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Abstract. In a convex polyhedron, a part of the Lamé eigenvalues with hard simple support

boundary conditions does not depend on the Lamé coefficients and coincide with the Maxwell

eigenvalues. The other eigenvalues depend linearly on a parameter s linked to the Lamé coeffi-

cients and the associated eigenmodes are the gradients of the Laplace-Dirichlet eigenfunctions.

In a non-convex polyhedron, such a splitting of the spectrum disappears partly or completely, in

relation with the non- H2 singularities of the Laplace-Dirichlet eigenfunctions. From the Maxwell

equations point of view, this means that in a non-convex polyhedron, the spectrum cannot be

approximated by finite element methods using H1 elements. Similar properties hold in polygons.

We give numerical results for two L-shaped domains.

Introduction

The time-harmonic Maxwell equations have some properties that set them apart from

standard elliptic systems, even if one reformulates them as vector Helmholtz equations. One

example is the weak regularity on non-smooth domains. The standard “electric” and “mag-

netic” boundary value problems generically have solutions that are one order less regular

than solutions of the corresponding Dirichlet problem. Thus on non-convex polyhedra, one

does not have H1 regularity. See COSTABEL & DAUGE [9] for a thorough discussion of

singularities of solutions of Maxwell boundary value problems.

These solutions can be approximated by special finite element methods using a direct

variational formulation coercive in H(curl) and discontinuous (edge) elements, see NED-

ELEC [15]. This formulation presents problems for the computation of eigenvalues, due to

the infinite-dimensional null-space of the curl operator. To overcome these problems, mixed

variational formulations have been constructed, see LEVILLAIN [14] and BOFFI, FERNAN-

DES, GASTALDI & PERUGIA [7, 6], BOFFI, BREZZI & GASTALDI [5].

Another standard way to avoid these problems is to use a variational formulation (“regu-

larized formulation”, see HAZARD & LENOIR [13]) containing the divergence explicitly and

coercive in H(curl)∩H(div) . This corresponds to writing the Maxwell equations as vector

Helmholtz or Lamé equations. While the resolvent then becomes compact and the spectrum

therefore more suited for numerical approximation (see the discussion and the numerical re-

sults in ADAM, ARBENZ & GEUS [1]) the fact remains that the solutions, in general, are not

in H1 .



On the other hand, it has been known for some time [8] that the same boundary value

problems are solvable in H1 . If one uses conforming finite element methods, it is this

second, non-Maxwell, solution that is approximated. This solution can be interpreted as the

solution of a boundary value problem for the Lamé equations where the “electric” boundary

conditions correspond to a hard simply supported boundary and the “magnetic” conditions

to a sliding boundary.

In order to understand the importance of this discrepancy between the Maxwell non- H1

solutions and the H1 non-Maxwell solutions, we analyze here the corresponding eigenvalue

problems. In particular, we study the dependence of the eigenvalues on a parameter s which

can be considered as a penalization parameter for the vanishing divergence condition in the

Maxwell equations. For the H1 (Lamé) problem, s is equal to λ + 2 if (λ, µ) are the

Lamé constants and µ = 1 . We present theoretical and numerical evidence showing that

this dependence is completely different for the cases of convex or non-convex polyhedra.

In section 1, we introduce the Maxwell eigenproblems and prove the simple dependence

of the eigenvalues on the parameter s : some are constant and the others are linear. In section

2, we give the key of the comparison of Maxwell and Lamé problems: the coincidence of

different bilinear forms (based on the curl, the divergence or the strain tensor) for H1 fields

in a polyhedra. In section 3, we investigate Lamé eigenproblems and prove the convergence

of eigenvalues to the Stokes eigenvalues as s → ∞ . In section 4, we give peculiarities of

two-dimensional problems and numerical results showing the different behaviors of Maxwell

and Lamé eigenvalues in a non-convex polygon.

We assume everywhere that Ω is a simply connected Lipschitz domain. We call poly-

hedron a three-dimensional Lipschitz domain with piecewise plane boundary and curved

polyhedron a Lipschitz domain with piecewise smooth boundary such that in any point of

∂Ω , Ω is locally C ∞ -diffeomorphic to a neighborhood of a boundary point of a polyhe-

dron. Similarly, a polygon is a two-dimensional Lipschitz domain with piecewise straight

boundary and a curvilinear polygon is defined like curved polyhedra.

In general, we will denote by bold letters the functional spaces for the vector fields. Thus

Hs(Ω) denotes the usual Sobolev space on Ω and Hs(Ω) denotes Hs(Ω)3 . The space of

H1(Ω) functions with zero traces is denoted by
◦

H1(Ω) . Finally, as usual for Maxwell

equations, we need spaces of fields with square integrable curls:

H(curl ; Ω) = {u ∈ L2(Ω)3 | curlu ∈ L2(Ω)3}, (0.1)

and with square integrable divergences

H(div ; Ω) = {u ∈ L2(Ω)3 | div u ∈ L2(Ω)}. (0.2)

We will use
〈·, ·〉 for the duality bracket and (·, ·) for the L2 product.
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1 Maxwell eigenproblems

The eigenfrequency problem in a domain Ω consist in finding non-zero L2 electromag-

netic eigenfields (E, H) and non-zero eigenfrequency ω such that

curlE − iω µH = 0 and curlH + iω εE = 0 in Ω. (1.1)

Here E is the electric part and H the magnetic part of the electromagnetic field. The

exterior boundary conditions on ∂Ω are those of the perfect conductor ( n denotes the unit

outer normal on ∂Ω ):

E × n = 0 and H · n = 0 on ∂Ω. (1.2)

Here we assume ε and µ positive constants, and without restriction we normalize the prod-

uct εµ to 1 .

Natural spaces for a variational formulation of problem (1.1)-(1.2) are XN (Ω) for the

electric field and XT (Ω) for the magnetic field according to

XN(Ω) = {u ∈ H(curl ; Ω) ∩ H(div ; Ω) | u × n = 0 on ∂Ω},

XT (Ω) being the similar space with the zero normal component boundary condition. Then,

problem (1.1)-(1.2) can equivalently be written: find non-zero E and non-zero ω such that

E ∈ XN (Ω), ∀Ẽ ∈ XN (Ω),

∫

Ω

curlE · curl Ẽ = ω2

∫

Ω

E · Ẽ. (1.3)

The above bilinear form (curl ·, curl ·) is not coercive on XN(Ω) . Moreover the gradient

gradΦ of any function Φ ∈
◦

H1(Ω) yields a solution of this problem associated with the

value ω = 0 . To avoid these drawbacks, a standard procedure is the penalization of the

above equation by the (div ·, div ·) form: for any s > 0 , we introduce the new problem:

find non-zero u such that

u ∈ XN(Ω), ∀v ∈ XN (Ω),
∫

Ω

curlu · curlv + s div u div v = ω2

∫

Ω

u · v.
(1.4)

Thus (1.4) is nothing but the spectral problem for the operator Ms defined from XN(Ω)
into its dual by

∀u, v ∈ XN (Ω), −〈
Msu, v

〉
=

∫

Ω

curlu · curlv + s div u div v. (1.5)

Since the bilinear form defining −Ms is coercive on XN(Ω) , and since XN(Ω) is

compactly embedded in L2(Ω)3 , see WEBER [16], for any s > 0 the spectrum of −Ms is
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discrete and formed by a sequence of eigenvalues σk[Ms] (with repetition according to the

multiplicity) which tend to infinity. Let uk[Ms] be an associated eigenvector, i.e. satisfying

−Msuk = σkuk.

For the comparison of eigenproblems (1.1)-(1.2) and (1.4), we need the Laplace-Dirichlet

operator ∆Dir defined from
◦

H1(Ω) into its dual H−1(Ω) by

∀Φ, Ψ ∈
◦

H1(Ω), −〈
∆DirΦ, Ψ

〉
=

∫

Ω

grad Φ gradΨ . (1.6)

Theorem 1.1 The eigenpairs (σk[Ms], uk[Ms]) span the two following disjoint families:

(i) the pairs (ω2, E) with ω 6= 0 , E and H = − i
ωµ

curlE the solutions of problem

(1.1)-(1.2),

(ii) the pairs (sτ, gradΦ) with (τ, Φ) the eigenpairs of −∆Dir .

PROOF. a) If ω 6= 0 , E and H = − i
ωµ

curlE solve the problem (1.1)-(1.2), then

div E = 0 and E belongs to XN(Ω) . Thus (ω2, E) is an eigenpair of −Ms .

If (τ, Φ) is an eigenpair of −∆Dir , then gradΦ belongs to XN(Ω) and (sτ, gradΦ) is

an eigenpair of −Ms .

b) Conversely, let (σ, u) be an eigenpair of −Ms . Let p = div u .

If p is zero then ω =
√

σ , E = u and H = − i
ωµ

curlu is solution of problem (1.1)-

(1.2).

If p is non-zero, taking as test functions the gradients of all Ψ ∈
◦

H1(Ω, ∆) , i.e. the func-

tions in
◦

H1(Ω) such that ∆Ψ ∈ L2(Ω) , we obtain

∀Ψ ∈
◦

H1(Ω, ∆),

∫

Ω

sp ∆DirΨ = σ

∫

Ω

u · gradΨ.

Since for any Ψ ∈
◦

H1(Ω) and u ∈ XN(Ω) , there holds (u, gradΨ) = −(div u, Ψ) , we

have

∀Ψ ∈
◦

H1(Ω, ∆),

∫

Ω

p (s∆DirΨ + σΨ) = 0.

As p is non-zero, σ/s belongs to the spectrum of −∆Dir . We deduce from the Fredholm

alternative that p belongs to the associated eigenspace. Thus p belongs to
◦

H1(Ω, ∆) and

the field w defined as

w := u +
s

σ
grad p ∈ XN(Ω)

satisfies

div w = p +
s

σ
∆p = 0 and curlw = curlu.
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Thus for any v ∈ XN (Ω) there holds

∫

Ω

curlw · curlv =

∫

Ω

σu · v − sp div v

=

∫

Ω

(σu + s grad p) · v =

∫

Ω

σw · v.

Whence, either w = 0 and u = − s
σ
grad p belongs to the second family, or the pair

(σ, w) belongs to the first family and σ is a multiple eigenvalue of −Ms . In the latter case,

we have obtained that the corresponding eigenspace splits according to the two families (i)

and (ii).

Remark 1.2 We will see in §4 that in plane domains, the eigenpairs of the first family are the

pairs (τ, curlΦ) with (τ, Φ) the eigenpairs of −∆Neu , with ∆Neu the Laplace operator

with Neumann boundary conditions.

2 Maxwell and Lamé bilinear forms

We have just seen that the bilinear forms (curl ·, curl ·) + s(div ·, div ·) can be as-

sociated for any s ≥ 0 to the Maxwell equations. As well known, the bilinear form

2µ(ε·, ε·) + λ(div ·, div ·) is associated to the elasticity system for a material of Lamé coef-

ficients λ and µ . These two families of forms are strongly linked to each other as we are

going to show now.

The results of this section are more specific about the closure of C
∞ fields in the spaces

XN and XT than [8] where the closedness of XN ∩ H1 in XN and of XT ∩ H1 in XT

was observed. A related result is the closedness of H2 ∩
◦

H1 in {u ∈
◦

H1 | ∆u ∈ L2} on a

polyhedron, which has been known for a long time, see HANNA & SMITH [12].

Let us recall that the strain tensor εjk(u) is 1
2
(∂juk + ∂kuj) and ε(u) : ε(v) denotes

the product
∑

jk εjk(u)εjk(v) . Similarly gradu : gradv denotes
∑

jk ∂juk∂jvk and we

write gradu : (gradv)⊤ for
∑

jk ∂juk∂kvj . Then it is easy to obtain the two following

formulas for any vector fields u and v in H1(Ω) :

curlu · curlv = grad u : gradv − gradu : (gradv)⊤, (2.1)

2ε(u) : ε(v) = gradu : gradv + gradu : (grad v)⊤, (2.2)

while the comparison of (gradu : (gradv)⊤) with (div u, div v) requires two integra-

tions by parts and the introduction of a few geometrical objects.

We assume that Ω is a curved polyhedron. Each of its faces Γi is part of a smooth

surface Si . Let ni be the unique extension of the (exterior to Ω ) normal vector field to

Si as a smooth vector field of unit length. We recall that ∂nini ≡ 0 . On the boundary

Γ = ∪iΓ
i of Ω we can define for any vector field u ∈ H1(Ω) its normal and tangential

components on the boundary

un = u · n and u⊤ = n × (u × n) = u − unn,
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and for u, v ∈ H1(Ω) the bilinear form

b(u, v) =

∫

Γ

(
u⊤ · B(v⊤) + (tr B) unvn

)
dσ (2.3)

where on each Γi , B = gradni is the second fundamental form of Si . Thus, on Γi ,

tr B = div ni and u⊤ · B(v⊤) = u · B(v) =
∑

jk ujvk∂jn
i
k .

Finally, for u ∈ H2(Ω) and ϕ ∈ H2(Ω) we can define on each Γi the tangential

divergence div⊤ u⊤ and the tangential gradient grad⊤ ϕ and for u, v ∈ H2(Ω) , the

following form makes sense

d(u, v) =
∑

i

∫

Γi

(
grad⊤un · v⊤ − div⊤u⊤ vn

)
dσi. (2.4)

The following partial integration formulas are similar to those of GRISVARD [11, Thm

3.1.1.2].

Lemma 2.1 Let Ω be a curved polyhedron. For any u, v ∈ H2(Ω) there holds

∫

Ω

gradu : (gradv)⊤ dx =

∫

Ω

div u div v dx − b(u, v) + d(u, v). (2.5)

PROOF. Two integrations by parts yield
∫

Ω

grad u : (gradv)⊤ dx = −
∫

Ω

grad(div u) · v dx +
∑

j,k

∫

Γ

(∂juk nkvj) dσ

=

∫

Ω

div u div v dx +
∑

j,k

∫

Γ

(∂juk nkvj − div u vn) dσ.

The integrand over Γ is equal to

∂nu · v − (curlu × n) · v − div u vn.

Using the relations

div u = div⊤ u⊤ + ∂nun + un div n

∂nu = grad un + curlu × n − (u · grad)n

(grad un) · v = (grad⊤ un) · v⊤ + (∂nun) vn,

we obtain that the integrand over Γ is equal to d(u, v) − b(u, v) .

As a consequence of (2.1)-(2.5) we obtain

Lemma 2.2 Let Ω be a curved polyhedron. For any u, v ∈ H2(Ω) there holds

∫

Ω

curlu · curlv + div u div v dx =

∫

Ω

gradu : gradv dx (2.6)
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+ b(u, v) − d(u, v)

=

∫

Ω

2ε(u) : ε(v) − div u div v dx (2.7)

+ 2
(
b(u, v) − d(u, v)

)
.

If moreover the faces of Ω are plane, the above formulas hold with b(u, v) ≡ 0 .

An important particular case is the situation where either the tangential or the normal

components of the vector fields u and v are zero on the boundary of Ω . Moreover, in such

a situation, the equalities deduced from (2.6)-(2.7) extend to vector fields which have only

the H1 regularity. Let us define

HN(Ω) = H1(Ω) ∩ XN (Ω) and HT (Ω) = H1(Ω) ∩ XT (Ω).

Theorem 2.3 Let Ω be a curved polyhedron. For any u, v ∈ HN (Ω) and for any u, v ∈
HT (Ω) there holds

∫

Ω

curlu · curlv + div u div v dx =

∫

Ω

gradu : grad v dx + b(u, v) (2.8)

=

∫

Ω

2ε(u) : ε(v) − div u div v dx + 2b(u, v). (2.9)

If moreover the faces of Ω are plane, the above formulas hold with b(u, v) ≡ 0 : for any u

in HN (Ω) or HT (Ω) there holds

∫

Ω

| curlu|2 + | div u|2 =

∫

Ω

| gradu|2 =

∫

Ω

2|ε(u)|2 − | div u|2. (2.10)

PROOF. For any u, v ∈ H2(Ω) satisfying either u⊤ = v⊤ = 0 or un = vn = 0 on Γ ,

the form d(u, v) is zero and formulas (2.8)-(2.9) are obvious. In order to extend them to

vector fields in HN(Ω) or HT (Ω) , we need a density result of H2 ∩ HN(Ω) in HN(Ω)
(and not only the well-known density of H2 in H1 ).

This result requires a rather technical proof (see [10] for a complete version) and can be

roughly described in the following way. A vector field u ∈ HN(Ω) being given, the first

step consists in approximating it by fields of the form ϕku where ϕk are smooth cut-off

functions which are zero in a neighborhood of the corners and edges of Ω . This can be

achieved by functions of the type 1 − χ(ρ
ε
) at each corner (with ρ the distance to this

corner), but has to be combined by the multiplication by rα with α → 0 at each edge (with

r the distance to this edge). The second step is a standard regularizing procedure, combined

with the lifting of the traces which should be zero inside each face.

Remark 2.4 In Lemma 2.2, all terms except d(u, v) extend directly by continuity to u, v ∈
H1(Ω) . It follows that d(u, v) admits such an extension, too. With this extended definition

of d(u, v) , the formulas (2.6)-(2.7) remain valid for u, v ∈ H1(Ω) , cf [8].
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Corollary 2.5 Let Ω be a curved polyhedron. Then HN(Ω) is a closed subspace of

XN (Ω) , and HT (Ω) is a closed subspace of XT (Ω) .

PROOF. It suffices to note that the bilinear form b(u, v) in (2.8) is compact with respect to

the H1 norm.

3 Lamé eigenproblems

Everywhere in this section, Ω is supposed to be a polyhedron (i.e. with plane faces).

As a consequence of polarization of formula (2.10) the Lamé bilinear form associated with

Lamé constants µ = 1 and λ = s−2 coincides in HN(Ω) with the Maxwell bilinear form

∀u, v ∈ HN(Ω),

∫

Ω

2ε(u) : ε(v)+ (s− 2) div u div v =

∫

Ω

curlu · curlv + s div u div v.

Let us introduce the operator Ls defined from HN(Ω) into its dual by

∀u, v ∈ HN(Ω), −〈
Lsu, v

〉
=

∫

Ω

curlu · curlv + s div u div v. (3.1)

Thus Ls is defined by the same bilinear form as Ms in (1.5), but on a different space in

general. The natural boundary condition is div u = 0 on Γ . Let us recall, see BIRMAN &

SOLOMYAK [3, 4]:

Theorem 3.1 Let Ω be a curved polyhedron. Then

XN(Ω) = HN(Ω) +
{
gradΦ | ∆DirΦ ∈ L2(Ω)

}
.

In particular for a polyhedron, HN(Ω) = XN(Ω) if and only if Ω is convex.

Thus Ms and Ls coincide when Ω is convex and it is interesting to study the spectrum

of Ls in the other case. From the self-adjointness of Ls and general results we have

Lemma 3.2 Let Ω be a curved polyhedron. The spectrum of Ls is discrete for any s >
0 . The eigenvalues σk[Ls] of Ls ordered in a non-decreasing sequence, are continuous

non-decreasing functions of s . After a possible renumbering, these eigenvalues depend

analytically on s .

From Theorem 1.1, we see that the eigenvectors of Ms do not depend on s . In the case

of Ls there holds

Theorem 3.3 Let Ω be a polyhedron. The eigenvectors of Ls which do not depend on s ,

are the eigenvectors of Ms which belong to H1(Ω) .
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PROOF. It is obvious that the H1 eigenvectors of Ms are eigenvectors of Ls . Conversely,

let u be an eigenvector of Ls for any s > 0 associated with the eigenvalue σ(s) . Then,

derivating with respect to s the equality curl curlu − s grad div u = σ(s)u yields

∀s > 0, −grad div u = σ′(s)u.

Thus σ′ is constant. If σ′ 6= 0 , then div u ∈ H2 ∩
◦
H1(Ω) and −∆Dir(div u) = σ′ div u ,

moreover u = 1
σ′

grad div u : we are in family (ii) of Theorem 1.1. If σ′ = 0 , then

div u = 0 and curl curlu = σu : we are in family (i) of Theorem 1.1.

Let σk[S] , k ≥ 1 , be the non-decreasing sequence of the eigenvalues of the Stokes

operator S :

u ∈ VN(Ω), ∀v ∈ VN(Ω),

∫

Ω

gradu : gradv = σ

∫

Ω

u · v, (3.2)

where

VN(Ω) = {u ∈ HN (Ω) | div u = 0}.
And we recall that σk[Ls] , k ≥ 1 , are the eigenvalues of Ls ordered in a non-decreasing

sequence.

Theorem 3.4 Let Ω be a polyhedron. For any k ≥ 1 , σk[Ls] tends to σk[S] as s → ∞
and the corresponding Lamé eigenspaces tend to the Stokes eigenspaces.

PROOF. In order to keep the proof as simple as possible, we assume that the Stokes eigen-

values are simple and that each Lamé eigenvalue σk[Ls] is simple for s large enough.

a) Let (σ0, u0) be a Stokes eigenpair. Let us assume that it is simple. Thus there exists

p0 ∈ L2(Ω) , p0|
Γ

= 0 such that

−∆u0 − grad p0 = σ0u0 and div u0 = 0 in Ω .

We can construct a sequence (σℓ, uℓ, pℓ) , ℓ ≥ 1 , with σℓ ∈ R , uℓ ∈ HN(Ω) and pℓ ∈
L2(Ω) , pℓ|

Γ
= 0 such that

−∆uℓ − grad pℓ = σ0uℓ + σ1uℓ−1 + . . . + σℓu0 and div uℓ = pℓ−1 in Ω .

Indeed, after subtraction of a solution u∗ ∈ HN(Ω) of the equation div u∗ = pℓ−1 , the

above equation has the form (S − σ0)ũ
ℓ = f ℓ + σℓu0 , which is solvable if its right hand

side is orthogonal to u0 : this can be achieved by the choice of σℓ :

σℓ = − (f ℓ, u0)

(u0, u0)
.

With ε = 1/(s − 1) , we see that the power series in ε (
∑

ℓ≥0 εℓσℓ,
∑

ℓ≥0 εℓuℓ) is a formal

eigenpair of Ls since

−Lsu = −∆u − (s − 1) graddiv u.
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Let us prove now that this also holds in the sense of asymptotic expansions: Setting for any

m ≥ 1 ,

σm =
m∑

ℓ=0

εℓσℓ and um =
m∑

ℓ=0

εℓuℓ

we immediately check that

Ls(u
m) + σmum = εm∆um +

2m∑

ℓ=m

εℓ
m∑

k=ℓ−m

σkuℓ−k.

Whence the uniform estimate for ε small enough

‖Ls(u
m) + σmum‖

HN (Ω)′
≤ Cεm‖um‖

HN (Ω)
.

But, with uk the normalized (in L2(Ω) ) eigenvector associated to the eigenvalue σk =
σk[Ls] , for any σ ∈ R and u ∈ HN(Ω) there holds

‖Ls(u) + σu‖2

HN (Ω)′
=

∑

k≥1

(σ − σk)
2(u, uk)

2‖uk‖2

HN (Ω)′

≥ C
∑

k≥1

(σ − σk)
2

σk
(u, uk)

2.

Therefore
∑

k≥1

(σm − σk)
2

σk
(um, uk)

2 ≤ Cε2m.

Hence there exists k0 such that lims→∞ σk0
(s) is equal to limε→0 σm = σ0 , and

∃δ > 0, ∀k 6= k0,
(σm − σk)

2

σk

≥ δ,

thus ∑

k 6=k0

(um, uk)
2 ≤ Cε2m.

On the other hand, for k = k0 , we must have |σm−σk0
| ≤ cεm . This proves that

∑
ℓ≥0 εℓσℓ

is the asymptotic development of σk0
as s → ∞ .

b) Conversely, let us fix σ(s) = σk[Ls] the k -th eigenvalue of Ls . From part a) of the

proof we deduce that σ(s) ≤ σk[S] . Thus σ(s) is bounded as s → ∞ and has a limit σ0 .

The corresponding normalized eigenvectors u(s) = uk[Ls] are thus bounded in the domain

of any power of Ls , thus in H1+δ(Ω) for δ > 0 small enough. Thus u(s) has a limit u0

in HN (Ω) . Going back to the equations satisfied by u(s) we find that

div u0 = 0 and (s − 1) grad div u(s) −→ −∆u0 − σ0u0 in HN (Ω)′ .

Setting p(s) = (s − 1) div u(s) , we obtain that it converges in L2(Ω) to a limit p0 . Thus

(σ0, u0) is a Stokes eigenpair.
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Combining the result of Theorem 3.4 with the mini-max formulas for the eigenvalues,

we obtain the following inequalities:

Corollary 3.5 Let Ω be a polyhedron. We recall that σk[Ms] , σk[Ls] , σk[S] denote the

k -th eigenvalue with repetition according to the multiplicity of the self-adjoint operators

Ms , Ls and S respectively. For any k ≥ 1 and any s > 0 there holds

σk[Ms] ≤ σk[Ls] ≤ σk[S]. (3.3)

4 Examples in dimension 2

Let Ω be a plane polygon. Thus, when defined with the bilinear form

u, v −→
∫

Ω

curl u · curl v + s div u div v

with curl u = ∂1u2 − ∂2u1 the scalar curl, Ms and Ls have the same properties as in

polyhedra. Moreover there holds:

Theorem 4.1 Let Ω be a curvilinear polygon. Then the solutions of the Maxwell problem

(1.1)-(1.2) are the pairs (τ, curlΨ) with (τ, Ψ) the eigenpairs of −∆Neu .

PROOF. Let (ω2, u) be a solution of (1.1)-(1.2). Then, setting Ψ = curl u we have

div u = 0 and − curlΨ = ω2u.

Therefore curlΨ ∈ L2 thus Ψ belongs to H1(Ω) (note that we are in dimension 2 ).

Moreover, for all Φ ∈ H1(Ω) = H(curl; Ω) there holds
∫

Ω

gradΨ · gradΦ =

∫

Ω

curlΨ · curlΦ =

∫

Ω

ω2u · curlΦ

= ω2

∫

Ω

curl u Φ =

∫

Ω

ω2Ψ Φ.

Hence ω2 belongs to the spectrum of ∆Neu and Ψ is an associated eigenvector. Finally

u = 1
ω2 curlΨ .

Remark 4.2 In dimension 2 , the spectrum of Ms only derives from the Dirichlet and Neu-

mann problems for the Laplace operator. A consequence of this is the continuity of the

spectrum of Ms with respect to the domain. For example if we consider a sequence of regu-

lar polygons Ωm which tend to the unit disk Ω , each eigenvalue of Ms on Ωm converges

to the corresponding eigenvalue of Ms on Ω . On each Ωm , according to Theorem 3.1 the

spectrum of Ls is equal to the the spectrum of Ms . But at the limit, the bilinear form of Ls

on Ω involves the curvature:

(u, v) 7−→
∫

Ω

curl u · curl v + s div u div v dx − 2

∫

Γ

unvn dσ.
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Its spectrum is necessarily different from the limit as m → ∞ . This behavior can be

compared with the Babuška polygon-circle paradox [2].

We show results of computations of Maxwell and Lamé eigenvalues (the σ[Ms] and

σ[Ls] ) versus s in two different L-shaped domains: each has one non-convex corner, thus

XN (Ω) and HN(Ω) differ by a one-dimensional space

XN (Ω) = HN (Ω) ⊕ span
{
grad(χ(r) r2/3 sin 2θ

3
)
}

(4.1)

with (r, θ) polar coordinates at the non-convex corner and χ a smooth cut-off function ≡ 1
in a neighborhood of this corner.

The computations were made with the program Stress Check∗ using a p-version finite

element method. Since this program is meant for computations in elasticity theory, it insists

on having a positive bulk modulus λ which means s > 2 .

∗Stress Check is a trademark of Engineering Software Research and Development, Inc., St. Louis, Missouri,

USA.
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Example 1. Ω = Σ0 \ Σ1 where Σ0 is the square [0, 1] × [0, 1] and Σ1 the square

[3
4
, 1] × [3

4
, 1] . The important feature of this domain is its symmetry with respect to the first

diagonal.

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Figure 1: Lowest eigenvalues (symmetric domain)

In Fig. 1, the grey lines are the Maxwell eigenvalues divided by 4π2 , deduced from

the computation of the Dirichlet and Neumann eigenvalues of the Laplace operator. We can

compare the Neumann eigenvalues with those on the square Σ0 , which are, once divided by

4π2 : double at 1
4

, simple at 1
2

, double at 1 , etc...

The circles show the results of the computation of the Lamé eigenvalues, still divided by

4π2 . We can see sets of eigenvalues (grey) which are aligned and coincide with Maxwell

eigenvalues. We join the other sets by black lines.

We observe in Fig. 1 that the first Lamé eigenvalue coincides with the second Maxwell

eigenvalue: this is due to the presence of the singularity in the first Maxwell eigenvector, and

to its absence in the second one. And more generally, we see that one out of two Maxwell

eigenvalues (of family (i), independent of s ) coincide with Lamé eigenvalues. Since Ω is

symmetric, the eigenvectors of ∆Neu are alternatively odd and even with respect to the first

diagonal. Those which are even cannot contain the strong non- H2 singularity which is odd

( r2/3 cos 2θ
3

).
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We also see the first Maxwell eigenvalue of family (ii), generated by the first Dirichlet

eigenvalue: the first Dirichlet eigenvector has always the strongest singularities because it

has a constant sign. This Maxwell eigenvalue does not correspond to any Lamé eigenvalue.

In the second figure the eigenvalues between 2.5 and 7.5 are represented.

2 3 4 5 6 7 8
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Figure 2: Further eigenvalues (symmetric domain)

In Fig. 2, the grey lines are still the Maxwell eigenvalues: now the two families appear.

Concerning family (ii), we see the continuation of the first one (corresponding to the Dirichlet

eigenvalue 1
2

on Σ0 ) and the second one (corresponding to the Dirichlet eigenvalue 5
4

on

Σ0 ).

We still join by solid lines the sets of computed Lamé eigenvalues which are not aligned

on Maxwell eigenvalues of family (i). Now appear curved lines like before (in black), but

also sets of eigenvalues (in grey) exactly aligned on Maxwell eigenvalues of family (ii).

Whereas the Maxwell eigenvalues issued from the first Dirichlet eigenvalue coincide with no

Lamé eigenvalues, the set of Maxwell eigenvalues issued from the second Dirichlet eigen-

value is fully populated by Lamé eigenvalues. This is due to the H2 regularity of the second

Dirichlet eigenvalue, which is odd with respect to the diagonal: concerning family (i), the

situation is exactly converse to that of family (i) (odd Dirichlet eigenvectors are H2 ).

On both Fig. 1 and 2, we can see the effects of inequality (3.3).

14



Example 2. We take another L-shaped domain: Ω = Σ′
0 \ Σ′

1 where Σ′
0 is the rectangle

[0, 1]× [0, 2−1/5] ≃ [0, 1]× [0, 0.87055] and Σ′
1 the rectangle [1− 1√

13
, 1]× [e−1/2, 2−1/5] ≃

[0.7226, 1] × [0.60653, 0.87055] .

2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Figure 3: Lowest eigenvalues (non-symmetric domain)

In Fig. 3 and 4, the grey lines are still the Maxwell eigenvalues divided by 4π2 , deduced

from the computation of the Dirichlet and Neumann eigenvalues of the Laplace operator.

The circles show the results of the computation of the Lamé eigenvalues, still divided by

4π2 . In contrast to the previous case, the natural sets of Lamé eigenvalues follow the natural

increasing order. We join them by black lines. We see very clearly the effects of inequality

(3.3).

Another phenomenon appears: at each crossing of two Maxwell eigenvalues, one Lamé

eigenvalue is present. The reason is the presence of only one non-convex corner and relation

(4.1): thus in a Maxwell eigenspace of dimension 2 , there is at least a one dimensional

subspace contained in HN(Ω) , thus a Lamé eigenspace.
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2 2.5 3 3.5 4 4.5
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Figure 4: Further eigenvalues (non-symmetric domain)

We can also see that Lamé eigenvalues are more or less close to Maxwell eigenvalues.

This is in proportion of the coefficient of the singularity in each Maxwell eigenvector. In

the following table, we show these coefficients (“Generalized Stress Intensity Factors”) as

computed by Stress Check for some of the eigenvalues;

k Maxwell Eigenvalue Nearest Lamé Eigenv. GSIF

14 3.8704 3.9998 -6.399

15 4.0496 4.1105 2.366

16 4.5168 4.5204 0.921

17 5.0586 5.0612 -1.015

18 5.2766 -12.927

19 5.3512 5.3510 -1.535

20 5.8428 5.9301 -7.417
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