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Outline

• Different formulations of Cosserat problem. Comparison.

• Essential spectrum.

• Discrete spectrum.

• End.
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Two Cosserat problems (Dirichlet)

Domain Ω ⊂ R
n with n = 2, 3 .

Elastic form: COSSERATs (18)98. Find σ ∈ R and u ∈ H1
0(Ω)n , u �= 0 ,

(Coss) σ∆u− grad div u = 0 in Ω .

Variational, with strain tensor e : Find σ ∈ R and u ∈ H1
0(Ω)n , u �= 0 ,

(Ela) ∀v ∈ H1
0(Ω),

∫
Ω

−2σ e(u) : e(v) + (1 + σ) div udiv v dx = 0.

(Usual Lam é with λ = σ + 1 and µ = −σ ).

Pressure form: CROUZEIX ’97. Find σ ∈ R and p ∈ L2(Ω) , p �= 0

(D) Dp = σp with D = div ∆−1 grad,

where ∆−1 is the inverse H−1(Ω) → H1
0(Ω) of the Laplace-Dirichlet problem.

Same σ for (Coss) and (D)
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One more Cosserat problem

Holomorphic form: FRIEDRICHS ’37.

Let F(Ω) be the space of L2(Ω) holomorphic functions in Ω ⊂ R
2 ∼ C .

Find µ ∈ R , w ∈ F(Ω) , w �= 0 ,

(F) ∀w′ ∈ F(Ω), Re
∫
Ω

ww′ dx = µ Re
∫
Ω

ww′ dx.

Result: S TOYAN ’96

σ (Coss) and µ (F) satisfy: µ = 1 − 2σ

Theorem . CODA ’99

The underlying operator of (F) is (1 − 2D) ◦ C acting from F(Ω) into F(Ω) , where

C is the conjugacy operator u+ iv �→ u− iv .
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Regular domain Ω

Theorem . MIKHLIN ’73

The system

σ∆u− grad div u

is a (properly) elliptic n× n Agmon – Douglis – Nirenberg system iff

σ �= 0 and σ �= 1

It is covered by Dirichlet conditions iff

σ �= 0 and σ �= 1
2

and σ �= 1

Theorem . CROUZEIX ’97. L2(Ω) = M ⊕N with

M = {p ∈ L2(Ω), ∆p = 0} , N = {p ∈ L2
0(Ω), ∃ θ ∈ H2

0(Ω), ∆θ = p} .

D
∣∣
N

= Id and (D − 1
2
Id)

∣∣
M

is regularizing of order ∞
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Polygonal domainΩ

Let Sess(Coss ) be the essential spectrum, i.e. the set of σ for which

σ∆u− grad div u is not Fredholm H1
0(Ω)2 → H−1(Ω)2.

Openings of angles ωk , k = 1, . . . ,K .

Theorem . FRIEDRICHS ’37 (lub), C ROUZEIX ’97 (lub), C ODA ’99

Sess(Coss ) = {0} ∪ K∪
k=1

[
1

2
− | sinωk|

2ωk

,
1

2
+

| sinωk|
2ωk

]
∪ {1}

Our Proof : Look for σ s.t. the Mellin transform at a corner of opening ω has pole(s) ν

with Re ν = 0 (pure imaginary). The poles ν are solution of

sin2 νω = (1 − 2σ)−2ν2 sin2 ω.

With z = νω and κ = sinω/(1 − 2σ)ω , the equation is sin2 z = κ2z2 .

It has roots z = iy iff |κ| ≥ 1 .
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Contribution to the essential spectrum of an angleω

σ
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Discrete spectrum

Let Sd(Coss ) be the discrete spectrum.

Theorem . FRIEDRICHS ’37, CROUZEIX ’97

Sd(Coss ) ⊂ [a, 1 − a], a > 0

Disc (n = 2) : Sd(Coss ) = ∅ . Ball (n = 3) : Sd(Coss ) =
{

�
2�+1

, � ≥ 1
}

.

Ellipse (n = 2) of equation x2

cosh2 α
+ y2

sinh2 α
≤ 1 (aspect ratio tanhα ):

Sd(Coss ) =
{
σ�(α), 1 − σ�(α), � ≥ 2

}
with

σ�(α) =
1

2

(
1 − � sinh 2α

sinh 2�α

)
.

As α → ∞ , the ellipse tends to the disc and σ�(α) −→ 1
2

.

As α → 0 , the aspect ratio � α and σ�(α) −→ α2 �2−1
3
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Quasi-modes in rectangles

Rectangle (−1, 1) × (−ε, ε) with aspect ratio ε ∈ (0, 1] .

Scale the problem to the square (−1, 1)2 and look for expansions

Σ�[ε] = ε2Σ�,0 + ε3Σ�,1 + . . . for eigenvalues

U�[ε] = U0
� + εU1

� + . . . for eigenvectors.

The problem in (−1, 1)2 is

∂2

xUx[ε] + ε−2∂2
xyUy[ε] = Σ[ε](∂2

x + ε−2∂2
y)Ux[ε]

∂2
xyUx[ε] + ε−2∂2

yUy[ε] = Σ[ε](∂2
x + ε−2∂2

y)Uy[ε]

Find U0
y = 0 . First “non-trivial” equation

∂2
xU

0
x + ∂2

xyU
2
y = Σ0∂

2
yU

0
x ,

reducing to the eigenvalue problem

1

2

∫ 1

−1

∂2
xU

0
x dy = Σ0∂

2
yU

0
x .
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Quasi-modes in rectangles, continued

Representation of U0
x on the Laplace-Dirichlet eigenmode basis

(
en(x)

)
n≥1

on

(−1, 1)
U0

x =
∑
n≥1

en(x) vn(y).

The reduced eigenvalue problem becomes

∀n ≥ 1, −n
2π2

8

∫ 1

−1

vn(y) dy = Σ0v
′′
n(y),

with boundary conditions vn(−+1) = 0 . Solutions : ∃� ≥ 1

vn(y) = δn�(y2 − 1) and Σ0 =
�2π2

12
.

The construction can be continued... Thus, as ε → 0 , ∃ �(ε) such that

σ�(ε)(ε) = ε2
�2π2

12
+ O(ε4) belongs to Sd(Coss )
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Eigenmodes in rectangles: a majorant and a minorant

With σ�(ε) the �− th Cosserat eigenvalue on the rectangle

Ωε := (−1, 1) × (−ε, ε) , by Min-Max principle we prove that

(∗) ∀0 < α ≤ ε, ∀� ≥ 1, α−2 σ�(α) ≥ ε−2 σ�(ε).

The quasi-mode result yields for α small enough, σ�(α) ≤ α2 �2π2

12
+ c� α

4 .

Combining with (∗) we obtain

σ�(ε) ≤ ε2
�2π2

12
.

Minorant, H ORGAN – PAYNE’83 : with ρ = ρ(z) = 1/nr(z) , nr(z) the radial

component of the unit normal in z ∈ ∂Ω :

σ1(Ω) ≥ minz∈∂Ω 1/{1 +
[
ρ+ (ρ2 − 1)1/2

]2} , whence for the rectangle Ωε

σ1(ε) ≥ sin(arctan ε)2

sin(arctan ε)2 +
[
1 +

(
1 − sin(arctan ε)2

)1/2]2
IRM AR
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Eigenmodes in rectangles: a conjecture

Fix � ≥ 1 . The terms of the (formal) series Σ�[ε] are given by recurrence formulas

linking for j ≤ � the Σj and polynomials vj
x and vj

y such that

U j
x(x, y) = e�(x) vj

x(y) and U j
y(x, y) = e′

�(x) v
j
y(y).

The series Σ� has the form
∑

k≥1 ε
2k�2k bk with universal coefficients bk .

Solving the 30 first relations with S CILAB let the following relation plausible

bk = (−1)k
∑
j≥1

(−1)jj−2k

which yields (with the help of a formula in [A BRAMOWITZ–STEGUN]) that Σ� is a

convergent series

Σ�(ε) =
1

2

(
1 − �πε

sinh �πε

)
.

The conjecture is that σ�(ε) = Σ�(ε) . Square ??
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Rectangles

σ
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Ellipses
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Conclusions and Extensions

• Approximation of spectrum by numerical methods difficult due to the presence of

essential spectrum.

• For Neumann problem in 2D, essential spectrum Sess(Coss ) = {0, 1
2
, 1,+∞} ,

discrete spectrum Sd(Coss ) ⊂ (0,+∞) .

• For mixed Dirichlet-Neumann problem in 2D (without Dirichlet-Dirichlet corner),

essential spectrum Sess(Coss ) = {0} ∪ [1
2
,+∞) ,

discrete spectrum Sd(Coss ) ⊂ (0, 1
2
) .

• For polyhedra: Possibility of new contributions to the essential spectrum by

corners, and also by the spectrum of the partial Fourier transform operators

along edges.

IRM AR
On the Cosserat spectrum in polygons 15


