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Conductor body c:

polyhedron with boundary B.
Conductivity oc,

permittivity ec and permeability pc .
Exterior region Qg := B(0, R) \ Q¢.
Conductivity og = 0,

permittivity eg and permeability pe.
Region of interest

Q=B0O,R) :ﬁcuﬁE

with o, € and u defined on 2.
Perfect conductor boundary conditions on

/

o0 = 8 \ B
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* |Maxwell problem for an imperfect conductor.

* &

e Gauge conditions — Regularized variational form.
e Singularities of Type 1 and 2.

® Sobolev and weighted Sobolev regularity.

Eddy current problem.

e Gauge conditions — Regularized variational form.
e Eddy current pb as alimit of Maxwell (as d ~ weo~! — 0).
e Singularities of Type 1l and 2 (are also limitsas 0 — 0).

® Regularity: The field inside a convex conductor is more regular than outside.

/

Singularities of electromagnetic fields in the eddy current limit
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f Maxwell problem for a conductor \

Conductor body 2c: polyhedron with boundary B (connected components B;).

Conductivity oc, permittivity ec and permeability pc.

Exterior region Qg := B(0, R) \ Q¢ for R large enough.

Conductivity og = 0, permittivity eg and permeability puE.

Region of interest = B(0, R) = Q¢ U Qk.

Conductivity o, permittivity € and permeability p defined on 2. Frequency w, fixed.
Perfect conductor boundary conditions on 92 = 9€ \ B.

Source current density jo in LZ(R3)3, with supportin Q¢ and divergence free, i.e.
divjo =0 in Qc and j30p-n =0 on B.

Find the electromagnetic field (E, H)

/

(¢) curlE = —iwpuH in €,
(Maxwell) § (1) curlH = (0 +iwe)E + jo in €,
| (i) Exn =0 & H-n=0 on 9.

-
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/ Ec-ndS:
B.,; QC’

Combining with (2)

Conditions on the divergence of the electric field

Taking the divergence of equation (#2)

divaFlk = 0, with ac = oc +1wec and o = 1w EE.
Therefore
(1) divEc =0 and |divEg =0
(2) acEc-n=agFg-n on B.

Equation (zz) also yields that Ec = curl with ¥ = (iwec + oc) " (H — Jp)
where Jg is a vector potential for j¢. By localization around B;:

div{curl(p;v)} dx = 0.

\ fBi 10:

-ndS =0

~
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f Regularized variational formulation

We propose a variational space independent of o, € and w:

Y(Q) = {u € L2(Q)3: curlu € L2(Q)3,
div uc € Lz(ﬂc), div UE € LZ(QE)
uXn=0 on 019, fBqu-ndS:O}.

The associate variational forms are for u, v € Y(£2)

a(u,v) = / (,u,_1 curlu - curl v — w?eu - E) dx + iw/ ocuc - vcdx
Q Q¢

Qreg (U, v) = a(u,v) + div uc divvcdx + div ug div vg dz.

Qc Qe
The electric field E solution of (Maxwell) is the only solution of

-

EcY(Q), YveY(), ae(F,v)=—1tw(jo,?V)ac-
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/ Corner singularities, general recipe

Fix a corner O (here O € B). Let (p, 1) be polar coordinates centered in O.

Around O, the 3D space is shared into two complementary cones I'c and I'g

reproducing the sharing by 2¢c and (g
R3 = fc U FE.

The general recipe consists in looking for solutions u of the form p"U(e?) of the
principal part of the associated elliptic bvp, with zero RHS:

( curl(uc ' curluc) — Vdivuc = 0 in Tc,
curl(pz ' curlug) — Vdivug =0 in Tg,
\ uXn]=0, [au-n] =0 on I:= 9T'¢c = O,
(u=1curlu X n] = 0, on I,
| [divau] =0, on L.
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f Corner singularities, Maxwell recipe

Set gc = div acuc, gg¢ = div agug and ¢Yc = uc_l curluc, Yg = ,uE_l curl ug .

(

\ Age =0 in T,
[q) =0, [@a='8,q] =0 on L

/ ~

curl pc = Vgc, div(ucyc) =0 in Ic, q =0,
< curl g = Vqg, div(ugyeg) =0 in Ig, Type 2: | general 7,
| [ Xxn]=0, [pp-n]=0 on L. | particular u
[ curl uc = pucYPc, divacuc =qc in I'c, | qg =0,
{ curlug = pugve, divagug = qgg in I'g, Type l: | ¥» = 0,
[uXxn]=0, [au-n] =20 on I. | general u

\_ /
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f Maxwell Corner Singularities of Type 1

uc = VP®c and ug = VP with

2

(ﬂiV"7Q@C =0 in ]?Ca
\ div V(I)E =0 in FE,
[®] =0, [@0,P]=0 on L

\

¢ € H'(S%), Vi € HI(S?)

/acVTgo-VT@b—l— aEVTgo-Vsz:V{/ acey +
G G

C Gk C

The singular density ® isin H,loc(R?’) and is a singularity of the Laplace transmission

problem with a: @« = ac = oc + 1wec in I'c and a = ag = wweg in I'g.

The singularities ® = p*p (1) with Re X > 0 and A(\ + 1) = v eigenvalue and
¢ eigenvector of the problem (with G¢ = I'c N S? and Gg = I'e N S?)

\Forwedges, this reduces to a 1D angular version: V.. — 89 and A% = v.

QEPY
Gk

/

Eddy
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Maxwell Corner Singularities of Type 2

e = VW and Yg = VWP with

"

divVW¥ec =0 in I'c,
\ div V‘I’E =0 N FE,
(P] =0, [ud,¥]=0 on L

\

The density W is a singularity p}"l,b(’ﬂ) of the Laplace transmission problem with p:
p = pc in I'c and o = pe in I'g.
Then u = (A + 1)~ (uV¥ X £ — Vr) with r solution of

/

Arc =0 in I'c,
< A’I"E =0 In FE,
L[] =0, [@dnhr] =[ap](V¥ Xz)-n on L

. /
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Sobolev regularity

Let B, and B, be the limiting regularity Sobolev exponents for the transmission
Laplace operators divaV and div uV respectively. Note that

3
§<5u<2 and 1 < Bq-

Then
Ec € H*(Q2c) and Eg € H°(Qe), Vs < min{B8, — 1,0}
Moreover
E=V®+ E™®
with

EF® € H(¢) and EFE € H*(QE), Vs < min{Ba, 5, }.

-

~
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f Weighted Sobolev spaces \

Isotropic spaces (Kondrat'ev)and m € N, 3 € R
WEGD:{uEL2“D:Va,M“§m,

}.

Isotropic spaces (Nazarov-Plamenevskii) D = Cor E,and m € N, 8 € R

K5 (Q2p) = {u €Lz () : Va, |a] < m,

loc

Veedge, rPrlelgey e L2(70) and rPtlalgay e Lz(”//ec)}.
Anisotropic spaces (with a« = (o, , 3) transverse - longitudinal to the edge)

Mg“b):{uELzﬂb):Va,m4§n%

loc

V e edge, rotlelgay, ¢ L2(7P) and reepdtlonlgey, € LZ(”f/ec)}

-
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Weighted (anisotropic) Sobolev regularity

Suppose jJg smooth.

Let B and (3, be the limiting regularity Sobolev exponents for the transmission
Laplace operators divaV and div 4V respectively.

Splitting of the electric field
E=V® |+ E™®

with
Eg® € M=,(Q%) and Ef® € M%5(Qe), V8 < min{Ba, B}
and the potential
® =%+ o' + P8, 't c H?(Q)

and

-

B2 € M2;(Qc), PE € MZ,(Qe), BF € WS(Q).

/
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Recall Maxwell equations.

Eddy current equations

Find the electromagnetic field (E, H)

/

curlE = —iwuH in (),
(Maxwell) ¢ curlH = (o0 +iwe)E + jo in €,
Exn =0 & H-n=20 on Of}.

\

Find the electromagnetic field (E, H)

(

curlE = —wuH in (),
(Eddy c.) § curlH = oF + j9 in (2,
EXn =0 & H-n=20 on Of.

The Eddy Current equations are defined for o >> ¢ by setting € to 0 in (Maxwell).

/
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Conditions on the divergence of the electric field

Taking the divergence of the 2d equation
divoFE = 0, with o = oc in ¢ and og = 0.

Therefore
divEc=0 and Ec-n =0 on B
We have nothing on div Eg.

We impose as gauge conditions, the conditions we obtained from (Maxwell) before
passing to the limit:

divEg =0| and | [ Eg-ndS =0

-

/
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The eddy current equations as limiting equations

Set we = 0€ where
e O > 0 isasmall parameter
® ¢ has the same order of magnitude as oc.

The assumption that d is small reflects the fact that

the product we is small with respectto oc.

p

curl E® = —iw puH?® in €2,
(PB) { curl H® = (o 4+ i6&)E® + jo in Q,
EPxn =0 & H® . n=0 on Of.

\

-

We write (Maxwell) and (Eddy c.) in a unified way, for d > 0 and d = 0, resp.:

/
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f Regularized variational formulations

We propose a variational space independent of o, € and w:

Y(Q) = {u € L2(0)3: curlu € L2(Q)3,
divuc € L2(Qc), divue € L2(Q)
uXn=0 on 99, fBqu-ndS:O}.

The associate variational forms are for u, v € Y ({2)

a‘s(u, v) = / (,u_l curlu - curlv — woéu - 6) dx + iw/ ocuc * vc dx
Q Q

C

al (u,v) = a’(u,v) + div uc divvcdx + div ug div vg dz.

re
& QC QE

The electric field E solution of (3%) solves

-

E° € Y(Q), YveEeY(Q), a’ (E,v)=—iw(jo,V)ac-

reg

/
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Theorem

(1) 360 > O s.t. the sesquilinear forms ag,

The eddy current limit

6

(i1) We have the uniform bound:

3C > 0, V6 € [0, 6], ||E‘5||Y(Q) C.

(i) We have the convergenceas 6 — O:

3C >0, V6 €[0,00), [|B®—E°||,q < C0.

The singularities are of Type 1 and 2, also in the limit 6 = 0,

and they depend continuously on

-

~

¢ are uniformly coercive for § € [0, do] .
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Eddy current Corner Singularities of Type 1

uc = V®Pc and ug = VP with

( divVPc =0 in I'c,
\ div V(I)E =0 in FE,
| [®] =0, On,Pc=0 on L

We have either (2) or (#%)

(¢) Pc is asingularity of the Laplace Neumann problem, ®¢ has the same degree .
(22) ®c = 0 and Pg is a singularity of the Laplace Dirichlet problem.
Skip to Type 2

. /

Regularity and Singularities for a polyhedral conductor

Maxwell 18



Using the harmonic extension Pg from Gc := I'c N'S? into Gg := I'e N S?, we can
write the “singularities eigenvalue pb” in the unified way for 6 = 0 and § > O:

Find (ioc, po) € HY(Gc) x HE(Ge), Y(tbc,vho) € HY(Gc) x HE(Ge):

as(pc, vo; Y, Yo) = vbs(vc, o Pc, o)

The singularity of Type 1is u = V@& with ®c = r*¢pc and Pg = 7 (Prpc + @o) .

10€E

Let p— )
T= e +idcc

The forms ags and bs depend continuously on § € [0, do]:

as = | Vec-Vic+mn | VPepc - VPeic + Vo - Vhg
Gc G Ge
and
bs = wcPc + ?7/ (Pewc Pec + po Petpe) + (Pewc Yo + @0 Yo)-
Gc G Ge

~

. /
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Eddy current Corner Singularities of Type 2

e = VW and Yg = VWP with

"

divVW¥ec =0 in I'c,
< div V‘I’E =0 In FE,
(¥] =0, [pu0,¥]=0 on L

\

The density W is a singularity p}"l,b(’ﬂ) of the Laplace transmission problem with p:

p = pc in I'c and o = pe in I'g.
Then u = (A + 1)~ (uV¥ X £ — Vr) with r solution of

/

A’rc =0 in FC7
\ ATE =0 in FE,

[r] =0, Onrc = pc(V¥c X x):n on L

\

-

/
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Sobolev regularity

Let B, B and B, be the limiting regularity Sobolev exponents for the Dirichlet
pb on g, Neumann pb on 2¢c and the transmission pb div 'V respectively:

3 3 :
5 < B, <2 and 5 < mm{,BNe”,,BED"} < 2

Then
Ec € H3(Q2¢) Vs < min{g¥* —1,8,}. and
Er € H°(Qg), Vs < min { min{G¢®, Bg"} — 1,,8“}.
Moreover
E=V® -+ E™®
with Ec® € H%(Q¢) Vs < min{Bg®, 3.} and
Eg® € H5(Q), Vs < min{min{3 ", 82"}, 8.}
N\

/
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Conclusion: How to approximate these solutions?

Combining with FEM techniques already investigated for Maxwell equations in

polyhedral bodies, we may hope that the following will provide “good” approximations

(considered the nasty singularities):

e Curl-Conforming Elements (first NEDELEC family of edge elements) —
used with a Lagrange multiplier in g (KIKUSHI formulation)

e Weighted Regularization Method with nodal FEM in €2¢c and Q. |[—

e Singular Complement Method (for axisymmetric domains only).

The performances of all methods may hopefully be dramatically improved by the use of

anisotropic refinement along edges and at corners, and higher degree polynomials.

-

/
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