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ABSTRACT. We describe eigenpairs of the Maxwell system with normalized constant

coefficients in a tensor product three-dimensional domain. As an application, we find

eigenpairs in a cube, in a cylinder, and in a cylinder with a coaxial circular hole.
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1. INTRODUCTION

Let Ω be a bounded domain in R
3. The cavity resonator problem is to find the fre-

quencies ̟ ∈ R+ and the non-zero electromagnetic fields (Ê, Ĥ) ∈ L2(Ω)6 such that

(1.1)





curl Ê − i̟µĤ = 0 in Ω, (Faraday law)

curl Ĥ + i̟εÊ = 0 in Ω, (Ampère law)

Ê × n = 0 and Ĥ · n = 0, on ∂Ω, (perfect conductor b. c.)

div εÊ = 0 and div µĤ = 0 in Ω, (gauge conditions).

Here ε and µ are the electric permittivity and the magnetic permeability inside Ω. The

boundary conditions are those of the perfect conductor (as usual n denote the outward

unit normal to ∂Ω). The gauge conditions on the divergence are a consequence of the

first two equations if ̟ 6= 0. Nevertheless we look for solutions of (1.1) including

̟ = 0. The occurence of ̟ = 0 happens if and only if the domain Ω is topologically

non-trivial, i.e. if Ω is not simply connected, or if ∂Ω is not connected, see Propositions

3.14 & 3.18 in the reference [1].

Remark 1.1. (i) We consider here the situation with zero conductivity (case of the air or

of a dielectric material). Then ε and µ are real. Therefore, without restriction, the fields

Ê and Ĥ can be supposed real valued.

(ii) In presence of a non-zero conductivity, ̟ should be searched in C, and the fields

would be complex valued.

Definition 1.2. The triples (̟2, Ê, Ĥ) solution of (1.1) with (Ê, Ĥ) 6= 0 are called

Maxwell eigenmodes, ̟ is called eigenfrequency, ̟2 eigenvalue and (Ê, Ĥ) eigenfield.

We consider now the case when ε ≡ ε0 and µ ≡ µ0 in Ω. We set

κ = ̟
√

ε0µ0 (wave number),

and

E =
√

ε0 Ê and H =
√

µ0 Ĥ.

Then (1.1) is transformed into

(1.2)





curlE − iκH = 0 in Ω,

curlH + iκE = 0 in Ω,

E × n = 0 and H · n = 0, on ∂Ω,

div E = 0 and div H = 0 in Ω.

Remark 1.3. (i) Stricto sensu, ̟ is not the frequency but the “pulsation”1: It corresponds

to the time dependency t 7→ exp(i̟t). The associated period is T = 2π
̟

. The frequency

1 “Pulsation” is the French word for “angular frequency”. We prefer “pulsation” because of possible

mixing up with angular Fourier transformation for axisymmetric domains!
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f is then f = 1

T
, and is measured in Hz. Therefore

̟ = 2πf

(ii) The constants ε0 and µ0 satisfy

ε0µ0 =
1

c2
(c speed of light).

We recall that µ0 = 4π 10−7 Wb A−1 m−1 and c ≃ 2.99792458 × 108 m/s. Hence the

relation between the wave number and the pulsation:

̟ = cκ ≃ 3 × 108 κ

In this paper, we give formulas for the normalized Maxwell eigenmodes (κ2,E,H)
solution of the normalized equation (1.2) in the case when Ω has the tensor form ω × I

with ω ⊂ R2 and I ⊂ R, separating the modes in TE and TM types. A sort of common

type TEM appears when ω is not simply connected.

As an application of our formulas, we investigate the case when Ω is a cube (or a

parallelepiped) or a cylinder. We bring special attention to the case when the cylinder

has a coaxial cylindrical hole. This serves as a limit model for the situation of a cylin-

drical conductor body inside a cavity. Then the TEM modes appear and are of special

importance.

2. PRELIMINARY NOTIONS AND NOTATION

We recall that all functions are real valued.

2.1. Electric and magnetic formulations for the Maxwell spectrum. We first recall

the definition of the standard continuous spaces associated with Maxwell equations on

a domain Ω ⊂ R3: H(curl, Ω) is the space of L2(Ω) fields with curl in L2(Ω), while

H0(curl, Ω) is the subspace of H(curl, Ω) with perfect electric boundary conditions;

H(div, Ω) is the space of L2(Ω) fields with divergence in L2(Ω) and H0(div, Ω) the

subspace of H(div, Ω) with perfect magnetic boundary conditions. We recall the formula

for the curl in 3D:

curl u =




∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1


 for u = (u1, u2, u3).

Spaces associated with electric and magnetic variational formulations of problem (1.2)

are

XN(Ω) := H0(curl, Ω) ∩ H(div, Ω) and XT(Ω) := H(curl, Ω) ∩ H0(div, Ω) .
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The electric variational formulation of (1.2) is:

Find the eigenpairs (Λ = κ2, u) with u 6= 0 and div u = 0 such that

(2.1) u ∈ XN(Ω) :

∫

Ω

curl u curl v dx = Λ

∫

Ω

u · v dx, ∀v ∈ XN(Ω),

while the magnetic formulation is:

Find the eigenpairs (Λ = κ2, u) with u 6= 0 and div u = 0 such that

(2.2) u ∈ XT(Ω) :

∫

Ω

curl u curl v dx = Λ

∫

Ω

u · v dx, ∀v ∈ XT(Ω),

We gather the equivalence results in the next lemma:

Lemma 2.1. (i) If (κ,E,H) is a Maxwell eigenmode solution of (1.2) with κ 6= 0, then,

with Λ = κ2, E is solution of (2.1) and H is solution of (2.2).

(ii) If Λ 6= 0 and u is solution of (2.1), then with κ =
√

Λ, E = u and H = 1

iκ
curlE, we

obtain an eigenmode of (1.2).

(ii) If Λ 6= 0 and u is solution of (2.2), then with κ =
√

Λ, H = u and E = − 1

iκ
curlH,

we obtain an eigenmode of (1.2).

The situation κ = 0 (still with the constraint that the fields are divergence free) occurs

when the domain is not simply connected, or if its boundary is not connected, see [1].

We investigate the electric boundary condition first. The case of the magnetic field is

considered later.

2.2. Tensor product domain. Let Ω ⊂ R3 be of tensor product form

(2.3) Ω = ω × I, ω ⊂ R
2, I interval in R.

We assume that ω is a bounded Lipschitz domain. We note that the boundary of Ω is

connected. But, if ω is not simply connected, the same holds for Ω.

We denote Cartesian coordinates by

x = (x1, x2, x3) = (x⊥, x3).

and, correspondingly, components by

u = (u1, u2, u3) = (u⊥, u3).

Likewise, the exterior unit normal n to ∂Ω is written (n⊥, n3). On ω × ∂I , n⊥ = 0 and

n3 = ±1. On ∂ω × I , n⊥ is the exterior unit normal to ∂ω, n3 = 0, and the tangential

component of u⊥ is u⊥ × n⊥ = u1n2 − u2n1.
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The gradient and the Laplacian in the transverse plane are denoted by grad⊥ and ∆⊥:

grad⊥ v =

(
∂1v

∂2v

)
and ∆⊥v = ∂2

1v + ∂2
2v.

The vector and scalar curls in 2D are given by:

curl⊥ v =

(
∂2v

−∂1v

)
and curl⊥ v = ∂1v2 − ∂2v1.

We have the formula

(2.4) curl u =

(
curl⊥ u3

curl⊥ u⊥

)
+ ∂3



−u2

u1

0


 .

The electric boundary conditions u × n = 0 on ∂Ω are equivalent to

u⊥ × n⊥ = 0 and u3 = 0 on ∂ω × I,

u⊥ = 0 on ω × ∂I,
(2.5)

The interior partial differential equation satisfied by eigenpairs is the system:

(2.6) curl curl u = Λ u in Ω.

2.3. TE and TM modes. We start the investigation of the solutions of (1.2) in a tensor

product domain by introducing special Ansätze for the electric part:

Definition 2.2. For the electric part of an eigenmode let:

(i) a TE (Transverse Electric) mode be a solution u of (2.1) of the form

(2.7) u(x⊥, x3) =

(
curl⊥ v(x⊥)

0

)
w(x3),

with scalar functions v ∈ H1(ω) and w ∈ L2(I).

(ii) a TM (Transverse Magnetic) mode be a solution u of (2.1) of the form

(2.8) u(x⊥, x3) =

(
grad⊥ v(x⊥)

0

)
∂3w(x3) −

(
0

∆⊥v(x⊥)

)
w(x3),

with scalar functions v ∈ H1(ω; ∆⊥) and w ∈ H1(I).

As a straightforward consequence of the definitions we obtain:

Lemma 2.3. If u is a TE or a TM mode, it is divergence free: div u = 0 in Ω.
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Remark 2.4. If ω is not simply connected, there exist extended TE modes of the form

(2.9) u(x⊥, x3) =

(
c̃url⊥ v(x⊥)

0

)
w(x3),

with v in the space Θ(ω) defined as follows, cf [1]: Let ω◦ be ω \ Σ, where Σ = ∪L
l=1Σl

is a minimal set of cuts so that ω◦ is simply connected. Then

Θ(ω) = {ϕ ∈ H1(ω◦)|
[
ϕ
]
Σl

= const(l), l = 1, . . . , L}.

For ϕ ∈ Θ(ω), its c̃url⊥ ϕ is its curl⊥ in ω◦, considered as an element of L2(ω).

3. THE TE AND TM MODES IN A TENSOR PRODUCT DOMAIN

3.1. TE modes. Let u be a TE mode. We find that div u = 0 and, using (2.4)

curl u =

(
0

curl⊥ curl⊥ v(x⊥)

)
w(x3) +

(
grad⊥ v(x⊥)

0

)
∂3w(x3),

and next:

curl curl u =

(
curl⊥ curl⊥ curl⊥ v(x⊥)

0

)
w(x3) −

(
curl⊥ v(x⊥)

0

)
∂2

3w(x3).

Since curl⊥ curl⊥ = −∆⊥, we find that equation curl curl u = Λu becomes

(3.1) −
(

curl⊥ ∆⊥v(x⊥)

0

)
w(x3) −

(
curl⊥ v(x⊥)

0

)
∂2

3w(x3) =

Λ

(
curl⊥ v(x⊥)

0

)
w(x3).

Then we find that (3.1) holds if v and w satisfy

(3.2) − ∆⊥v = λv in ω and − ∂2
3w = µw in I with λ + µ = Λ.

Boundary conditions on the TE mode u are satisfied if, cf (2.5),

(3.3) ∂nv = 0 on ∂ω and w = 0 on ∂I.

Thus we have found the following families of TE modes:
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Lemma 3.1. Let
(
λneu

j , vneu
j

)
j≥0

be the sequence of eigenpairs of the Neumann problem

in ω, with λneu
0 = 0 and vneu

0 = 1. Let
(
µdir

k , wdir
k

)
k≥1

be the sequence of eigenpairs of the

Dirichlet problem in I . Then, for all j ≥ 1, k ≥ 1, the field

(3.4) E
TE
jk (x⊥, x3) =

(
curl⊥ vneu

j (x⊥)

0

)
wdir

k (x3),

is a TE mode for problem (2.1) associated with the eigenvalue ΛTE
jk = λneu

j + µdir
k .

3.2. TM modes. Let u be a TM mode. Using (2.4) we find

curl u = −
(

curl⊥ v(x⊥)

0

)
∂2

3w(x3) −
(

curl⊥ ∆⊥v(x⊥)

0

)
w(x3)

and next

curl curl u = −
(

0

curl⊥ curl⊥ v

)
∂2

3w −
(

0

curl⊥ curl⊥ ∆⊥v

)
w

−
(

grad⊥ v

0

)
∂3

3w −
(

grad⊥ ∆⊥v

0

)
∂3w.

Since curl⊥ curl⊥ = −∆⊥, we find that equation curl curl u = Λu becomes

(3.5)

(
0

∆⊥v

)
∂2

3w +

(
0

∆2
⊥v

)
w −

(
grad⊥ v

0

)
∂3

3w −
(

grad⊥ ∆⊥v

0

)
∂3w =

− Λ

(
0

∆⊥v

)
w + Λ

(
grad⊥ v

0

)
∂3w.

Then, like in the TE case, we find that (3.5) holds if v and w satisfy

(3.6) − ∆⊥v = λv in ω and − ∂2
3w = µw in I with λ + µ = Λ.

Concerning the boundary conditions, (2.5) yields

(3.7)





v = const. on each ∂lω or ∂3w ≡ 0 in I,

grad⊥ v ≡ 0 in ω or ∂3w = 0 on ∂I,

∆⊥v = 0 on ∂ω or w ≡ 0 in I.

Here, ∂lω, l = 1, . . . , L, are the connected components of ∂ω.
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The conditions grad⊥ v ≡ 0 and w ≡ 0 have to be discarded since they imply u ≡ 0.

Therefore we should have ∂3w = 0 on ∂I and ∆⊥v = 0 on ∂ω. The latter condition

implies that v = 0 on ∂ω in the case when λ 6= 0. When λ = 0, the condition v = const.
on each ∂lω is sufficient. Thus we can show that (3.6)-(3.7) can be summarized as

follows: Either

(3.8)

{
−∆⊥v = λv in ω and v = 0 on ∂ω

−∂2
3w = µw in I and ∂3w = 0 on ∂I

with λ 6= 0, λ + µ = Λ,

or

(3.9)

{
−∆⊥v = 0 in ω and v = const on each ∂lω

−∂2
3w = µw in I and ∂3w = 0 on ∂I

with µ = Λ.

Thus we have found the following families of TM modes:

Lemma 3.2. Let
(
λdir

j , vdir
j

)
j≥1

be the sequence of eigenpairs of the Dirichlet problem in

ω. Let
(
µneu

k , wneu
k

)
k≥0

be the sequence of eigenpairs of the Neumann problem in I , with

µneu
0 = 0 and wneu

0 = 1. Then, for all j ≥ 1, k ≥ 0, the field

(3.10) E
TM
jk (x⊥, x3) =

(
grad⊥ vdir

j (x⊥)

0

)
∂3w

neu
k (x3) −

(
0

∆⊥vdir
j (x⊥)

)
wneu

k (x3),

is a TM mode for problem (2.1) associated with the eigenvalue ΛTM
jk = λdir

j + µneu
k .

• If, moreover, ∂ω has more than one connected components (L ≥ 2), there exist L − 1
independent harmonic potentials v

top

l , l = 1, . . . , L − 1 with constant traces on each

connected components of ∂ω. They generate the L − 1 families of TEM modes defined

for all l = 1, . . . , L − 1 and k ≥ 1 by

(3.11) E
TEM
lk (x⊥, x3) =

(
grad⊥ v

top

l (x⊥)

0

)
wdir

k (x3).

Remark 3.3. (i) In (3.11) we have used that the derivatives ∂3w
neu
k for k ≥ 1 are an

eigenvector basis for the Dirichlet problem on the interval I .

(ii) There exists potentials ṽ
top

l ∈ Θ(ω), cf Remark 2.4, such that for any l ≤ L − 1,

there holds

(3.12) c̃url⊥ ṽ
top

l = grad⊥ v
top

l .

Therefore for all k ≥ 1, the mode E
TEM
lk is an extended TE mode. This is why it is called

a TEM mode.
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3.3. Completeness. The aim of this section is to prove

Lemma 3.4. Let u ∈ XN(Ω) such that div u = 0. We assume that for all integers j ≥ 1
and l ∈ [1, L − 1]

〈u,ETE
jk 〉 = 0 (∀k ≥ 1), 〈u,ETM

jk 〉 = 0 (∀k ≥ 0) and 〈u,ETEM
lk 〉 = 0 (∀k ≥ 1).

Here 〈·, ·〉 is the L2 scalar product on Ω. Then u = 0.

Proof. We first draw consequences from the orthogonality properties against the TM

modes: We fix j and k and set v = vdir
j , w = wneu

k and integrate by parts:

0 =

∫

I

∫

ω

u⊥(x⊥, x3) grad⊥ v(x⊥)∂3w(x3) − u3(x⊥, x3) ∆⊥v(x⊥)w(x3) dx⊥dx3

=

∫

I

∫

ω

− div⊥ u⊥(x⊥, x3) v(x⊥)∂3w(x3) − u3(x⊥, x3) ∆⊥v(x⊥)w(x3) dx⊥dx3

=

∫

I

∫

ω

∂3u3(x⊥, x3) v(x⊥)∂3w(x3) − u3(x⊥, x3) ∆⊥v(x⊥)w(x3) dx⊥dx3

=

∫

I

∫

ω

−u3(x⊥, x3) v(x⊥)∂2
3w(x3) − u3(x⊥, x3) ∆⊥v(x⊥)w(x3) dx⊥dx3.

Here we have used that div u = 0, replacing div⊥ u⊥ by −∂3u3. Coming back to the

properties of v = vdir
j and w = wneu

k we find for all j ≥ 1 and k ≥ 0

∫

I

∫

ω

u3(x⊥, x3) (λdir
j + µneu

k )vdir
j (x⊥)wneu

k (x3) dx⊥dx3 = 0.

Since λdir
j + µneu

k is never 0, we deduce that for all j ≥ 1 and k ≥ 0

∫

I

∫

ω

u3(x⊥, x3) vdir
j (x⊥)wneu

k (x3) dx⊥dx3 = 0.

The set vdir
j (x⊥)wneu

k (x3) being a complete basis in L2(Ω), we deduce that u3 = 0.

Next, we use the orthogonality against the TE modes: for all j ≥ 1 and k ≥ 1 there

holds: ∫

I

wdir
k (x3)

∫

ω

u⊥(x⊥, x3) · curl⊥ vneu
j (x⊥) dx⊥dx3 = 0.

Therefore, for all j ≥ 1:

∫

ω

u⊥(x⊥, x3) · curl⊥ vneu
j (x⊥) dx⊥ = 0, ∀x3 ∈ I.
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We deduce that curl⊥ u⊥(·, x3) is orthogonal to all vneu
j for j ≥ 1, which means that

curl⊥ u⊥(·, x3) is constant with respect to x⊥. There exists a function z = z(x3) such

that

(∗) curl⊥ u⊥(x⊥, x3) = z(x3).

Since div u = 0 and u3 = 0, we have div⊥ u⊥ = 0. Besides, the orthogonality relations

against the TEM modes yields for all k ≥ 1 and l ≤ L − 1
∫

I

wdir
k (x3)

∫

ω

u⊥(x⊥, x3) · grad⊥ v
top

l (x⊥) dx⊥dx3 = 0.

We deduce that
∫

ω

u⊥(x⊥, x3) · grad⊥ v
top

l (x⊥) dx⊥ = 0, ∀x3 ∈ I,

from which we find that
∫

∂ωl

u⊥ · n⊥ dσ = 0, l = 1, . . . , L.

Combined with div⊥ u⊥ = 0, this provides the existence of a potential y ∈ L2(I, H1(ω))
satisfying the Neumann boundary condition on ∂ω such that

u⊥(x⊥, x3) = curl⊥ y(x⊥, x3).

With (∗) we find

−∆⊥y(x⊥, x3) = z(x3).

Since y satisfies the homogeneous Neumann condition with respect to x⊥, this implies

that z(x3) = 0 for all x3. Finally we have obtained that u⊥ = 0. �

Summarizing, we have proved:

Theorem 3.5. Let Ω = ω×I . The eigenpairs (2.1) of the Maxwell operator with electric

boundary conditions are the three families:

E
TE
jk =

(
curl⊥ vneu

j (x⊥)

0

)
wdir

k (x3) with ΛTE
jk = λneu

j + µdir
k , j ≥ 1, k ≥ 1,

E
TM
jk =

(
grad⊥ vdir

j (x⊥)

0

)
∂3w

neu
k (x3) −

(
0

∆⊥vdir
j (x⊥)

)
wneu

k (x3)

with ΛTM
jk = λdir

j + µneu
k , j ≥ 1, k ≥ 0,

E
TEM
lk =

(
grad⊥ v

top

l (x⊥)

0

)
wdir

k (x3) with ΛTEM
lk = µdir

k , 1 ≤ l ≤ L − 1, k ≥ 1.
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See Lemma 3.1 and 3.2 for the definitions of λneu
j , λdir

j , µdir
k , µneu

k , etc... All the associated

eigenvalues ΛTE
jk , ΛTM

jk and ΛTEM
jk are non-zero.

Since the magnetic field H associated with the electric field E is given by

H =
1

i
√

Λ
curlE,

for any non-zero eigenvalue Λ, we deduce:

Corollary 3.6. Under the conditions of Theorem 3.5, we set κ =
√

Λ. The associated

magnetic fields are given by

H
TE
jk =

1

iκTE
jk

{(
grad⊥ vneu

j (x⊥)

0

)
∂3w

dir
k (x3) −

(
0

∆⊥vneu
j (x⊥)

)
wdir

k (x3)

}
j, k ≥ 1,

H
TM
jk = −iκTM

jk

(
curl⊥ vdir

j (x⊥)

0

)
wneu

k (x3) j ≥ 1, k ≥ 0,

H
TEM
lk =

i

κTEM
lk

(
curl⊥ v

top

l (x⊥)

0

)
∂3w

dir
k (x3) 1 ≤ l ≤ L − 1, k ≥ 1.

Remark 3.7. (i) The electric fields in the pairs (ETE,HTE) are transverse to the axis x3,

whilst in the pairs (ETM,HTM) the magnetic fields are transverse to the axis x3.

(ii) We notice that for all k ≥ 1, HTEM
lk can also be written as

H
TEM
lk = i

(
curl⊥ v

top

l (x⊥)

0

)
wneu

k (x3)

The expression above also makes sense for k = 0. The associated eigenvalue is 0 and

the corresponding electric field is 0. These eigenmodes are those produced by the 3D

topological non-triviality of Ω. Note that for all k ≥ 1 we can write

E
TEM
lk = −1

κ

(
curl⊥ v

top

l (x⊥)

0

)
∂3w

neu
k (x3).

Remark 3.8. If ω contains holes, i.e. if TEM modes are present, they often contribute

the smallest positive eigenvalues. Let us make formulas for eigenvalues more explicit:

Let ℓ be the length of the inerval I and let us assume that ω has one hole. Besides the

magnetostatic zero eigenvalue, we find

ΛTE
jk = λneu

j +

(
kπ

ℓ

)2

(∀j, k ≥ 1), ΛTM
jk = λdir

j +

(
kπ

ℓ

)2

(∀j ≥ 1, k ≥ 0),
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and

ΛTEM
k =

(
kπ

ℓ

)2

(∀k ≥ 1).

Then the smallest positive eigenvalue is either ΛTM
1,0 or ΛTEM

1 . If ω is fixed and ℓ large

enough, ΛTEM
1 is smaller than ΛTM

1,0 , see also Remark 6.3.

4. APPLICATION 1: MAXWELL EIGENVALUES OF THE CUBE

Let Ω be the cube (0, π)3. We can apply Theorem 3.5 with ω = (0, π)2 and I = (0, π).
Since ω is simply connected we have TE and TM modes only. Therefore the normalized

Maxwell eigenvalues are

λneu
j + µdir

k , j ≥ 1, k ≥ 1 and λdir
j + µneu

k , j ≥ 1, k ≥ 0.

We have

µdir
k = k2, k ≥ 1 and µneu

k = k2, k ≥ 0.

The Dirichlet eigenvalues on ω are

k2
1 + k2

2, k1, k2 ≥ 1.

The non-zero Neumann eigenvalues are

k2
1 + k2

2, k1, k2 ≥ 0, k1 or k2 6= 0.

Therefore the TE eigenvalues are

k2
1 + k2

2 + k2
3, k1, k2 ≥ 0, k1 or k2 6= 0, k3 ≥ 1.

The TM eigenvalues are

k2
1 + k2

2 + k2
3, k1, k2 ≥ 1, k3 ≥ 0.

Therefore we have once

k2
1 + k2

2 + k2
3, k1, k2, k3 ≥ 0 with only one index ν ∈ {1, 2, 3} such that kν = 0,

and twice

k2
1 + k2

2 + k2
3, k1, k2, k3 ≥ 1.

The first eigenvalues are

2 (mult. 3), 3 (mult. 2), 5 (mult. 6), 6 (mult. 6), 8 (mult. 3),...

A larger multiplicity of 12 is attained for example for 14 = 1 + 4 + 9. But 12 is not the

maximal multiplicity (e.g. the multiplicity of 26 = 25 + 1 + 0 = 16 + 9 + 1 is 18).
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The Dirichlet eigenvectors on (0, π) are ζ 7→ sin kζ , k ≥ 1, and the Neumann eigen-

vectors are cos kζ , k ≥ 0. The components of the electric eigenvectors in the cube are

(sums of) products of two sin terms by one cos term.

For a rectangular parallelepiped

Ω = (0, ℓ1) × (0, ℓ2) × (0, ℓ3),

we find the eigenvalues: Once

(
k1π

ℓ1

)2

+

(
k2π

ℓ2

)2

+

(
k3π

ℓ3

)2

,

∀k1, k2, k3 ≥ 0 with only one index ν ∈ {1, 2, 3} such that kν = 0,

and twice (
k1π

ℓ1

)2

+

(
k2π

ℓ2

)2

+

(
k3π

ℓ3

)2

, ∀k1, k2, k3 ≥ 1.

Compare with the (slightly wrong) formulas in

http://scienceworld.wolfram.com/physics/ResonantCavity.html.

5. APPLICATION 2: MAXWELL EIGENVALUES IN A CYLINDER

We assume that, besides the assumption that Ω = ω×I , the domain Ω is axisymmetric.

This implies that ω is a disc, or a disc with a concentric hole. We investigate both

situations. Let R be the external radius of ω and r0 be its internal radius, with the

convention that r0 = 0 corresponds to the case when ω is a disc.

We use cylindrical coordinates (r, θ, x3) ∈ (r0, R)× (0, 2π)×I . Setting ǔ(r, θ, x3) =
u(x), we introduce cylindrical components (ur, uθ, u3) of the field u = (u1, u2, u3),

ur = ǔ1 cos θ + ǔ2 sin θ and uθ = −ǔ1 sin θ + ǔ2 cos θ.

Therefore, for a scalar function v, the radial and angular components of grad⊥ v are ∂rv

and 1

r
∂θv, and those of curl⊥ v are 1

r
∂θv and −∂rv. Thus the TE electromagnetic modes

given by Theorem 3.5 and Corollary 3.6 have the form (E, 1

iκ
H) with E and H given by

(5.1)





Er = 1

r
∂θv(r, θ) w(x3),

Eθ = −∂rv(r, θ) w(x3),

E3 = 0

and





Hr = ∂rv(r, θ) ∂3w(x3),

Hθ = 1

r
∂θv(r, θ) ∂3w(x3),

H3 = − 1

r2 ((r∂r)
2 + ∂2

θ )v(r, θ) w(x3),

while TM electromagnetic modes have the form (E,−iκH) with E and H given by

(5.2)





Er = ∂rv(r, θ) ∂3w(x3),

Eθ = 1

r
∂θv(r, θ) ∂3w(x3),

E3 = − 1

r2 ((r∂r)
2 + ∂2

θ )v(r, θ) w(x3),

and





Hr = 1

r
∂θv(r, θ) w(x3),

Hθ = −∂rv(r, θ) w(x3),

H3 = 0

http://scienceworld.wolfram.com/physics/ResonantCavity.html


14 MARTIN COSTABEL AND MONIQUE DAUGE

Definition 5.1. Let u be a scalar function, u ∈ L2(Ω) and let ǔ the function defined

on (r0, R) × (0, 2π) × I by ǔ(r, θ, x3) = u(x). For any n ∈ Z, the angular Fourier

coefficient of order n of u is denoted by un and is defined as:

(5.3) un(r, x3) =
1√
2π

∫ π

−π

ũ(r, θ, x3) e−inθ dθ, r0 < r < R, x3 ∈ I.

Let u = (u1, u2, u3) be a vector field, u ∈ L2(Ω)3. For any n ∈ Z, the angular Fourier

coefficient of order n of u are those of the scalar functions ur, uθ and u3 and denoted by

un
r , un

θ and un
3 . See [2] for more details.

The Fourier coefficients of a TE electromagnetic modes of the form (E, 1

iκ
H) are

(5.4)





En
r = in

r
vn(r) w(x3),

En
θ = −∂rv

n(r) w(x3),

En
3 = 0

and





Hn
r = ∂rv

n(r) ∂3w(x3),

Hn
θ = in

r
vn(r) ∂3w(x3),

Hn
3 = − 1

r2 ((r∂r)
2 − n2)vn(r) w(x3),

and likewise for the TM modes of the form (E,−iκH):

(5.5)





En
r = ∂rv

n(r) ∂3w(x3),

En
θ = in

r
vn(r) ∂3w(x3),

En
3 = − 1

r2 ((r∂r)
2 − n2)vn(r) w(x3),

and





Hn
r = in

r
vn(r) w(x3),

Hn
θ = −∂rv

n(r) w(x3),

Hn
3 = 0.

The Dirichlet and Neumann problems for ∆⊥ in ω are axisymmetric problems (the do-

main and the operators are invariant by rotation). Therefore, they commute with i∂θ and

share with i∂θ a common eigenvector basis. Therefore the eigenvectors of the Dirichlet

and Neumann problems in ω can be classified according to their angular Fourier coeffi-

cient, and we obtain a similar classification for the TE and the TM modes: As a corollary

of Theorem 3.5, we have

Corollary 5.2. Let ω be a disc of radius R. For any n ∈ Z, the TE modes of order n

have only their n-th Fourier coefficient non-zero: It has the form (5.4) with w Dirichlet

eigenvector on I and vn (non-constant) eigenvector of the problem

(5.6)





− 1

r2 ((r∂r)
2 − n2)vn(r) = λvn in (0, R),

vn(0) = 0 if n 6= 0, ∂rv
n(0) = 0 if n = 0,

∂rv
n(R) = 0.

Similarly the n-th Fourier coefficients of the TM modes are given by (5.5) with w Neu-

mann eigenvector on I with vn eigenvector of the problem

(5.7)





− 1

r2 ((r∂r)
2 − n2)vn(r) = λvn in (0, R),

vn(0) = 0 if n 6= 0, ∂rv
n(0) = 0 if n = 0,

vn(R) = 0.
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When ω has a hole, the new feature is the appearance of the TEM modes. Indeed, the

generator vtop can be defined as the function x 7→ log r. It is axisymmetric, therefore

the TEM modes are axisymmetric too. In connection with Remark 3.3, we note that the

“conjugate” potential ṽtop is the function x 7→ θ. There holds, cf (3.12):

(5.8) c̃url⊥ ṽtop = grad⊥ vtop =




1

r

0
0


 and curl⊥ vtop = −




0
1

r

0


 .

We summarize our results for an annulus ω:

Corollary 5.3. Let ω be an annulus of interior radius r0 and exterior radius R. For any

n ∈ Z, the TE modes of order n have only their n-th Fourier coefficient non-zero: It has

the form (5.4) with w Dirichlet eigenvector on I and vn (non-constant) eigenvector of

the problem

(5.9)





− 1

r2 ((r∂r)
2 − n2)vn(r) = λvn in (r0, R),

∂rv
n(r0) = 0,

∂rv
n(R) = 0.

Similarly the n-th Fourier coefficients of the TM modes are given by (5.5) with w Neu-

mann eigenvector on I with vn eigenvector of the problem

(5.10)





− 1

r2 ((r∂r)
2 − n2)vn(r) = λvn in (r0, R),

vn(r0) = 0,

vn(R) = 0.

Besides, the family of TEM modes is axisymmetric and has the form (E,−iκH) with

(5.11)





E0
r = 1

r
∂3w(x3),

E0
θ = 0,

E0
3 = 0,

and





H0
r = 0,

H0
θ = −1

r
w(x3),

H0
3 = 0

with w Neumann eigenvector on I associated with the eigenvalue κ2. For κ = 0, the

TEM mode is (E,H) = (0,H) with H = (0 1 0)⊤.

Remark 5.4. As r0 tends to 0, the Dirichlet and Neumann eigenmodes of the annulus

tend to the Dirichlet and Neumann eigenvalues of the disc of same radius. Hence the TE

and TM modes of the cylinder with hole tend to the TE and TM modes of the cylinder

without hole. In contrast, the TEM modes do not depend on r0 as long as r0 6= 0, but

disappear at the limit when r0 = 0. This fact has a practical importance when thin

conductor wires are present.
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6. APPENDIX: DIRICHLET AND NEUMANN EIGENVALUES IN A DISC

Let ω be the disc of radius R. The Dirichlet and Neumann eigenvalues for −∆ in ω

can be determined by the solution of problems (5.6) and (5.7). This is based on Bessel

functions of the first kind Jn(z), with the same n as in (5.6) and (5.7). The function Jn

is the solution of the differential equation

x2y′′ + xy′ + (x2 − n2)y = 0,

which is bounded in x = 0. Moreover, J0(0) = 1 and J ′
0(0) = 0, and Jn(0) = O(xn).

Lemma 6.1 ([3]). (i) Let zdir
n,j be the positive zeros of of Jn. The eigenvalues of (5.7) are

(6.1) λdir
n,j =

(
zdir

n,j

R

)2

, n ≥ 0, j ≥ 1.

and the corresponding eigenvector is r 7→ Jn(zdir
n,j

r
R
).

(ii) Let zneu
n,j be the positive zeros of of J ′

n. The non-zero eigenvalues of (5.6) are

(6.2) λneu
n,j =

(
zneu

n,j

R

)2

, n ≥ 0, j ≥ 1.

and the corresponding eigenvector is r 7→ J ′
n(zneu

n,j
r
R
).

We give in the next table values for the first three zeros zdir
n,j and zneu

n,j for n = 0, 1, 2.

We use the relation Jν−1 − Jν+1 = 2J ′
ν to compute zneu

n,j . Since J−1 = −J1, there holds

zneu
0,j = zdir

1,j , ∀j ≥ 1.

zdir
0,j zdir

1,j zdir
2,j zneu

0,j zneu
1,j zneu

2,j

2.4048 3.8317 5.1356 3.8317 1.8412 3.0542

5.5201 7.0156 8.4172 7.0156 5.3314 6.7061

8.6537 10.173 11.620 10.173 8.5363 9.9695

TABLE 1. The first three zeros of J0, J1, J2, J ′
0, J ′

1, J ′
2.

Corollary 6.2. (i) Let Ω be a cylinder of radius R and length ℓ. Let n ∈ Z. The TE

modes with angular order n are associated with the eigenvalues

(6.3)

(
zneu

n,j

R

)2

+

(
kπ

ℓ

)2

, j ≥ 1, k ≥ 1.
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The TM modes with angular order n are associated with the eigenvalues

(6.4)

(
zdir

n,j

R

)2

+

(
kπ

ℓ

)2

, j ≥ 1, k ≥ 0.

(ii) Let Ω be a cylinder of radius R and length ℓ, with a coaxial circular hole of diameter

r0 < R. The TE and TM eigenvalues tend to those of the cylinder without hole as r0 → 0.

Moreover, the TEM modes have their angular order equal to 0 and are associated with

the eigenvalues (which are independent of R and r0):

(6.5)

(
kπ

ℓ

)2

, k ≥ 0.

Remark 6.3. Let Ω be a cylinder of radius R and length ℓ, with a coaxial circular hole of

diameter r0 < R. If r0 is small enough and

(6.6) ℓ > R
π

zdir
0,1

i.e. ℓ > 1.3064 R,

the smallest positive Maxwell eigenvalue in Ω corresponds to a TEM mode. The relation

between the frequency f (see Introduction) and the first non-zero TEM mode is

2ℓf = c

which means that ℓ is the half-wave length.

A quarter-wave length can be found if different boundary conditions apply on the two

discs ω × ∂I .
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