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Outline

• Maxwell frequencies of the cavity problem.

• Description of singularities of the Maxwell eigenmodes.

• Difficulties for the approximation due to

� The infinite dimensional kernel,

� Non- H1 singularities in reentrant corners and edges.

• Edge elements.

• Regularization :

� Plain regularization does not work.

�� Regularization with augmented FEM spaces by non- H1 singularities

works for 2D problems.

��� Weighted regularization works in 2D and 3D.
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✬

✫

✩

✪

Maxwell eigenvalue problem

Permittivity ε and permeability µ . Find non-zero frequency ω such that

∃ (E, H) �= 0

(Maxwell)




curl E − iω µH = 0 & curl H + iω εE = 0 in Ω,

E × n = 0 & H · n = 0 on ∂Ω

Perfect conductor boundary conditions (a)

To simplify the exposition, consider homogeneous and isotropic medium: ε , µ

constant > 0 . May assume ε = µ = 1 .

=⇒ div E = 0 & div H = 0

(a) One could also consider impedance b. c. The regularity of the eigenmodes would be the same as

with perfect conductor b. c. The approximation would be, in principle, better. But, from a practical point

of view, the methods suitable for perfect conductor b. c. give improved results for impedance b. c.
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✬

✫

✩

✪

3D Edge Singular Functions of the Laplace Operator

Cavity or domain Ω is a 3D polyhedron.

Look at singular functions of ∆ with Dirichlet because

1. This is similar to Maxwell but simpler,

2. Maxwell sing. f. almost all derive from Laplace sing. f.

AAAAAAAA
AAAAAAAA

c

e

Edge e . Locally Ω 	 Γe × R with coordinates

(r, θ) ∈ Γe = {r > 0, 0 < θ < ωe} in sector, and z ∈ R.

Local expression of the singular functions: integer � ≥ 1

Φe = γe(z) r�π/ωe sin
�πθ

ωe

AAAAAAAA
AAAAAAAA
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✬

✫

✩

✪

3D Corner Singular Functions of the Laplace Operator

Corner c . Locally Ω 	 Γc with

Γc = {(ρ, ϑ) | ρ > 0, ϑ ∈ Gc ⊂ S2} cone.

Singular functions at the corner c :

Φc = γc ρλ φc(ϑ)

defining the space Zλ
Dir and where the exponent λ ∈ ΛDir

c satisfies

λ = −1

2
+

√
µ +

1

4
with µ eigenvalue of the Laplace-Beltrami Dirichlet problem on Gc .

z 

φc has singularities at the vertices ve of Gc – with obvious notation ve ∈ e .

More on the web M. DAUGE. “Simple” Corner-Edge Asymptotics.
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✬

✫

✩

✪

3D Corner Singular Functions of the Maxwell eigenproblem

Most of sing. f. derive from Laplace sing. f.

Zλ
Dir, Neu spaces of sing. f. homogeneous with deg. λ .

Topological sing. f. appear when ∂G is multiply connected.

PDir = {Φ ∈ H1(G) | ∆GΦ = 0 in G, Φ = cj on ∂jG}

Type Generator λ E H

∆ (elect.) Φ ∈ Zλ
Dir λ ∈ ΛDir grad Φ −ik grad Φ × x

∆ (magn.) Ψ ∈ Zλ
Neu λ ∈ ΛNeu ik grad Ψ × x grad Ψ

Top (elect.) Φ ∈ PDir 0 grad Φ −ik grad Φ × x

Top (magn.) Ψ ∈ PNeu 0 ik g̃radΨ × x g̃radΨ

k = ω(λ + 1)−1
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✬

✫

✩

✪

(Poor) regularity of Maxwell eigenmodes

Define, with C the set of corners c and E the set of edges e

τDir
C = min

c∈C
(ΛDir

c ∩ R+) , τNeu
C = min

c∈C
(ΛNeu

c ∩ R+) , τE = min
e∈E

π

ωe

Regularity E ∈ Hτ (Ω) for all τ such that ( δ arbitrarily small)

Ω < τ τ <

Screens, or not locally simply connected 1
2

− δ 1
2

No screen, locally simply connected,
but not convex

1
2

min{τE, τDir
C + 1

2
} < 1

Convex 1 min{τE, τNeu
C + 3

2
}

Parallelepiped 3 − δ 3

Thorough analysis of singular functions in CODA, 1997, 1998, 2000.
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✫

✩

✪

Poorer regularity of Maxwell eigenmodes for inhomogeneous materials

For piecewise constant ε and µ on polyhedral subdomains of Ω , it is still possible to

describe all sing. f. (CODA-NICAISE, 1999).

But the regularity may be much lower

E ∈ Hτ (Ω), ∀τ < τ0(ε, µ)

and for all δ > 0 , ∃ε such that τ0(ε, µ) < δ
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✬

✫

✩

✪

(Non-Hodge) Decomposition of eigenmodes

An outcome of the sing. f. analysis is the decomposition of electric eigenmodes E :

E = E0 + grad Φ :




E0 ∈ HN :=
{
u ∈ H1(Ω)3, u × n

∣∣
∂Ω

= 0
}
,

Φ ∈ H1(Ω), ∆Φ ∈ L2(Ω), Φ
∣∣
∂∗Ω

∈ H3/2(∂∗Ω)

where ∂∗Ω is the unfolded version of the boundary ∂Ω (contact points – topological

singularities or screen surfaces – are doubled). Extension of BIRMAN-SOLOMYAK, 1993.

Note that the singular part satisfies

grad Φ ∈ XN := H0(curl) ∩ H(div).

A cause of trouble is the fact – CO, 1991 :

HN is closed in XN

for the topology of XN : ‖ · ‖
L2

+ ‖ curl · ‖
L2

+ ‖ div · ‖
L2

.

Computation of resonance frequencies for Maxwell equations in non smooth domains 8



✬

✫

✩

✪

?

Equations of the electric eigenmode E = u

curl curl u = ω2u, div u = 0, u × n
∣∣
∂Ω

= 0.

Look for space X and form a so that u is solution of the Galerkin problem

(P) u ∈ X, ∀v ∈ X, a(u, v) = ω2

∫
Ω

u · v ,

with possible discretizations in FEM subspaces Xh of X

(Ph) uh ∈ Xh, ∀vh ∈ Xh, a(uh, vh) = ω2
h

∫
Ω

uh · vh ,

so that ωh → ω in the sense that the m -th non-zero eigenfreq. ωh,m of (Ph)
converges to the m -th non-zero eigenfreq. ωm of (P) .
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✫

✩

✪

Minimal space is not a good choice

Minimal space X = H0(curl) ∩ H(div; 0) i.e. divergence free fields in H0(curl) .

The form a = a0 with a0 the curl bilinear form

a0(u, v) =
∫
Ω

curl u · curl v .

Continuous Problem (P) has exactly the Maxwell electric eigenmodes as solutions.

But . . .

any FEM space Xh contained in such X would be curl and div conforming,

therefore grad conforming, therefore contained in HN .

For non-convex polyhedra, HN �= XN and HN is closed in XN

=⇒ obstruction to ωh,m → ωm

Computation of resonance frequencies for Maxwell equations in non smooth domains 10



✬

✫

✩

✪

Maximal space is not a good choice

Maximal space X = H0(curl) . The form a is still the curl bilinear form a0

a0(u, v) =
∫
Ω

curl u · curl v .

The non-zero eigenfreq. of Continuous Pb. (P) are exactly the Maxwell eigenfreq.

But (P) has the kernel

K = {u ∈ H0(curl) , curl u = 0}.

Suppose for simplicity Ω simply connected. Then

K = {u = grad p , p ∈ H1
0(Ω)}.

Thus K is infinite dimensional.

The interesting spectrum lies between the two “points” 0 and +∞ of the essential

spectrum of (P) . DESCLOUX, 1981, tells you that you are in bad shape from the

approximation point of view.
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✬

✫

✩

✪

Mimicking the kernel: edge elements

Edge elements initiated by NÉDÉLEC, 1980, contain several families of compatible FEM

spaces and projectors for 0-forms (potential p ) and 1-forms (electric field u ):

For p space Ph of Lagrange elements grad conforming projector πh

For u space Vh of edge elements curl conforming projector rh

and the compatibility is the commuting diagram property

rh(grad p) = grad(πhp)

Take – with 〈·, ·〉 the scalar product in L2(Ω)

X = {u ∈ H0(curl) , ∀v ∈ K, 〈u, v〉 = 0}
Xh = {uh ∈ Vh , ∀vh ∈ K ∩ Vh, 〈uh, vh〉 = 0}

Relations K = grad(H1
0) & K ∩ Vh = grad(Ph) allow convergence proofs . . .

Note: non-conforming approximation: X ⊂ H(div; 0) but Xh �⊂ H(div; 0) .
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✬

✫

✩

✪

Edge elements: Questions to the Audience

Implementation: which one among

• Direct use of Xh (preconstrained finite element space?)

• Saddle point problem in Vh × Ph

(possibly combined with discrete regularization)

• Triple field formulation ?

State of the art for proofs:

• h -version: optimal if u ∈ H1/2+δ(Ω) and p ∈ H3/2+δ(Ω) .

cf survey HIPTMAIR, 2002.

• p - and hp -version: On the way BOFFI-DEMKOWICZ-CO, 2002.
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✬

✫

✩
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A third bad idea: the Plain Regularization

Take X = H0(curl) ∩ H(div) and a = as for a s > 0 where

as(u, v) = a0(u, v) + s

∫
Ω

div u div v .

Yields problem P[s] .

Denote by σ(P) the spectrum of a problem P .

M the Maxwell problem and ∆Dir the Dirichlet problem for ∆ .

σ(P[s]) = σ(M) ∪ s σ(∆Dir).

But any FEM space Xh contained in such X would be curl and div conforming,

therefore grad conforming, therefore contained in HN , etc . . .
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✬

✫

✩

✪

Plain Regularization with a Singular Function Method

An idea to repair the Plain Regularization is to replace the FEM spaces with augmented

spaces by those singular functions which cannot be approximated by the (nodal) FEM

spaces. Two different realizations of this idea.

(i) BONNET-HAZARD-LOHRENGEL, 1999. In 2D polygonal domains.

Add to nodal FEM spaces Xh the field SDir
c := grad

(
rπ/ωc sin πθ

ωc

)
for each

reentrant corner c . No cut-off. Correction on the boundary instead: to Xh,0 (i.e. with

boundary condition) add UDir
c = SDir

c − Tc with Tc ∈ Xh solution of

∀vh ∈ Xh,0, as(Tc, vh) = 0, Tc × n = γh(SDir
c × n).

(ii) ASSOUS-CIARLET Jr-SONNENDRÜCKER, 1998. In 2D polygonal domains.

Continuous analogue: H0(curl) ∩ H(div; 0) = HN ∩ H(div; 0)
⊥
⊕ curl(ΦNeu)

where ΦNeu is a special space of singular solutions of the Neumann problem for ∆ .
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✬

✫

✩

✪

The Weighted Regularization

CODA, 2002.

Take a = ãs for a s > 0 where

ãs(u, v) = a0(u, v) + s

∫
Ω

w(x)2 div u div v dx,

where w > 0 is a bounded weight and

X = Xw
N := H0(curl) ∩ {u ∈ L2(Ω)3 , w div u ∈ L2(Ω)}.

Yields problem P[s]
w .

Denote by σ(P) the spectrum of a problem P and by M the Maxwell problem.

Let LDir
w be the Dirichlet problem for the weighted Laplacian w ∆ w :

σ(P[s]
w ) = σ(M) ∪ s σ(LDir

w ).

The topology of X is now : ‖ · ‖
L2

+ ‖ curl · ‖
L2

+ ‖w div · ‖
L2

.
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✬

✫

✩

✪

The class of weights of the Weighted Regularization

We take the weight w of the form

w(x) = d(x)γ with 0 ≤ γ ≤ 1 and d(x) = dist(x, S)

where S is the set of non-convex corners of Ω in 2D and non-convex edges in 3D.

Define the Laplace-Dirichlet operator ∆Dir
γ as

∆Dir
γ : D(∆Dir

γ ) :=
{
ϕ ∈ H1

0(Ω) | ∆ϕ ∈ L2
γ(Ω)

}
−→ L2

γ(Ω)

ϕ �−→ ∆ϕ.

Theorem : Denote Xγ
N := Xdγ

N .

(i) Any element u ∈ Xγ
N can be decomposed into the sum

u = w + grad ϕ, with w ∈ HN and ϕ ∈ D(∆Dir
γ )

(ii) If H2 ∩ H1
0(Ω) is dense in D(∆Dir

γ ) , then HN is dense in Xγ
N .
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✬

✫

✩

✪

Choose the weight of the Weighted Regularization

For any polygonal domain (2D) or polyhedral domain (3D), exists τ (Ω) > 0 such that

∀γ, 1 − τ (Ω) < γ ≤ 1, HN is dense in Xγ
N .

Precisely, with τE = min
e∈E

π
ωe

and τDir
C = min

c∈C
(ΛDir

c ∩ R+) :

τ (Ω) = τE in 2D and τ (Ω) = min{τE, τDir
C +

1

2
} in 3D.

Denote by LDir
γ the “spurious” weighted Laplacian dγ∆dγ .

Moreover, there exists σ0 > 0 such that for all γ ≤ 1 the spectrum of LDir
γ satisfies

σ(LDir
γ ) ≥ σ0

NB

� ∀γ < 1 , LDir
γ has a purely discrete spectrum with only accumulation at +∞ .

�� For γ = 1 , σ(LDir
γ ) contains a full interval [σ1, +∞) (essential spectrum).
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