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It is well known that, in the presence of non-convex corners or edges on the bound-
ary, nodal finite elements associated with a conformal curl-div formulation do not
converge to the correct limit when the electric or magnetic boundary conditions
are also imposed in the discrete space. We formulate and investigate in a simple
two-dimensional situation a method where the boundary conditions are not im-
posed in the discrete space but obtained by a penalization method, which amounts
to a sort of impedance condition.

1 Regularization by a divergence term and penalization of the

boundary condition

We investigate the spectral problem for Maxwell equations with perfect con-
ductor boundary conditions in a bounded domain Ω which we assume for the
moment to be 3-dimensional. This problem consists in finding non-zero L2

electric and magnetic eigenfields E and H , and non-zero eigenfrequency ω
such that

curlE − iωH = 0, curlH + iωE = 0 in Ω,
E × n = 0, Hn = 0 on ∂Ω.

(1)

Here n denotes the unit outer normal on ∂Ω and Hn is the normal component
of H on the boundary.

One of the two fields can be eliminated from equations (1), let us say E,
and we obtain for the magnetic field the problem curl curlH = ω2

H with
the divergence constraint div H = 0 and the boundary condition Hn = 0.
This latter problem admits a variational formulation in the space XT(Ω) of
L2(Ω) fields u with L2(Ω) divergence and curl, and zero normal trace un:

Find non-zero H ∈ XT(Ω) and non-zero ω such that:

∀H
′ ∈ XT(Ω),

∫

Ω

curlH · curlH ′ = ω2

∫

Ω

H · H ′. (2)

The above bilinear form (curl ·, curl ·) is not coercive on XT(Ω). To cure
this, a standard procedure is the penalization by the (div ·, div ·) form: for
any s > 0, we introduce the new problem:
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Find non-zero u and ω such that:

∀v ∈ XT(Ω),

∫

Ω

curlu · curl v + s div u div v = ω2

∫

Ω

u · v. (3)

Any solution (u, ω) of problem (2) has zero divergence, thus is solution of
(3) for all s > 0. But if Ω has non-convex edges (which is a rather standard
situation if Ω is a region outside a conductor) then solutions u do not belong
to H1, in general. If one wantsa to use curl-div conforming elements (thus
continuous) for the FEM Galerkin approximation of problem (3), the discrete
solution converges to the spectrum of a Lamé problem posed in the subspace
HT(Ω) of H1(Ω) fields u satisfying the boundary condition un = 0, see 4 where
the case of electric boundary conditions is investigated.

The reason for this phenomenon is the following: the space HT(Ω) is
closed in XT(Ω) for the natural norm of this latter space. Therefore any
Galerkin method using a discrete space of continuous piecewise polynomial
continuous fields, thus included in HT(Ω), yields a discrete solution in HT(Ω),
and is consequently unable to approach a solution of problem (3) which does
not belong to HT(Ω).

But smooth fields are dense 2,3 in the larger space W defined as

W =
{

u ∈ L2(Ω); div u ∈ L2(Ω), curlu ∈ L2(Ω), un ∈ L2(∂Ω)
}

.

Therefore, there is no theoretical obstruction to the discretization by continu-
ous elements in the space W. But we have to retrieve the boundary conditions.
This can be done by the introduction of the new bilinear form a[s, λ] defined
on W × W for s > 0 and λ > 0 as:

a[s, λ](u,v) =

∫

Ω

curlu · curl v + s div u div v + λ

∫

∂Ω

un vn. (4)

Then the boundary conditions satisfied by solutions of the problem

u ∈ W, ∀v ∈ W, a[s, λ](u,v) = ω2

∫

Ω

u · v, (5)

are all “natural” and given by

curlu × n = 0 and s div u + λun = 0 on ∂Ω, (6)

whereas the tangential boundary conditions associated with problem (3) are
still curlu × n = 0 but the normal one is simply un = 0.

aPossible reasons for trying to use nodal elements instead edge elements 5,1 can be
1) The wish to adapt pre-existing nodal codes,
2) The need to couple eletromagnetic data with hydrodynamics,
3) The development of simple p or hp versions,
4) Mere curiosity.
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2 Spectrum of the penalized problem

Taking as test functions in problem (5) the fields gradients of a potential
v = gradϕ where ϕ is any function in the domain D(∆Neu) consisting of the
functions ψ ∈ H1(Ω) satisfying ∆ψ ∈ L2(Ω) and ∂nψ = 0 on ∂Ω, we find that
the L2 function p := div u is solution of

∀ϕ ∈ D(∆Neu), s

∫

Ω

p∆ϕ = ω2
(

−

∫

Ω

pϕ+

∫

∂Ω

un ϕ
)

. (7)

Next we note that the solution q ∈ H1(Ω) of the Neumann problem, −s∆q =
ω2p in Ω with s∂nq = ω2un on ∂Ω, satisfies

∀ϕ ∈ D(∆Neu), s

∫

Ω

q∆ϕ = ω2
(

−

∫

Ω

pϕ+

∫

∂Ω

un ϕ
)

. (8)

Comparing (7) and (8) we obtain that p− q is orthogonal to the range of ∆
from its domain D(∆Neu), that is p − q is a constant. Combining with the
boundary condition s div u+λun = 0 in (6), we obtain that p solves the Robin
problem −s∆p = ω2p in Ω with s∂np+ ω2 s

λ
p = 0 on ∂Ω. Going back to the

variational formulation we have obtained

Lemma 1 If (u, ω) solves problem (5), then p := div u belongs to H1(Ω) and
solves

∀ϕ ∈ H1(Ω), s

∫

Ω

grad p gradϕ = ω2
(

∫

Ω

pϕ+
s

λ

∫

∂Ω

pϕ
)

. (9)

Theorem 2 Let s > 0 and λ > 0 be fixed.
If (u, ω) solves problem (5), then (i) or (ii) holds:
(i) div u = 0 and (u, ω) solves problem (2).
(ii) p := div u is an eigenvector of the Robin problem (9) and curlu = 0.

Proof. We consider p := div u. If p = 0, then (u, ω) obviously solves
problem (2). If p 6= 0, by Lemma 1, p is an eigenvector of the Robin problem
(9). Let us introduce w defined as −sgrad p/ω2. We check that w belongs
to W and that (w, ω) solves problem (5). Thus the field w is in situation (ii).
Finally, the field u − w, if non-zero, is in situation (i).

3 Two-dimensional case

We now assume that the domain Ω is two-dimensional. We consider the
magnetic eigenproblem corresponding to (2)

∀H
′ ∈ XT(Ω),

∫

Ω

curlH · curlH ′ = ω2

∫

Ω

H · H ′, (10)
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where curlu is the scalar curl ∂1u2 − ∂2u1 and the space XT(Ω) is defined
similarly with curl replaced by curl. Note that such solutions correspond to
solutions of (1) in the cylinder domain Ω × R with an electric field oriented
along the axis of the cylinder and a transverse magnetic field, both being
invariant by translation. We associate to (10) its regularized-penalized version
(6) with a[s, λ] defined as

a[s, λ](u,v) =

∫

Ω

curl u · curl v + s div u div v + λ

∫

∂Ω

un vn. (11)

Then ψ := curlu plays a similar role as the divergence and we can study
ψ separately by considering test functions of the form curlϕ with ϕ in the
domain D(∆Dir) of the Dirichlet problem, i.e. ϕ ∈ H1

0(Ω) satisfying ∆ϕ ∈
L2(Ω). Theorem 2 has now a more precise version.

Theorem 3 Let s > 0 and λ > 0 be fixed.
If (u, ω) solves problem (5), then (i) or (ii) holds:
(i) div u = 0 and (u, ω) solves problem (10). Moreover ψ := curlu is an
eigenvector of ∆Dir with eigenvalue ω2 and u is proportional to curlψ.
(ii) p := div u is an eigenvector of the Robin problem (9) with eigenvalue ω2

and curl u = 0. Moreover u is proportional to grad p.

As a consequence, in two-dimensional domains there exists an alternative
way to determine the solutions of problem (5) because they all derive from
potentials (grad or curl). We will take advantage of this to estimate the
errors of the computations.

4 Numerical tests

The domain Ω is the symmetric L-shape domain Ω = Σ0 \Σ1 where Σ0 is the
square [0, 1] × [0, 1] and Σ1 the square [34 , 1] × [34 , 1].

We use four different meshes which are regular and uniform, with trian-
gular P1 or P2 elements. We fix s = 30 and vary λ by geometrical increments

Table 1. Combinations of meshes and elements

Name Elements h # of triangles

Mesh 1 P1 or P2
1

4
40

Mesh 2 P1 or P2
1

8
160

Mesh 3 P1 or P2
1

16
640

Mesh 4 P1
1

32
2560
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Figure 1. Lowest eigenvalues with Mesh 2 and P2 elements

from 1 to 24000. We compute once for all the (scalar) Dirichlet and Robin
eigenvalues, then compute the Galerkin approximation of problem (5). For
each computed eigenpair (uh, ωh), we also compute the L2 norms of curl uh,
div uh and of the normal trace on the boundary uhn, each of them normalized
by the L2(Ω)-norm of uh. Thus we can sort the eigenpairs according to the
value of the ratio

‖ curluh‖
2

L2(Ω)

s‖ div uh‖
2

L2(Ω)
+ λ‖uhn‖

2

L2(∂Ω)

.

In Figure 1, we plot ω2 versus λ and we represent by bullets and circles the
computed eigenvalues for which this ratio is larger (curl type) and smaller
(gradient type) than 1 respectively. The solid horizontal lines are the eigen-
values of ∆Dir (case (i) in Theorem 3) and the curved solid lines are the Robin
eigenvalues (case (ii)).
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Figure 2. First eigenvalue of curl type (Mesh 2 and P2)

In Figures 2 and 3, we plot the first and second eigenvalues of curl type
(i) along with the parts in the energy of their curls, divergence and trace

‖ curluh‖
2

L2(Ω)
, s‖ div uh‖

2

L2(Ω)
, λ‖uhn‖

2

L2(∂Ω)
.
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Figure 3. Second eigenvalue of curl type (Mesh 2 and P2)
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Figure 4. Errors on the first eigenvalue of curl type

In Figures 4 and 5 we plot the relative errors corresponding to the the
first and second eigenvalues of curl type, with Mesh 1 to 4 with P1 elements
(dark lines, from thickest to thinnest) and with Mesh 1 to 3 with P2 elements
(lighter lines). We evaluate these errors eh in the following way:

eh :=
(

|ω2 − ω2
h| + ‖ div uh‖

2

L2(Ω)
+ λ‖uhn‖

2

L2(∂Ω)

)

/ω2.
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Figure 5. Errors on the second eigenvalue of curl type
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The behaviors of the errors in Figures 4 and 5 are very different be-
cause the first eigenfunction has the strong non H1 singularity whereas the
coefficient in front of this singularity is zero for the second eigenfunction for
symmetry reasons. We see that we have convergence as h → 0 (albeit slow)
in the case of the second, regular, eigenfunction, whereas for the first eigen-
value only for low values of λ a sort of convergence is observable. The lack of
convergence for large λ cannot be improved even by strong mesh refinements
near the reentrant corner. Further studies will be necessary to determine if
there is a kind of locking mechanism involved that can be overcome by the
choice of higher order elements or h-p methods.
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