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ABSTRACT. The lowest eigenmode of thin axisymmetric shells is investigated for two physical
models (acoustics and elasticity) as the shell thickness (2ε) tends to zero. Using a novel asymptotic
expansion we determine the behavior of the eigenvalue λ(ε) and the eigenvector angular frequency
k(ε) for shells with Dirichlet boundary conditions along the lateral boundary, and natural boundary
conditions on the other parts.

First, the scalar Laplace operator for acoustics is addressed, for which k(ε) is always zero. In
contrast to it, for the Lamé system of linear elasticity several different types of shells are defined,
characterized by their geometry, for which k(ε) tends to infinity as ε tends to zero. For two families
of shells: cylinders and elliptical barrels we explicitly provide λ(ε) and k(ε) and demonstrate by
numerical examples the different behavior as ε tends to zero.

CONTENTS

1. Introduction 1
2. Axisymmetric problems 3
2.1. An abstract setting 3
2.2. Cylindrical coordinates 4
3. Axisymmetric shells 6
4. Quiet cases 7
4.1. Laplace operator 7
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1. INTRODUCTION

The lowest natural frequency of shell-like structures is of major importance in engineering because
it is one of the driving considerations in designing thin structures (for example containers). It
is associated with linear isotropic elasticity, governed by the Lamé system. The elastic lowest

1



2 MARIE CHAUSSADE-BEAUDOUIN, MONIQUE DAUGE, ERWAN FAOU, AND ZOHAR YOSIBASH

eigenmode in axisymmetric homogeneous isotropic shells was address by W. Soedel [14] in the
Encyclopedia of Vibration:

[We observe] a phenomenon which is particular to many deep shells, namely that
the lowest natural frequency does not correspond to the simplest natural mode, as
is typically the case for rods, beams, and plates.

This citation emphasizes that for shells these lowest natural frequencies may hide some interesting
“strange” behavior. The expression “deep shell” contrasts with “shallow shells” for which the
main curvatures are of same order as the thickness. Typical examples of deep shells are cylindrical
shells, spherical caps, or barrels (curved cylinders).

In acoustics, driven by the scalar Laplace operator, it is well known that, when Dirichlet conditions
are applied on the whole boundary, the first eigenmode is simple in both senses that it is not
multiple and that it is invariant by rotation. We will revisit this result, in order to extend it to mixed
Dirichlet-Neumann conditions. In contrast to the scalar Laplace operator, the simple behavior of
the first eigenmode does not carry over to the vector elliptic system - linear elasticity. Relying on
asymptotic formulas exhibited in our previous work [5], we analyze two families of shells already
investigated in [2]. Doing that, we can compare numerical results provided by several different
models: The exact Lamé model, surfacic models (Love and Naghdi), and our 1D scalar reduction.

The first of these families are cylindrical shells. We show that the lowest eigenvalue1 decays
proportionally to the thickness 2ε and that the angular frequency k of its mode tends to infinity
like ε−1/4.

The second family is a family of elliptic barrels which we call “Airy barrels”. Elliptic means that
the two main curvatures (meridian and azimuthal) of the midsurface S are non-zero and of the
same sign. Airy barrels are characterized by the following relations:

• The meridian curvature is smaller (in modulus) than the azimuthal curvature at any point
of the midsurface S,
• The meridian curvature attains its minimum (in modulus) on the boundary of S.

For general elliptic barrels, the first eigenvalue tends to a positive limit a0 as the thickness tends
to 0. This quantity is proportional to the minimum of the squared meridian curvature. More
specifically, for Airy barrels, the azimuthal frequency k is asymptotically proportional to ε−3/7 as
ε → 0. Besides, for the particular family of Airy barrels that we study here, a very interesting
(and somewhat non-intuitive) phenomenon occurs: For moderately thick barrels k stay equal to 0
and there is a threshold for ε below which k has a jump and start growing to infinity.

We start by presenting the angular Fourier transformation in a coordinate independent setting in
sect. 2 followed by the introduction of the domains and problems of interest in sect. 3. Sect. 4 is
devoted to cases when the angular frequency k of the first mode is zero or converges to a finite

1With the natural frequency f , the pulsation ω and the eigenvalue λ, we have the relations

λ = ω2 = (2πf)2.
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value as ε→ 0. Cylindrical shells are investigated in sect. 5 and barrels in sect. 6. We conclude in
sect. 7.

2. AXISYMMETRIC PROBLEMS

Before particularizing every object with the help of cylindrical coordinates, we present axisym-
metric problems in an abstract setting that exhibits the intrinsic nature of these objects, in particular
the angular Fourier coefficients. This intrinsic definition allows to prove that the Fourier coeffi-
cients of eigenvectors are eigenvectors if the operator under examination has certain commutation
properties.

2.1. An abstract setting. Let us consider an axisymmetric domain in R3. This means that Ω is
invariant by all rotations around a chosen axis A: For all θ ∈ T = R/2πZ, let Rθ be the rotation
of angle θ around A. So we assume

∀θ ∈ T, RθΩ = Ω.

Let t = (t1, t2, t3) be Cartesian coordinates in R3. The Laplace operator ∆ = ∂2
t1

+ ∂2
t2

+ ∂2
t3

is
invariant by rotation. This means that for any function u

∀θ ∈ T, ∀t ∈ R3, ∆
(
u(Rθt)

)
= (∆u)(Rθt).

The Lamé system L of homogeneous isotropic elasticity acts on 3D displacements u = u(t) that
are functions with values in R3. The definition of rotation invariance involves non only rotation
of coordinates, but also rotations of displacement vectors. Let us introduce the transformation
Gθ : u 7→ v between the two displacement vectors u and v

Gθ(u) = v ⇐⇒ ∀t, v(t) = R−θ
(
u(Rθt)

)
.

Then the Lamé system L commutes with Gθ: For any displacement u

∀θ ∈ T, L(Gθu) = Gθ(Lu). (2.1)

Now, in the scalar case, if we define the transformation Gθ by (Gθu)(t) = u(Rθt), we also have
the commutation relation for the Laplacian

∀θ ∈ T, ∆(Gθu) = Gθ(∆u). (2.2)

The set of transformations
(
Gθ
)
θ∈T has a group structure, isomorphic to that of the torus T:

Gθ ◦ Gθ′ = Gθ+θ′ , θ, θ′ ∈ T.

The rotation invariance relations (2.1) and (2.2) motivate the following angular Fourier transfor-
mation T 3 θ 7→ k ∈ Z (here u is a scalar or vector function u or u)

ûk(t) =
1

2π

∫
T
(Gϕu)(t) e−ikϕ dϕ, t ∈ Ω, k ∈ Z. (2.3)

Then each Fourier coefficient ûk enjoys the property:

(Gθû
k)(t) = eikθ ûk(t), t ∈ Ω, θ ∈ T , (2.4)
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and each pair of Fourier coefficients ûk and ûk′ with k 6= k′ satisfies∫
T
ûk(Rθt) · ûk

′
(Rθt) dθ = 0, t ∈ Ω,

which implies that ûk and ûk′ are orthogonal along each orbit contained in Ω and hence in L2(Ω).

The inverse Fourier transform is given by

u(t) =
∑
k∈Z

ûk(t), t ∈ Ω. (2.5)

The function u is said unimodal if there exists k0 ∈ Z such that for all k 6= k0, ûk = 0, and
ûk0 6= 0. Such a function satisfies

(Gθu)(t) = eik0θ u(t), t ∈ Ω, θ ∈ T.

For an operator A that commutes with the transformations Gθ, i.e., GθA = AGθ, as in (2.1) and
(2.2), there holds for any k ∈ Z

Âuk =
1

2π

∫
T
(GϕAu) e−ikϕ dϕ =

1

2π

∫
T
(AGϕu) e−ikϕ dϕ = Aûk.

In particular, if Au = λu, then Âuk = λûk. We deduce from the latter equality that

λûk = Aûk.

Therefore any nonzero Fourier coefficient of an eigenvector is itself an eigenvector. We have
proved

Lemma 2.1. Let λ be an eigenvalue of an operator A that commutes with the group of transfor-
mations {Gθ}θ∈T. Then the associate eigenspace has a basis of unimodal vectors.

Remark 2.2. If moreover the operator A is self-adjoint with real coefficients, the eigenspaces are
real. Since for any real function and k 6= 0, the Fourier coefficient û−k is the conjugate of ûk, the
previous lemma yields that if there is an eigenvector of angular eigenfrequency k, there is another
one of angular eigenfrequency −k associated with the same eigenvalue.

2.2. Cylindrical coordinates. Let us choose cylindrical coordinates (r, ϕ, τ) ∈ R+ × T × R
associated with the axis A. This means that r is the distance to A, τ an abscissa along A, and ϕ a
rotation angle around A. We write the change of variables as

t = T (r, ϕ, τ) with t1 = r cosϕ, t2 = r sinϕ, t3 = τ .

The cylindrical coordinates of the rotated pointRθt are (r, ϕ+ θ, τ).

2.2.1. Scalar case. The Laplace operator in cylindrical coordinates writes

∆ = ∂2
r +

1

r
∂r +

1

r2
∂2
ϕ + ∂2

τ .

The classical angular Fourier transform for scalar functions is now

uk(r, τ) =
1

2π

∫
T
u(T (r, ϕ, τ)

)
e−ikϕ dϕ, (r, τ) ∈ ω, k ∈ Z, (2.6)
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where ω is the meridian domain of Ω. We have the relations

uk(r, τ) eikϕ = ûk
(
T (r, ϕ, τ)

)
, (r, τ) ∈ ω, ϕ ∈ T, k ∈ Z (2.7)

and the classical inverse Fourier formula (compare with (2.5))

u(T (r, ϕ, τ)
)

=
∑
k∈Z

uk(r, τ) eikϕ .

The Laplace operator at frequency k is

∆(k) = ∂2
r +

1

r
∂r −

k2

r2
+ ∂2

τ ,

and we have the following diagonalization of ∆

(∆u)k = ∆(k)uk, k ∈ Z.

2.2.2. Vector case. Now, an option to find a coordinate basis for the representation of displace-
ments is to consider the partial derivatives of the change of variables T

Er = ∂rT , Eϕ = ∂ϕT , and Eτ = ∂τT .
If we denote by Et1 , Et2 , and Et3 the orthonormal basis associated with Cartesian coordinates t,
we have

Er = Et1 cosϕ+ Et2 sinϕ, Eϕ = −rEt1 sinϕ+ rEt2 cosϕ, and Eτ = Et3 .

We note the effect of the rotationsRθ on these vectors (we omit the axial coordinate τ )

Er(r, ϕ+ θ) = (RθEr)(r, ϕ) and Eϕ(r, ϕ+ θ) = (RθEϕ)(r, ϕ) (2.8)

and Eτ is constant and invariant.

The contravariant components of a displacement u in the Cartesian and cylindrical bases are de-
fined such that

u = ut1Et1 + ut2Et2 + ut3Et3 = urEr + uϕEϕ + uτEτ .

Covariant components uj are the components of u in dual bases. Here we have

uti = uti , i = 1, 2, 3, and ur = ur, uϕ = r2uϕ, uτ = uτ .

Using relations (2.8), we find the representation of transformations Gθ
Gθu(t) = ur(r, ϕ+ θ, τ)Er(r, ϕ) + uϕ(r, ϕ+ θ, τ)Eϕ(r, ϕ) + uτ (r, ϕ+ θ, τ)Eτ ,

with t = T (r, ϕ, τ). Then the classical Fourier coefficient of a displacement u is:

uk(r, ϕ, τ) = (ur)k(r, τ)Er(r, ϕ) + (uϕ)k(r, τ)Eϕ(r, ϕ) + (uτ )k(r, τ)Eτ ,

where (ua)k is the Fourier coefficient given by the classical formula (2.6) for u = ua with a =
r, ϕ, τ . We have a relation similar to (2.7), valid for displacements:

uk(r, τ) eikϕ = ûk
(
T (r, ϕ, τ)

)
, (r, τ) ∈ ω, ϕ ∈ T, k ∈ Z. (2.9)

Let L be the Lamé system. When written in cylindrical coordinates in the basis (Er,Eϕ,Eτ ), L
has its coefficients independent of the angle ϕ. Replacing the derivative with respect to ϕ by ik
we obtain the parameter dependent system L(k) that determines the diagonalization of L

(Lu)k = L(k)uk, k ∈ Z. (2.10)
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3. AXISYMMETRIC SHELLS

We are interested in 3D axisymmetric domains Ω = Ωε that are thin in one direction, indexed by
their thickness parameter ε. Such Ωε is defined by its midsurface S: We assume that the surface
S is a smooth bounded connected manifold with boundary in R3 and that it is orientable, so that
there exists a smooth unit normal field P 7→ N(P) on S. For ε > 0 small enough the following
map is one to one and smooth

Φ : S × (−ε, ε) → Ωε

(P, x3) 7→ t = P + x3 N(P).
(3.1)

The actual thickness h of Ω is 2ε (we keep this thickness h = 2ε in mind to bridging with some
results of the literature). Such bodies represent (thin) shells in elasticity, whereas they can be
called layer domains or thin domains in other contexts.

The boundary of Ωε has two parts:

(1) Its lateral boundary ∂0Ωε := Φ
(
∂S × (−ε, ε)

)
,

(2) The rest of its boundary (natural boundary) ∂1Ωε := ∂Ωε \ ∂0Ωε.

The boundary conditions that will be imposed are Dirichlet on ∂0Ωε and Neumann on ∂1Ωε. We
consider the two following eigenvalue problems on Ωε, posed in variational form: Let

V∆(Ωε) := {u ∈ H1(Ωε) , u = 0 on ∂0Ωε},

and
VL(Ωε) := {u = (ut1 , ut2 , ut3) ∈ H1(Ωε)3 , u = 0 on ∂0Ωε}.

(i) For the Laplace operator: Find λ ∈ R and u ∈ V∆(Ωε), u 6= 0 such that

∀u∗ ∈ V∆(Ωε),

∫
Ωε

∇u · ∇u∗ dt = λ

∫
Ωε

u u∗ dt. (3.2)

(ii) For the Lamé operator: Find λ ∈ R and u ∈ VL(Ωε), u 6= 0 such that∫
Ωε

Aijlmeij(u) elm(u∗) dΩε = λ

∫
Ωε

utiu∗ti dΩε. (3.3)

Here we have used the convention of repeated indices, Aijlm is the material tensor associated with
the Young modulus E and the Poisson coefficient ν

Aijlm =
Eν

(1 + ν)(1− 2ν)
δijδlm +

E

2(1 + ν)
(δilδjm + δimδjl), (3.4)

and the covariant components of the train tensor are given by

eij(u) =
1

2
(∂tiutj + ∂tjuti).

The associated 3× 3 system writes

L = − E

2(1 + ν)(1− 2ν)

(
(1− 2ν)∆ +∇ div

)
.
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Both problems (3.2) and (3.3) have discrete spectra and their first eigenvalues are positive. We de-
note by λ∆(ε) and λL(ε) the smallest eigenvalues of (3.2) and (3.3), respectively. By Lemma 2.1,
the associate eigenspaces have a basis of unimodal vectors. By Remark 2.2, in each eigenspace
some eigenvectors have a nonnegative angular frequency k. We denote by k∆(ε) and kL(ε) the
smallest nonnegative angular frequencies of eigenvectors associated with the the first eigenvalues
λ∆(ε) and λL(ε), respectively.

In the next sections, we exhibit cases where the angular frequencies k(ε) converge to a finite limit
as ε → 0 (the quiet cases) and other cases where k(ε) tends to infinity as ε → 0 (the sensitive or
excited cases).

4. QUIET CASES

We know (or reasonably expect) convergence of k(ε) for the Laplace operator and for plane shells.

4.1. Laplace operator. Let us start with an obvious case. Suppose that the shells are plane, i.e.
S is an open set in R2. Then Ωε is a plate The axisymmetry then implies that S is a disc or a ring.
Let (x1, x2) be the coordinates in S and x3 be the normal coordinate. In this system of coordinates

Ωε = S × (−ε, ε) (4.1)

and the Laplace operator separates variables. One can write

∆Ωε = ∆S ⊗ I(−ε,ε) + IS ⊗∆(−ε,ε) . (4.2)

Here ∆Ωε is the 3D Laplacian on Ωε with Dirichlet conditions on ∂0Ωε and Neumann conditions
on the rest of the boundary, ∆S is the 2D Laplacian with Dirichlet conditions on ∂S, and ∆(−ε,ε)
is the 1D Laplacian on (−ε, ε) with Neumann conditions in ±ε. Then the eigenvalues of ∆Ωε are
all the sums of an eigenvalue of ∆S and of an eigenvalue of ∆(−ε,ε). The first eigenvalue λ∆(ε) of
(3.2) is the first eigenvalue of −∆Ωε . Since the first eigenvalue of −∆(−ε,ε) is 0, we have

λ∆(ε) = λS

and the corresponding eigenvector is u(x1, x2, x3) = v(x1, x2) where (λS , v) is the first eigenpair
of −∆S . Thus k∆(ε) is independent of ε, and is the angular frequency of v.

In the case of a shell that is not a plate, the equality (4.2) is no more true. However, if ∆S denotes
now the Laplace-Beltrami on the surface S with Dirichlet boundary condition, an extension of the
result2 of [13] yields that the smallest eigenvalue of the right-hand side of (4.2) should converge
to the smallest eigenvalue of ∆Ωε . An extension of [13, Th. 4] gives, more precisely, that

λ∆(ε) = λS + a1ε+O(ε2), as ε→ 0, (4.3)

for some coefficient a1 independent on ε. Concerning the angular frequency k∆(ε), a direct argu-
ment allows to conclude.

Lemma 4.1. Let Ωε be an axisymmetric shell. The first eigenvalue (3.2) of the Laplace operator
is simple and k∆(ε) = 0.

2In [13], the manifold S (denoted there by M ) is without boundary. We are convinced that all proofs can be
extended to the Dirichlet lateral boundary conditions when S has a smooth boundary.
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Proof. The simplicity of the first eigenvalue of the Laplace operator with Dirichlet boundary con-
ditions is a well-known result. Here we reproduce the main steps of the arguments (see e.g. [9,
sect. 7.2]) to check that this result extends to more general boundary conditions.

Let u be an eigenvector associated with the first eigenvalue λ. A consequence of the Kato equality

∇|u| = sgn(u)∇u almost everywhere3

is that |u| satisfies the same boundary conditions as u and the same eigenequation −∆|u| = λ|u|
as u. Therefore |u| is an eigenvector with constant sign. The equation −∆|u| = λ|u| implies that
−∆|u| is nonnegative, and hence |u| satisfies the mean value property

|u(t0)| ≥ 1

meas(B(t0, ρ))

∫
B(t0,ρ)

|u(t)| dt

for all t0 ∈ Ωε and all ρ > 0 such that the ball B(t0, ρ) is contained in Ωε. Hence |u| is positive
everywhere in Ωε. Therefore u = ±|u| and we deduce that the first eigenvalue is simple.

By Lemma 2.1, this eigenvector is unimodal. Let k be its angular frequency. If k 6= 0, by Remark
2.2 there would exist an independent eigenvector of angular frequency−k for the same eigenvalue.
Therefore k = 0. �

4.2. Lamé system on plates. The domain Ωε is the product (4.1) of S by (−ε, ε). For the smallest
eigenvalues λL(ε) of the Lamé problem (3.3), we have the convergence result of [6, Th.8.1]

λL(ε) = λB ε
2 +O(ε3), as ε→ 0, (4.4)

Here, λB is the first Dirichlet eigenvalue of the scalar bending operator B that, in the case of plates,
is simply a multiple of the bilaplacian (Kirchhoff model)

B =
1

3

E

1− ν2
∆2 on H2

0 (S). (4.5)

The reference [6, Th.8.2] proves convergence also for eigenvectors. In particular the normal com-
ponent u3 of a suitably normalized eigenvector converges to a Dirichlet eigenvector of B. This
implies that the angular frequency kL(ε) converges to the angular frequency kB of the first eigen-
vector of the bending operator B.

4.3. Lamé system on a spherical cap. A spherical cap Ωε can be easily defined in spherical
coordinates (ρ, θ, ϕ) ∈ [0,∞)× [−π

2
, π

2
]× T (radius, meridian angle, azimuthal angle) as

Ωε =
{
t ∈ R3, ρ ∈ (R− ε, R + ε), ϕ ∈ T, θ ∈ (Θ,

π

2
]
}
.

Here R > 0 is the radius of the midsurface S and Θ ∈ (0, π) is a given meridian angle. Numerical
experiments conducted in [7, sect.6.4.2] exhibited convergence for the first eigenpair as ε → 0
(when Θ = π

4
), see Fig.10 loc. cit.. We do not have (yet) any theoretical proof for this.

3With the convention that sgn(u) = 0 when u = 0.
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5. SENSITIVE CASES: DEVELOPABLE SHELLS

Developable shells have one main curvature equal to 0. Excluding plates that are considered
above, we see that we are left with cylinders and cones4.

The case of cylinders was addressed in the literature with different levels of precision. In cylin-
drical coordinates (r, ϕ, τ) ∈ [0,∞) × T × R (radius, azimuthal angle, axial abscissa) a thin
cylindrical shell is defined as

Ωε =
{
t ∈ R3, r ∈ (R− ε, R + ε), ϕ ∈ T, τ ∈ (−L

2
, L

2
)
}
.

Here R > 0 is the radius of the midsurface S and L its length. The lateral boundary of Ωε is

∂0Ωε =
{
t ∈ R3, r ∈ (R− ε, R + ε), ϕ ∈ T, τ = ±L

2

}
.

One may find in [15, 14] an example of analytic calculation for a simply supported cylinder using
a simplified shell model (called Donnel-Mushtari-Vlasov). We note that simply supported con-
ditions on the lateral boundary of a cylinder allow reflection across this lateral boundary, so that
separation of the three variables using trigonometric Ansatz functions is possible. This example
shows that for R = 1, L = 2 and h = 0.02 (i.e., ε = 0.01) the smallest eigenfrequency does not
correspond to a simple eigenmode, i.e., a mode for which k = 0, but to a mode with k = 4.

In figure 1 we plot numerical dispersion curves of the exact Lamé model L for several values of
the thickness h = 2ε (0.1, 0.01, and 0.001). This means that we discretize the exact 2D Lamé
model L(k) obtained after angular Fourier transformation, see (2.10), on the meridian domain

ωε =
{

(r, τ) ∈ R+ × R, r ∈ (R− ε, R + ε), τ ∈ (−L
2
, L

2
)
}
.

We compute by a finite element method for a collection of values of k ∈ {0, 1, . . . , kmax} so that
for each ε, we have reached the minimum in k for the first eigenvalue.

So we see that the minimum is attained for k = 3, k = 6, and k = 11 when h = 0.1, 0.01, and
0.001, respectively. We have also performed direct 3D finite element computations for the same
values of the thickness and obtained coherent results. In figures 2-4 we represent the shell without
deformation and the radial component of the first eigenvector for the three values of the thickness.

In fact the first 3D eigenvalue λL(ε) and its associated angular frequency kL(ε) follow precise
power laws that can be determined. A first step in that direction is the series of papers by Artioli,
Beirão Da Veiga, Hakula and Lovadina [4, 1, 2]. In these papers the authors investigate the first
eigenvalue of classical surface models posed on the midsurface S. Such models have the form

K(ε) = M + ε2B. (5.1)

The simplest models are 3 × 3 systems. The operator M is the membrane operator and B the
bending operator. These models are obtained using the assumption that normals to the surface in
Ωε are transformed in normals to the deformed surfaces. In the mathematical literature the Koiter
model [10, 11] seems to be the most widely used, while in the mechanical engineering literature
so-called Love-type equations will be found [14]. These models differ from each other by lower

4Since we consider here shells with a smooth midsurface, cones should be trimmed so that they do not touch the
rotation axis.
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FIGURE 1. Cylinders with R = 1 and L = 2: log10 of first eigenvalue of L(k) depending
on k for several values of the thickness h = 2ε. Material constants E = 2.069 · 1011,
ν = 0.3, and ρ = 7868 as in [2]

FIGURE 2. Cylinder with R = 1, L = 2 and h = 10−1: First eigenmode (radial component).

FIGURE 3. Cylinder with R = 1, L = 2 and h = 10−2: First eigenmode (radial component).

order terms in the bending operator B. As we will specify later on, this difference has no influence
in our results.
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FIGURE 4. Cylinders with R = 1, L = 2 and h = 10−3: First eigenmode (radial component).

Defining the order α of a positive function ε 7→ λ(ε), continuous on (0, ε0], by the conditions

∀η > 0, lim
ε→0+

λ(ε) ε−α+η = 0 and lim
ε→0+

λ(ε) ε−α−η =∞ (5.2)

[4, 1, 2] proved that α = 1 for the first eigenvalue of K(ε) in clamped cylindrical shells. They
also investigated by numerical simulations the azimuthal frequency k(ε) of the first eigenvector
of K(ε) and identified power laws of type ε−β for k(ε). They found β = 1

4
for cylinders (see also

[3] for some theoretical arguments based on special Ansatz functions in the axial direction).

In [5], we constructed analytic formulas that are able to provide an asymptotic expansion for k(ε)
and λ(ε), and consequently for kL(ε) and λL(ε):

k(ε) ' γε−1/4 and λ(ε) ' a1ε , (5.3)

with explicit expressions of γ and a1 using the material parameters E, ρ and ν, the sizes R and
L of the cylinder, and the first eigenvalue µbilap ' 500.564 of the bilaplacian η 7→ ∂4

zη on the
unit interval (0, 1) with Dirichlet boundary conditions η(0) = η′(0) = η(1) = η′(1) = 0, cf [5,
sect. 5.2.2]:

γ =

(
R6

L4
3(1− ν2)µbilap

)1/8

and a1 =
2E

ρRL2

√
µbilap

3(1− ν2)
. (5.4)

We compare the asymptotics (5.3)-(5.4) with the computed values of kL(ε) by 2D and 3D FEM
discretizations, see figure 5. The values of kL(ε) are determined for each value of the thickness:

• In 2D, by the abscissa of the minimum of the dispersion curve (see figure 1)
• In 3D, by the number of angular oscillations of the first mode (see figures 2-4)

Finally we compare the asymptotics (5.3)-(5.4) with the computed eigenvalues λL(ε) by four
different methods, see figure 6.

Problems considered in figure 6:

a) Lamé system L(k) on the meridian domain ωε, computed for a collection of values of k by
2D finite element method.

b) Naghdi model [12] on the meridian set C = (−1, 1) of the midsurface, computed for a
collection of values of k by 1D finite element method in [2].

c) Love-type model [14] on C, computed for a collection of values of k by collocation in [2].
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FIGURE 5. Cylinders (R = 1, L = 2): Computed values of kL(ε) versus the thickness
h = 2ε. The asymptotics is h 7→ 9.2417 · ε−1/4 ' 11 · h−1/4 (with ν = 0.3).
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FIGURE 6. Cylinders (R = 1, L = 2): Computed values of λL(ε) versus the thickness
h = 2ε. Material constants E = 2.069 · 1011, ν = 0.3, and ρ = 7868. 1D Naghdi and
Love models are computed in [2]. The asymptotics is h 7→ 6.770 · εE/ρ = 3.385 · hE/ρ.

d) 3D finite element method on the full domain Ωε.

In methods a), b) and c),

λ(ε) = min
0≤k≤kmax

λ(k)(ε)

where λ(k)(ε) is the first eigenvalue of the problem with angular Fourier parameter k (remind that
λ(k)(ε) = λ(−k)(ε)). In method d), λ(ε) is the first eigenvalue.
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We can observe that these four methods yield very similar results and that the agreement with the
asymptotics is quite good. In [5, sect. 5] the case of trimmed cones is handled in a similar way
and yields goods results, too.

6. A SENSITIVE FAMILY OF ELLIPTIC SHELLS, THE AIRY BARRELS

In this section we consider a family of shells defined by a parametrization with respect to the axial
coordinate, which is denoted by z when it plays the role of a parametric variable: The meridian
curve C of the surface S is defined in the half-plane R+ × R by

C =
{

(r, z) ∈ R+ × R, z ∈ I, r = f(z)
}

where I is a chosen bounded interval and f is a smooth function on the closure of I. We assume
that f is positive on I. Then the midsurface is parametrized as (with values in Cartesian variables)

I × T −→ S
(z, ϕ) 7−→ (t1, t2, t3) = (f(z) cosϕ, f(z) sinϕ, z).

(6.1)

Finally, the transformation F : (z, ϕ, x3) 7→ (t1, t2, t3) sends the product I × T × (−ε, ε) onto
the shell Ωε and is explicitly given by

t1 =
(
f(z) + x3

1
s(z)

)
cosϕ, t2 =

(
f(z) + x3

1
s(z)

)
sinϕ, t3 = z − x3

f ′(z)
s(z)

, (6.2)

where s is the curvilinear abscissa

s(z) =
√

1 + f ′2(z).

With shells parametrized in such a way, we are in the elliptic case (that means a positive Gaussian
curvature) if and only if f ′′ is negative on I. In this same situation the references [4, 1, 2] proved
that the order (5.2) of the first eigenvalue of K(ε) is α = 0. In [2], numerical simulations are
presented for the case

f(z) = 1− z2

2
on I = (−0.892668, 0.892668), (6.3)

by solving the Naghdi and the Love models. A power law k(ε) ∼ ε−2/5 is suggested for the
angular frequency of the first mode. The shells defined by (6.2)-(6.3) have the shape of barrels,
figure 7.

FIGURE 7. Shell (6.2)-(6.3) with h = 10−1.
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Before presenting the analytical formulas of the asymptotics [5], let us show results of our 2D and
3D FEM computations. In figure 8 we plot numerical dispersion curves of the exact Lamé model
L for several values of the thickness h = 2ε (0.01, 0.004, 0.002 and 0.001).

0 5 10 15 20 25
6.8

7

7.2

7.4

7.6
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k
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g1

0(
λ)

 

 
h = 1e−2
h = 4e−3
h = 2e−3
h = 1e−3

FIGURE 8. Shell (6.2)-(6.3): log10 of first eigenvalue of L(k) depending on k for several
values of the thickness h = 2ε. Material constants as in [2]

We can see that, in contrast with the cylinders, k = 0 is a local minimum of all dispersion curves.
This minimum is global when h ≥ 0.005. A second local minimum shows up, which becomes the
global minimum when h ≤ 0.004 (k = 9, 12 and 16 for h = 0.004, 0.002, and 0.001, respectively.
In figure 9 we represent the radial component of the first eigenvector for these four values of the
thickness obtained by direct 3D FEM.

FIGURE 9. Shell (6.2)-(6.3) and h = 0.01, 0.004, 0.002, 0.001: First eigenmode (radial component).

Comparing with the cylindrical case, we observe a new phenomenon: the eigenmodes also con-
centrate in the meridian direction, close to the ends of the barrel, displaying a boundary layer
structure as ε → 0. In [5] we have classified elliptic shells according to behavior of the function
(proportional to the square of the meridian curvature bzz)

H0 =
E

ρ

f ′′2

(1 + f ′2)3
. (6.4)



HIGH FREQUENCY OSCILLATIONS OF FIRST EIGENMODES 15

If H0 is not constant, the classification depends on the localization of the minimum of H0. If the
minimum is attained in a point z0 that is at one end of I, we are in what we called the Airy case.
We observe that for the function f = 1− z2

2

H0 =
E

ρ

1

(1 + z2)3
.

Its minimum is clearly attained at the two ends ±z0 of the symmetric interval I. In the Airy case
our asymptotic formulas take the form, see [5, sect. 6.4],

k(ε) ' γε−3/7 and λ(ε) ' a0 + a1ε
2/7 with a0 = H0(±z0) . (6.5)

To give the values of γ and a1 we need to introduce the functions

g(z) = −2E

ρ

(ff ′′
s6

+
f 2f ′′2

s8

)
(z) and B0(z) =

E

ρ

1

3(1− ν2)

1

f(z)4
. (6.6)

With
b = B0(z0) and c = z

(1)
Airy

(
g(z0)

)1/3 (
∂zH0(z0)

)2/3
, (6.7)

(here z
(1)
Airy ' 2.33810741 is the first zero of the reverse Airy function) we have

γ =
( c

6b

)3/14

and a1 = (6bc6)1/7(1 +
1

6
) . (6.8)

We compare the asymptotics (6.5)-(6.8) with the computed values of kL(ε) by 2D and 3D FEM
discretizations, see figure 10. The values of kL(ε) are determined for each value of the thickness
by the same numerical methods as in the cylindric case.
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2D FEM
3D FEM
Asymptotics

FIGURE 10. Shell (6.2)-(6.3): Computed values of kL(ε) versus the thickness h = 2ε.
The asymptotics is h 7→ 0.51738 · ε−3/7 ' 0.6963 · h−3/7 (with ν = 0.3).

Finally we compare the asymptotics (6.5)-(6.8) with the computed eigenvalues λL(ε) by the same
four different methods as in the cylinder case, see figure 11.

Here we present 2D computations with two different meshes. The uniform mesh has 2× 8 curved
elements of geometrical degree 3 (2 in the thickness direction, 8 in the meridian direction) and the
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FIGURE 11. Shell (6.2)-(6.3): Computed values of λL(ε)− a0 versus thickness h = 2ε.
1D Naghdi and Love models in [2]. Asymptotics h 7→ a0+a1 ε ' (0.1724+1.403·ε)E/ρ.

interpolation degree is equal to 6. In the refined mesh, we add 8 points in the meridian direction,
at distance O(ε), O(ε3/4), O(ε1/2), and O(ε1/4) from each lateral boundary, see figure 12. So the
mesh has the size 2× 16. The geometrical degree is still 3 and the interpolation degree, 6. In this
way we are able to capture these eigenmodes that concentrate at the scale d/ε2/7, where d is the
distance to the lateral boundaries. In fact eigenmodes also contain terms at higher scales, namely
d/ε3/7 (membrane boundary layers), d/ε1/2 (Koiter boundary layers), and d/ε (3D plate boundary
layers).
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FIGURE 12. Meshes for shell (6.2)-(6.3) and ε = 0.01: Uniform (left), refined (right).

A further, more precise comparison of the five families of computations with the asymptotics is
shown in figure 13 where the ordinates represent now log10(λ − a0 − a1ε

2/7). These numerical
results suggest that there is a further term in the asymptotics of the form a2ε

4/7. We observe a
perfect match between the 1D Naghdi model and the 2D Lamé model using refined mesh. The
Love-type model seems to be closer to the asymptotics. A reason could be the very construction
of the asymptotics: They are built from a Koiter model from which we keep

• the membrane operator M,
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• the only term in ∂4
ϕ in the bending operator. Note that this term is common to the Love and

Koiter models. After angular Fourier transformation, the corresponding operator becomes
B0(z) k4, with B0 introduced in (6.6).
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FIGURE 13. Shell (6.2)-(6.3): Computed values of λL(ε)− a0− a1ε
2/7 versus thickness

h = 2ε. 1D Naghdi and Love models in [2]. The reference line is h 7→ ε4/7E/ρ.

The exponent −3
7

in (6.5) is an exact fraction arising from an asymptotic analysis where the Airy
equation −∂2

ZU + ZU = ΛU on R+ with U(0) = 0 shows up. Thus, the exponent −2
5

in [2] that
is only an educated guess is probably incorrect. We found in [5, sect. 6.3] this −2

5
exponent for

another class of elliptic shells that we called Gaussian barrels, for which the function H0 (6.4)
attains its minimum inside the interval I (instead of on the boundary for Airy barrels).

7. CONCLUSION: THE LEADING ROLE OF THE MEMBRANE OPERATOR FOR THE LAMÈ
SYSTEM

We presented two families of shells for which the first eigenmode has progressively more oscil-
lations as the thickness tends to 0. The question is “Can we predict such a behavior for other
families of shells? What are the determining properties?”

In [5] we presented several more families of shells with same characteristics of the first mode. The
common feature that controls such a behavior seems to be strongly associated to the membrane
operator M. If we superpose to our dispersion curves k 7→ λ(k)(ε) of the Lamé system the
dispersion curves k 7→ µ(k) of the membrane operator, we observe convergence to the membrane
eigenvalues as ε → 0 for each chosen value of k, see figure 14. We also observe that for each
chosen ε, the sequence λ(k)(ε) tends to∞ as k → ∞. The appearance of a global minimum of
λ(k)(ε) for k that tends to ∞ as ε → 0 occurs if the sequence µ(k) has no global minimum: Its
infimum is attained “at infinity”.
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FIGURE 14. Cylinders (left) and Airy barrels (right): First eigenvalues of L(k) depending
on k for several values of thickness compared with first eigenvalues of M(k) (membrane).

For cylinders and cones, the sequence µ(k) tends to 0 as k →∞. Hence the sensitivity. For elliptic
shells, the sequence µ(k) tends to a limit that coincides with the minimum of the function H0.
Sensitivity depends on whether µ(k) has a minimum lower than this value. From our previous study
it appears that any configuration is possible. For hyperbolic shells, µ(k) tends to 0 so sensitivity
occurs, cf [4, 1, 2] but the analysis of the coefficients in asymptotics cannot be performed by the
method of [5].

A natural question that comes to mind is: Are there other types of axisymmetric structures that
behave similarly? Rings (curved beams) are conceivable – The recent work [8] tends to prove that
sensitivity does not occur for thin rings with circular or square sections.
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[1] E. ARTIOLI, L. BEIRÃO DA VEIGA, H. HAKULA, AND C. LOVADINA, Free vibrations for some koiter shells
of revolution., Appl. Math. Lett., 12 (2008 (21)), pp. 1245–1248.

[2] , On the asymptotic behaviour of shells of revolution in free vibration., Computational Mechanics, 44
(2009), pp. 45–60.
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