and Ereg

E ∈ Hs(ΩE), ∀s < min{βα , βµ}.
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✬

✫

✩

✪

Weighted Sobolev spaces

Isotropic spaces (Kondrat’ev) and m ∈ N , β ∈ R

Wm
β (Ω) =

{
u ∈ L2

loc(Ω) : ∀α, |α| ≤ m, ∂αu ∈ L2(V 0),

∀ c corner, rβ+|α|
c ∂αu ∈ L2(Vc)

}
.

Isotropic spaces (Nazarov-Plamenevskii) D = C or E , and m ∈ N , β ∈ R

Km
β (ΩD) =

{
u ∈ L2

loc(ΩD) : ∀α, |α| ≤ m, ∂αu ∈ L2(V 0),

∀ c corner, rβ+|α|
c ∂αu ∈ L2(V 0

c )

∀ e edge, rβ+|α|
e ∂αu ∈ L2(V 0

e ) and rβ+|α|
e ∂αu ∈ L2(V c

e )
}
.

Anisotropic spaces (with α = (α⊥ , α3) transverse - longitudinal to the edge)

Mm
β (ΩD) =

{
u ∈ L2

loc(ΩD) : ∀α, |α| ≤ m, ∂αu ∈ L2(V 0),

∀ c corner, rβ+|α|
c ∂αu ∈ L2(V 0

c )

∀ e edge, r
β+|α⊥ |
e ∂αu ∈ L2(V 0

e ) and r
α3
c r

β+|α⊥ |
e ∂αu ∈ L2(V c

e )
}
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✬

✫

✩

✪

Weighted (anisotropic) Sobolev regularity

Suppose j0 smooth.

Let βα and βµ be the limiting regularity Sobolev exponents for the transmission

Laplace operators divα∇ and divµ∇ respectively.

Splitting of the electric field

E = ∇Φ + Ereg

with

Ereg
C ∈ M∞

−β(ΩC) and Ereg
E ∈ M∞

−β(ΩE), ∀β < min{βα, βµ}

and the potential

Φ = Φ0 + Φ1 + Φreg, Φreg ∈ H∞(Ω)

and

Φ0
C ∈ M∞

−β(ΩC), Φ0
E ∈ M∞

−β(ΩE), Φ1 ∈ W∞
−β(Ω).
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✬

✫

✩

✪

Eddy current equations

Recall Maxwell equations.

Find the electromagnetic field (E,H)

(Maxwell)




curlE = −iω µH in Ω,

curlH = (σ + iω ε)E + j0 in Ω,

E × n = 0 & H · n = 0 on ∂Ω.

The Eddy Current equations are defined for σ >> ε by setting ε to 0 in (Maxwell).

Find the electromagnetic field (E,H)

(Eddy c.)




curlE = −iω µH in Ω,

curlH = σE + j0 in Ω,

E × n = 0 & H · n = 0 on ∂Ω.
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✬

✫

✩

✪

Conditions on the divergence of the electric field

Taking the divergence of the 2d equation

div σE = 0, with σ = σC in ΩC and σE = 0.

Therefore

divEC = 0 and EC · n = 0 on B

We have nothing on divEE .

We impose as gauge conditions, the conditions we obtained from (Maxwell) before

passing to the limit:

divEE = 0 and
∫

Bi
EE · n dS = 0
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✬

✫

✩

✪

The eddy current equations as limiting equations

Set ωε = δε̆ where

• δ > 0 is a small parameter

• ε̆ has the same order of magnitude as σC .

The assumption that δ is small reflects the fact that

the product ωε is small with respect to σC .

We write (Maxwell) and (Eddy c.) in a unified way, for δ > 0 and δ = 0 , resp.:

(Pδ)




curlEδ = −iω µHδ in Ω,

curlHδ = (σ + iδ ε̆)Eδ + j0 in Ω,

Eδ × n = 0 & Hδ · n = 0 on ∂Ω.
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✬

✫

✩

✪

Regularized variational formulations

We propose a variational space independent of σ , ε and ω :

Y(Ω) =
{
u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3,

div uC ∈ L2(ΩC), div uE ∈ L2(ΩE)

u × n = 0 on ∂Ω,
∫

Bi
uE · n dS = 0

}
.

The associate variational forms are for u , v ∈ Y(Ω)

aδ(u, v) =
∫
Ω

(
µ−1 curlu · curl v − ωδε̆u · v

)
dx + iω

∫
ΩC

σCuC · vC dx

aδ
reg(u, v) = aδ(u, v) +

∫
ΩC

� div uC div vC dx +
∫
ΩE

� div uE div vE dx.

The electric field E solution of (Pδ) solves

Eδ ∈ Y(Ω), ∀v ∈ Y(Ω), aδ
reg(E, v) = −iω(j0, v)ΩC .
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✬

✫

✩

✪

The eddy current limit

Theorem

(i) ∃δ0 > 0 s. t. the sesquilinear forms aδ
reg are uniformly coercive for δ ∈ [0, δ0] .

(ii) We have the uniform bound:

∃C > 0, ∀δ ∈ [0, δ0], ‖Eδ‖
Y(Ω)

≤ C.

(iii) We have the convergence as δ → 0 :

∃C > 0, ∀δ ∈ [0, δ0], ‖Eδ − E0‖
Y(Ω)

≤ Cδ.

The singularities are of Type 1 and 2, also in the limit δ = 0 ,

and they depend continuously on δ

.../...
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✬

✫

✩

✪

Eddy current Corner Singularities of Type 1

uC = ∇ΦC and uE = ∇ΦE with



div ∇ΦC = 0 in ΓC,

div ∇ΦE = 0 in ΓE,

[Φ] = 0, ∂nΦC = 0 on I.

We have either (i) or (ii)
(i) ΦC is a singularity of the Laplace Neumann problem, ΦE has the same degree λ .

(ii) ΦC = 0 and ΦE is a singularity of the Laplace Dirichlet problem.

Skip to Type 2
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✬

✫

✩

✪

Using the harmonic extension PE from GC := ΓC ∩ S
2 into GE := ΓE ∩ S

2 , we can

write the “singularities eigenvalue pb” in the unified way for δ = 0 and δ > 0 :

Find (ϕC, ϕ0) ∈ H1(GC) × H1
0(GE) , ∀(ψC, ψ0) ∈ H1(GC) × H1

0(GE) :

aδ(ϕC, ϕ0 ; ψC, ψ0) = νbδ(ϕC, ϕ0 ; ψC, ψ0)

The singularity of Type 1 is u = ∇Φ with ΦC = rλϕC and ΦE = rλ(PEϕC + ϕ0) .

Let η =
iδε̆E

σC + iδε̆C

.

The forms aδ and bδ depend continuously on δ ∈ [0, δ0] :

aδ =
∫

GC

∇ϕC · ∇ψC + η

∫
GE

∇PEϕC · ∇PEψC +
∫

GE

∇ϕ0 · ∇ψ0

and

bδ =
∫

GC

ϕC ψC + η

∫
GE

(
PEϕC PEψC + ϕ0 PEψC

)
+

∫
GE

(
PEϕC ψ0 + ϕ0 ψ0

)
.
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✬

✫

✩

✪

Eddy current Corner Singularities of Type 2

ψC = ∇ΨC and ψE = ∇ΨE with



div ∇ΨC = 0 in ΓC,

div ∇ΨE = 0 in ΓE,

[Ψ] = 0, [µ∂nΨ] = 0 on I.

The density Ψ is a singularity ρλψ(ϑ) of the Laplace transmission problem with µ :

µ = µC in ΓC and µ = µE in ΓE .

Then u = (λ + 1)−1(µ∇Ψ × x − ∇r) with r solution of




∆rC = 0 in ΓC,

∆rE = 0 in ΓE,

[r] = 0, ∂nrC = µC(∇ΨC × x) · n on I.
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✬

✫

✩

✪

Sobolev regularity

Let βDir
E , βNeu

C and βµ be the limiting regularity Sobolev exponents for the Dirichlet

pb on ΩE , Neumann pb on ΩC and the transmission pb divµ∇ respectively:

3

2
< βµ < 2 and

3

2
< min{βNeu

C , βDir
E } < 2

Then

EC ∈ Hs(ΩC) ∀s < min{βNeu
C − 1, βµ}. and

EE ∈ Hs(ΩE), ∀s < min
{

min{βNeu
C , βDir

E } − 1, βµ

}
.

Moreover

E = ∇Φ + Ereg

with Ereg
C ∈ Hs(ΩC) ∀s < min{βNeu

C , βµ} and

Ereg
E ∈ Hs(ΩE) , ∀s < min{min{βNeu

C , βDir
E } , βµ} .
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✬

✫

✩

✪

Conclusion: How to approximate these solutions?

Combining with FEM techniques already investigated for Maxwell equations in

polyhedral bodies, we may hope that the following will provide “good” approximations

(considered the nasty singularities):

• Curl-Conforming Elements (first NÉDÉLEC family of edge elements) –

used with a Lagrange multiplier in ΩE (KIKUSHI formulation)

• Weighted Regularization Method with nodal FEM in ΩC and ΩE . −→

• Singular Complement Method (for axisymmetric domains only).

The performances of all methods may hopefully be dramatically improved by the use of

anisotropic refinement along edges and at corners, and higher degree polynomials.
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