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It is well known that, in the presence of non-convex corners or edges on the bound-
ary, nodal finite elements associated with a conformal curl-div formulation do not
converge to the correct limit when the electric or magnetic boundary conditions
are also imposed in the discrete space. We formulate and investigate in a simple
two-dimensional situation a method where the boundary conditions are not im-
posed in the discrete space but obtained by a penalization method, which amounts
to a sort of impedance condition.

1 Regularization by a divergence term and penalization of the
boundary condition

We investigate the spectral problem for Maxwell equations with perfect con-
ductor boundary conditions in a bounded domain 2 which we assume for the
moment to be 3-dimensional. This problem consists in finding non-zero L2
electric and magnetic eigenfields £ and H, and non-zero eigenfrequency w
such that

curlE —iwH =0, curlH+iwE=0 in (1)
Exn=0, H,=0 on 0f).

Here n denotes the unit outer normal on 92 and H,, is the normal component
of H on the boundary.

One of the two fields can be eliminated from equations (1), let us say E,
and we obtain for the magnetic field the problem curlcurl H = w?H with
the divergence constraint div H = 0 and the boundary condition H,, = O.
This latter problem admits a variational formulation in the space Xr(Q) of
L2(Q) fields w with L2(Q2) divergence and curl, and zero normal trace uy:

Find non-zero H € X1(2) and non-zero w such that:

VH' € X1(Q), /curlH-curlH':wQ/H-H'. (2)
Q Q
The above bilinear form (curl-, curl-) is not coercive on X1 (). To cure

this, a standard procedure is the penalization by the (div-,div-) form: for
any s > 0, we introduce the new problem:
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Find non-zero uw and w such that:

Yo € X1 (), /curlu-curlv+sdivu divv:wQ/'u,-'u. (3)
Q Q

Any solution (u,w) of problem (2) has zero divergence, thus is solution of
(3) for all s > 0. But if 2 has non-convex edges (which is a rather standard
situation if €2 is a region outside a conductor) then solutions u do not belong
to H!, in general. If one wants® to use curl-div conforming elements (thus
continuous) for the FEM Galerkin approximation of problem (3), the discrete
solution converges to the spectrum of a Lamé problem posed in the subspace
Hr(Q) of H(Q) fields w satisfying the boundary condition u,, = 0, see * where
the case of electric boundary conditions is investigated.

The reason for this phenomenon is the following: the space Hr(Q) is
closed in X7 (2) for the natural norm of this latter space. Therefore any
Galerkin method using a discrete space of continuous piecewise polynomial
continuous fields, thus included in Hr(2), yields a discrete solution in Hp(€2),
and is consequently unable to approach a solution of problem (3) which does
not belong to Hr ().

But smooth fields are dense 2 in the larger space W defined as

W = {u € L*(Q); divu € L*(Q), curlu € L*(Q), u, € L*(00Q)}.

Therefore, there is no theoretical obstruction to the discretization by continu-
ous elements in the space W. But we have to retrieve the boundary conditions.
This can be done by the introduction of the new bilinear form a[s, A] defined
on W x W for s >0 and A > 0 as:

a[s,)\](u,v)z/curlu-curlv—i—sdivu divv—i—)\/ Up, Uy (4)
Q o0

Then the boundary conditions satisfied by solutions of the problem
ueW, YvoeWw, a[s,A](u,v)sz/u-v, (5)
Q

are all “natural” and given by
curlu xn=0 and sdivu+ Au, =0 on 09, (6)

whereas the tangential boundary conditions associated with problem (3) are
still curlu x n = 0 but the normal one is simply u,, = 0.

@Possible reasons for trying to use nodal elements instead edge elements ®! can be
1) The wish to adapt pre-existing nodal codes,

2) The need to couple eletromagnetic data with hydrodynamics,

3) The development of simple p or hp versions,

4) Mere curiosity.
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2 Spectrum of the penalized problem

Taking as test functions in problem (5) the fields gradients of a potential
v = grad ¢ where ¢ is any function in the domain D(AN®Y) consisting of the
functions 1 € H'(Q) satisfying Ay € L2(Q) and 9,,%) = 0 on 92, we find that
the L? function p := divw is solution of

Vo € D(ANY), s/QpAgo:wQ(—/Qp@—k/aQunga). (7)

Next we note that the solution ¢ € H'(Q) of the Neumann problem, —sAq =
w?p in Q with s0,q = w?u, on 0N, satisfies

Vo € D(ANY), s/Qqup:w2(—/ng0+/mun<p). (8)

Comparing (7) and (8) we obtain that p — ¢ is orthogonal to the range of A
from its domain D(AN®Y), that is p — ¢ is a constant. Combining with the
boundary condition s div w+Au, = 0 in (6), we obtain that p solves the Robin
problem —sAp = w?p in Q with s8,p + w2§ p = 0 on 0. Going back to the
variational formulation we have obtained

Lemma 1 If (u,w) solves problem (5), then p := divu belongs to H*(Q) and
solves

Yo € HY(Q), s/gradpgradgpsz(/pga—i—f/ pgp). (9)
Q Q A Jog

Theorem 2 Let s > 0 and A > 0 be fized.

If (u,w) solves problem (5), then (i) or (ii) holds:

(i) dive = 0 and (u,w) solves problem (2).

(i) p :=divu is an eigenvector of the Robin problem (9) and curlu = 0.
PrROOF.  We consider p := divu. If p = 0, then (u,w) obviously solves
problem (2). If p # 0, by Lemma 1, p is an eigenvector of the Robin problem
(9). Let us introduce w defined as —s grad p/w?. We check that w belongs
to W and that (w,w) solves problem (5). Thus the field w is in situation (7).
Finally, the field uw — w, if non-zero, is in situation (7). [ |

3 Two-dimensional case

We now assume that the domain € is two-dimensional. We consider the
magnetic eigenproblem corresponding to (2)

VH' € X1(Q), /curlH-curlH' :w2/ H.H (10)
Q Q
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where curlw is the scalar curl djus — Ooup and the space X () is defined
similarly with curl replaced by curl. Note that such solutions correspond to
solutions of (1) in the cylinder domain Q x R with an electric field oriented
along the axis of the cylinder and a transverse magnetic field, both being

invariant by translation. We associate to (10) its regularized-penalized version
(6) with als, ] defined as

als, \](u,v) = / curlu - curlv + sdivu divo + A UnUp.  (11)
Q aQ

Then 1 := curlu plays a similar role as the divergence and we can study
1) separately by considering test functions of the form curly with ¢ in the
domain D(AP™) of the Dirichlet problem, i.e. ¢ € H}(Q) satisfying Ap €
L%(Q). Theorem 2 has now a more precise version.
Theorem 3 Let s >0 and A > 0 be fized.
If (u,w) solves problem (5), then (i) or (ii) holds:
(i) diva = 0 and (u,w) solves problem (10). Moreover 1 := curlu is an
eigenvector of AP with eigenvalue w? and w is proportional to curle.
(ii) p := divu is an eigenvector of the Robin problem (9) with eigenvalue w
and curlu = 0. Moreover w is proportional to grad p.

2

As a consequence, in two-dimensional domains there exists an alternative
way to determine the solutions of problem (5) because they all derive from
potentials (grad or curl). We will take advantage of this to estimate the
errors of the computations.

4 Numerical tests

The domain Q) is the symmetric L-shape domain Q = ¥\ X1 where ¥ is the
square [0, 1] x [0,1] and X, the square [2,1] x [3,1].

We use four different meshes which are regular and uniform, with trian-
gular P; or P; elements. We fix s = 30 and vary A by geometrical increments

Table 1. Combinations of meshes and elements

Name Elements h # of triangles
Mesh 1 | P; or Py : 40
Mesh 2 | P or Py : 160
Mesh 3 | P; or Py = 640
Mesh 4 Py 3 2560
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Figure 1. Lowest eigenvalues with Mesh 2 and P2 elements

from 1 to 24000. We compute once for all the (scalar) Dirichlet and Robin
eigenvalues, then compute the Galerkin approximation of problem (5). For
each computed eigenpair (up,wy,), we also compute the L2 norms of curl uy,
div uy, and of the normal trace on the boundary up,, each of them normalized
by the L2(Q2)-norm of uj,. Thus we can sort the eigenpairs according to the
value of the ratio

1 2
[| cur uhHL2(Q)

sl divus | + M|

2 2 :
L2(Q) L2(0Q)

In Figure 1, we plot w? versus A and we represent by bullets and circles the

computed eigenvalues for which this ratio is larger (curl type) and smaller
(gradient type) than 1 respectively. The solid horizontal lines are the eigen-
values of AP (case (i) in Theorem 3) and the curved solid lines are the Robin
eigenvalues (case (7i)).
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Figure 2. First eigenvalue of curl type (Mesh 2 and P2)

In Figures 2 and 3, we plot the first and second eigenvalues of curl type
(i) along with the parts in the energy of their curls, divergence and trace
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Figure 3. Second eigenvalue of curl type (Mesh 2 and P2)
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Figure 4. Errors on the first eigenvalue of curl type

In Figures 4 and 5 we plot the relative errors corresponding to the the
first and second eigenvalues of curl type, with Mesh 1 to 4 with P; elements
(dark lines, from thickest to thinnest) and with Mesh 1 to 3 with Py elements
(lighter lines). We evaluate these errors e, in the following way:

2

L2(Q)

en = (|w2 — wit| 4 [ div || 12(69)
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Figure 5. Errors on the second eigenvalue of curl type
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The behaviors of the errors in Figures 4 and 5 are very different be-
cause the first eigenfunction has the strong non H' singularity whereas the
coeflicient in front of this singularity is zero for the second eigenfunction for
symmetry reasons. We see that we have convergence as h — 0 (albeit slow)
in the case of the second, regular, eigenfunction, whereas for the first eigen-
value only for low values of A a sort of convergence is observable. The lack of
convergence for large A cannot be improved even by strong mesh refinements
near the reentrant corner. Further studies will be necessary to determine if
there is a kind of locking mechanism involved that can be overcome by the
choice of higher order elements or h-p methods.
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