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Abstract

We consider the solution of an interface problem posed in a bounded domain coated with
a layer of thickness ¢ and with external boundary conditions of Dirichlet or Neumann type.
Our aim is to build a multi-scale expansion as € goes to 0 for that solution.

After presenting a complete multi-scale expansion in a smooth coated domain, we focus
on the case of a corner domain. Singularities appear, obstructing the construction of the
expansion terms in the same way as in the smooth case. In order to take these singularities
into account, we construct profiles in an infinite coated sectorial domain.

Combining expansions in the smooth case with splittings in regular and singular parts
involving the profiles, we construct two families of multi-scale expansions for the solution in
the coated domain with corner. We prove optimal estimates for the remainders of the multi-
scale expansions.

1 Introduction

The interface problem investigated in this paper originates from an electromagnetic model for
bodies coated with a dielectric layer. In many practical situations, the layer thickness € is small
compared to the characteristic lengths of the body and the domain has corner points.

The problem is of practical importance and has been widely studied in the mathematical lit-
erature, in particular with respect to the question of approximately replacing the effect of the thin
layer by effective boundary conditions (cf. e.g. [4], [9], [12], [13], [5], [3]). The usual technique
is to build the first terms of an asymptotic expansion of the solution of the problem in powers of
the thickness €. In the previous works, the body is required to have a smooth boundary, which is
often not true for the situations encountered in the applications.

The purpose of our paper is to provide an ¢ -expansion for corner domains in the two-dimen-
sional case. We point out the arising mathematical difficulties and the difference from the smooth
case in the structure of the asymptotics. Our method has similarities with [7], [6], and [20] in
which asymptotic problems involving singularities are discussed. A detailed comparison of the
effect of the thin layer with impedance boundary conditions, together with numerical simulations
can be found in [26]. Similar problems can arise in other applications, for instance in elasticity for
bonded joints, see [IL0].

Although we have restricted ourselves to the case of the Laplace operator with Dirichlet and
Neumann boundary conditions, our study keeps the fundamental features useful for the applica-
tions. The basic tools introduced in this paper have a wider range of applications.

Our paper is organized as follows:
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After formulating the problems that we are going to investigate, we present an outline of our
results, in both situations of a smooth domain and a corner domain. Each time, we consider
Dirichlet or Neumann external boundary conditions.

Section Pis devoted to the smooth case: We improve results of [9] by the proof of an optimal
remainder estimate. Moreover, the treatment of external Neumann boundary conditions requires
in our case to deal with compatibility conditions on the data, which is not the case in [9]], since
the domains considered there are unbounded. The description of the structure of the ¢ -expansion
in the interior domain and its coating, together with uniform estimates is one of the fundamental
tools for the study of the coated corner domains.

After recalling some well-known results about the splitting in regular and singular parts of the
solution of Dirichlet or Neumann problems in a corner domain, we build in Section Bl new objects
called profiles and denoted by R*. These objects enter the ¢-expansion as contributions in the
rapid variable Z. They interpolate between the singularities of the transmission problem and the
singularities s* of the limit problem.

In Section H relying on the results of the two previous sections, we achieve our goal, which
consists in the construction of two families of multi-scale e-expansions of the solution of our
problem in a coated domain with corner. This result will be outlined in formulas (C6)-(LS]) and
presented with full details in Theorems .7 and EET41

We draw a few conclusions in Section [l before developing in the appendix the proof of a
uniform (in €) a priori estimate for the transmission problem with a smooth thin layer.

For any positive integer N, HV(Q) is the standard Sobolev space of L2(Q) functions with
derivatives of order less than N in L?(£2), and its norm is denoted by || - || y.¢ . For positive real
N, HV(Q) is the standard Sobolev space defined by interpolation.

1.1 Formulation of the problem

ext

ext

FE

ext
Figure 1: Smooth and corner domains with thin layer 2°.

As already mentioned we consider both smooth and corner situations. The “smooth case” cor-
responds to the following situation: Let ,; C R? be a bounded domain with smooth boundary
I'. Forany t € I" let n(¢) denote the unit outward normal at ¢. For € > 0 small enough, let Q%
be the layer of uniform thickness € around €2;,,; given by

QG ={re€R*} z=t+snt),tecT, sc(0,e)}. (1.1)
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The “corner case” involves the situation where €,; is a polygonal domain of R?. By a stan-
dard argument of localization, it is enough to consider one corner at a time: In order to simplify the
presentation, we deal with a single corner point in the domain. Now €,; C R? is a bounded do-
main whose boundary I is smooth except at the origin O : We assume that inside a neighborhood
of O, I' coincides with a plane sector of opening w (# 0, 7, 27 ). Let us fix some notations:

Definition 1.1 Let V' C V be the two balls centered in O with radii 0 < p' < p such that
Qine NV is a sector. Let x € C§°(V) be a cut-off function, x =1 in V'.

We assume that, for 0 < € < g( small enough, inside V' the external boundary of €17 is a
sector of opening w too, at a distance ¢ from I', with vertex O° € V', see Figure[ll Outside V,
the external layer Q¢ is defined as (IT)) above in the smooth case.

In both regular and corner cases, the whole domain €2,y UI' U €, is denoted by {2° and its

boundary (the “external” boundary) by I, .

Let « be a fixed positive real number. We are interested in the following transmission problem:
Find ., defined by . it in Qing and e ey in Qg satisfying the equations

aAus,int = fint in Qi
Aus,ext = fext in ngt )
Ug,int — Ug,ext = 0 on I, Po)
Oéanus,int - 8nus,ext = g on F’
external b.c. on I'gy,

where 0,, denotes the normal derivative (outer for €2, , inner for QF, ). The right-hand sides fiy
and g do not depend on € and fey is supposed to be the restriction to €27, of an e-independent
function. All data are real and supposed to be smooth, i.e., fint € C®(Qunt), fext € C ()
and g € C*°(I"). In the corner case we assume moreover that fey is zero near O.

The external boundary conditions (b.c.) which we consider are either Dirichlet or Neumann

conditions.

1.2 Dirichlet external b.c.

Here the external b.c. in (BJ) is uc ext = 0 on I'S, . Problem (PJ) is a well-posed elliptic problem
in H{(9°) whose variational formulation is

a/ vus,in‘c - Ving do + vus,ext * Vext do =
Qint 93

ext

- / fint Vint d — / fext Vext dx + / gudo, Vv e HH(Q). (1.2)
Qint QZX; r

Existence and uniqueness of a weak solution directly follow from the Lax-Milgram lemma. We
also have an a priori estimate with a constant C' independent of ¢:

Juell e < € [l + s, + lolor] - 13

int
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The limit problem as € — 0 is the following Dirichlet problem without the thin layer:

aAu?nt = [ in Qu,
w = h onT,

int

(Po)
with f = fint and h = 0.

1.2.1 The smooth case

In the smooth case the interior part expansion of the solution of problem (%)) has the simple form,
cf. [9] or [5],
Ue int () = ubhe (@) + eudy () + - + eNudy () + o(eN), (1.4)

each ufnt being independent of ¢. We further investigate expansion (L)) in two directions: (i) We
prove optimal estimates for the remainder, and (ii) exhibit a construction algorithm for all terms
u{“m. We will see that for any £ > 1, ufnt is solution of the Dirichlet problem on €2, with
f =0 and h = h*, with h* the trace of differential operators acting on the previous terms ufnt
for ¢ < k.

1.2.2 The corner case: Expansion into regular parts and profiles

In the case of a corner domain, the expansion (L4) is not valid anymore, because the generic
presence of singularities prevents the traces h* produced by the construction algorithm of the
smooth case to belong to the right trace space H2 ().

Let us present the form of our results. To avoid unnecessary complications, we assume here
that the data f;x and ¢ are O at the corner point O, and the same for all their derivatives, and
that the ratio T is irrational. The general case is addressed in Section Hl

Let (r,6) be polar coordinates centered at O and such that —% < 6 < ¢ in Qi NV The
singularities of the Dirichlet problem (Pg)) take the form

(g € N).

{ r* cos(N0) if A = < with ¢ odd,
5 g

rrsin(Af) if A = 2T with g even,
For the limit term u{ (), we have the well-known expansion into regular and singular parts, cf.
[T7, [L1]]: Since the right-hand side is C°°({2;yy), it takes the form for each fixed integer N > 0
uhe(@) = upe (2) + Y cgx(z)sv (), cg €R and upy € HYM Q). (1.9)

int int int
q;0< % <N

Here x is the cut-off function of Definition [LTl In fact, with our simplifying hypotheses, the
remainder is also flat: u?l;év = O(r"V) as r — 0. Thus ([3) can also be seen as an expansion in
powers of 7 as r tends to 0.

The main result of our paper is a complete ¢-expansion for u, ;.. We have found different
ways to assemble terms together, resulting into two distinct formulas. The first one is an expansion

into regular and singular terms. But, in contrast with (L3)), the singular terms cannot be simply
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a linear combination of the s*. They now involve singular profiles & depending on the rapid
x

variable £ : For each fixed integer N > 0

0,N 1,N—-1 2,N—2
Ueint(T) = iy (7) Fewyy (@) +etu (@)
27 27 1420 N_1—27 3m 37
+ g%ruir“;t’ “(z) + €1+27wui;t_ @’ v (x) + 837”“1;&7 v (x) +

_ _ (1.6)
+ew(er +ce+ ) x(z) Re (%)

+e¥ (e +che+ ) x(x) B (L) + -+ o(eN),
with the following features

e The terms ui);;t are independent of ¢ and flat in O at the order n, i.e., uﬁlé‘ = O(r*)
as r — 0. The exponent A indicates the power of ¢ in front of uﬁlé‘ . It is an integer
or a number of the form < + p with ¢ > 2, p > 0 integers. In the above expansion
u = N — X\, which means in particular that these terms depend on the given precision N of
the expansion.

e The numbers ¢, ¢,

q - - - are real coefficients independent of N .

e The profiles X — R*(X) are defined for \ = 4% in a model infinite sector with layer
of thickness 1, see Figure Pl p[I3l They solve a transmission problem with zero data and
behave like s* as R — oo. In expansion (L), only those with A < N are involved. They
play a similar role as the singularities s arising in (3)), which solve a Dirichlet problem
with zero data in the infinite sector without layer. Note also that, owing to its homogeneity,

by . T AT N . . .
s” can be written as £« 5 (£) in rapid variables.

The different terms in (L) satisfy the following energy estimates:
A, . -
uit g,y = O1) and [IXOIRE) |y g, = OE). (1.7)

There are fundamental differences between the expansions (L4 and (L6): Non-integer powers of
¢ appear and a new scale is introduced in the functions &*.

1.2.3 The corner case: Corner layer expansion

The expansion (L) has two features which can be considered as inconvenient: (i) The limit term
ul) . is not clearly visible, and (ii) the “flat” terms are of the form u*"~*, thus depend on the
given precision N. To go from N to N + 1, these terms have to be split themselves into flatter
terms and singularities, to produce the «»¥+1~* and contribute to coefficients on profiles £ .

It is possible to construct a different type of ¢-expansion, by a mere rearrangement of terms
inside the former expansion (L6). This rearrangement relies on the asymptotic structure at infin-
ity of the “canonical” profiles &, which consists of a finite number of homogeneous functions
AME of positive degree A — ¢ with integer £. Setting

A ah AA—C
P = R Zéﬁ ,
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we find the new asymptotics for . :

Ueint(T) = u?nt(x) + 5“11111;(55) + 52ui2nt(x) +oe
—I—EQUWUSEZ(:L’)—I—sH%uil;%(x)—l—e%uji(x)—i--“ w9
rella+eet ) xl@) D) |
+e¥ (et chet o) x(@) (D) +--- + o(eV),

where, now, the terms u”, for v = 0,1, ... are no more “flat” nor regular, but they are independent

of the target precision 0(¢"). Moreover u?nt is the solution of problem (Pgl). As opposed to the
profiles £, the 2)* tend to zero at infinity and, if X is not integer, have a bounded H' energy on
Qint :

IXOD* i @, = OO (1.9)
They deserve the appellation of corner layer although they do not decrease exponentially, but as
a negative power of the distance to the origin. The expansion (L8 fits better the standard idea of

asymptotic expansion, where one only adds terms in O(e”) with v € (N, N + 1] to get from a
remainder in 0(¢V) to a remainder in 0(eVF1).

1.3 Neumann external b.c.

The external b.c. in (BJ) is now Onlie ext = 0. Since the problem has now the constant functions
in its kernel, a compatibility condition is needed on the right-hand side:

—/ fint dx—l—/gda— fext dx = 0. (1.10)
Qint r ngt
Since we want (LI0) to be satisfied for every £ > 0, it requires
—/ fintdx—i-/gda—() and Ve >0, fext dz = 0. (1.11)
Qint T ngt

Under the assumptions (LTT]), we can ensure uniqueness of a solution to the Neumann interface
problem by imposing the following mean-value property:

/ Ue it dzz = 0. (1.12)
Qint

A expansion similar to (LZ) holds in this situation, u{), solving the interior Laplace problem

in (¢ with homogeneous Neumann boundary conditions on I'. In the corner case, we have
expansions analogous to (L) and (L8). The main new difficulty is the construction of a suitable
variational space for the profiles.

2 Asymptotics for a smooth coated domain

This section is devoted to the smooth case whose understanding is necessary for the treatment of
a corner domain. In other words, we first focus on the situation “layer without corner” before
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treating in the next sections the situation “corner without layer” and, next, “corner with layer” we
are interested in.

In the smooth case the curve I' is supposed infinitely differentiable. Let ¢1 be its length. The
layer can be represented as the product [0, ¢r) x (0,¢) thanks to the decomposition

Qo = {2(t) +sn(x(t)) ; () € I'and s € (0,2)},
where ¢ denotes the arclength on I'. The introduction of the stretched variable
S=cls

maps [0, ¢r)x(0,¢) onto [0, ¢r)x(0,1). The parameter does not appear anymore in the geometry,
but in the equations through the expression of the Laplace operator in the layer (in the following
formula, c(t) is the curvature at the point of I" of arclength t):

e le(t) 1
m s 1+ eSc(t) O (1 + eSc(t) at) : (2.1)

Expanding () into powers of ¢, we obtain the formal expansion Ay = 72 [8% +> EZAZ] )
More precisely we can write

Aext = 5_282* +

L—1
Aot =2 {a@ +3 A+ eLRﬂ forall L > 1. 2.2)
/=1

Here the differential operators Ay = Ay(t, S;0;,0g) have C™ coefficients in ¢, polynomial in S
of degree ¢ — 2, and contain at most one differentiation with respect to .S. Note that, in particular,
A, = c(t)0s. The operators RL also have C*° coefficients in ¢ and S, bounded in e. There
holds

Op = 5_185

in the layer. Finally, for a function vey¢ defined in €25, , we denote by V.4 the function such that

ext

Vet () = Vit (1,8), (,8) € [0, 6r) x (0, 1).

2.1 Dirichlet external b.c.

After the change of variables s +— S in QZ,, , problem (FJ) becomes
e [Q%Us,ext +3 0, S Aee] = Fi in [0, £r) x (0,1),
e 105U ext = QOpucine —g on|0,0p) x {0},
Usext = 0 on [0,¢r) x {1}, (2.3)
OéAue,int = fint in Qipg,
Ueint = Usext onl,

\

where FZ(t,S) = fext(t,Ss) with fext(t, s) = fext(z). If the function fey is sufficiently
smooth, the Taylor expansion of fey¢ in the variable s at s = 0 leads to the expansion for all
LeN

FE . ( Zaffot )t + PRI with  FE (1) = gl 0! fext (,0) (2.4)

rem
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and Fr(enfr ' smooth and bounded. Inserting the Ansatz
Ug int = Z e"uipe  and  Ug ext = Z Ul (2.5)
neN neN

in equations @J3)), we get the following two families of problems, coupled by their boundary
conditions on I' (corresponding to S = 0):

82 ext = F(;L(tQ( )SniQ o Zé—f—p:n AZngt for0 < S < 17
OsUL, = adpult —gop for S =0, (2.6)
v, = 0 for S =1,

ext

2.7)

n _ n
Uing = ext on I'.

{ aAuﬁlt = fint68 in Qing,
In the cases n = 0 and n = 1, the problems (EE) @D are simple to solve. From (Z.6) with
n = 0 we obtain U, = 0 and (E:Z]) yields that u) . solves the interior Laplace problem (Pg)) with
f = fint and h =0. Atstep n = 1, we find successwely that Ul = (S — 1)[@dpud,|r — g]
and that ul , solves problem ([Pg) with f =0 and h = —ad,ud, + g.
The Whole construction follows from a recurrence argument. Suppose the sequences (u,,)
and (UZ) known until rank n = N —1, then the Sturm-Liouville problem (Z.8)) unlquely defines
U

JXt whose trace is inserted into (Z7)) as a Dirichlet data to determine the interior part uly

€ int *

Note that the variable ¢ only appears as a parameter in equations (Z.6) which are thus one-
dimensional. Therefore there is no elliptic regularization in the tangential direction: U], is not
more regular than a0, umt , which implies that we loose regularity at each step. However, an
assumption of infinite smoothness on the right-hand sides fint, fext, and g ensures that the con-
struction can be performed. This is not true in the case of a corner domain, as we will see later on,
and the loss of regularity will be a major difficulty.

Theorem 2.1 Let fiy belong to C*°(Qunt), fext to C*°(QY,) foran gy > 0, and g to C*°(T).

The solution u. of (PJ) with Dirichlet external b.c. has a two-scale expansion which can be written
for each N € N in the form

int

:Zz-: u + Nt withu"g,, = ull,  and u”]ggxt(t,s):Ug(t(t,z-:_ls). (2.8)

The remainders satisfy, with a constant C independent of € < gq:

2 g+ VENRET g, < O e (2.9)

»S4int

Proof: By construction, the remainder Y+ is solution of problem (PJ)

alriil = 0 in Qi
ARG = NS RN BY] i 05,
Ti-\fijl_tl - "”év ot = 0 on T, (2.10)
ady ti\/;jl—tl On, év e—rc‘% = 950 —eNad Umt on T,
Mt = 0 on I'¢

g,ext ext*
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N+1
,ext

If we denote the data of this system by f. and g¥*!, we find the estimates
I AgztlHo 0, O(gNié) and HgéVHHO,F = 0(").

Using the a priori estimate ([]3), we immediately obtain

[+, g < CeN R @.11)

Moreover by definition,
pNFL = N4LyN+L | N42, N+2 | N+3, 2.12)
Since for every integer 7, Hu”Hl,Qim = O(1) and |[u"|], o, = (’)(s_%), we obtain the stated
result from @.I1) and @.12)). n
Remark 2.2 The estimate (Z9) is optimal, since V™! does not vanish, in general. m

Observing the inductive solution of problems Z.6)-@.7)) we can write the relations between its
interior terms w,  without mention of the exterior terms U[; . We can also give an expression of
Uyt as a function of the interior terms wuj,, only. This is done thanks to the introduction of four

series of partial differential operators, accordlng to:

Proposition 2.3 Let n € N, n > 1. The interior solution v}, of problems Z8)-@D) solves the
Dirichlet problem [Pg) with f =0 and h = h™ where

"=glg+ » (Wuly + HYFL)L (2.13)
k+é=n

Here g is a differential operator in t of order < k—1, H** 4 differential operator in t of order
< k — 2 — £ (with the convention that H** = 0 if k — 2 — ¢ < 0) and h* a partial differential
operator h* (t;0¢, On) of order < k. The coefficients of the 0perat0rs are smooth funcnons on T’
depending on the geometry of T'. The first terms are given by g° =0, g' =1, g% = %c(t)I,

h° =0, h' = —ad,, h*=%c(t)0,, and H®?=H""=0, H*’=-1lL (2.14)

i zs given by a similar formula as @I3), with operators g, W*, and H**
replaced by operators a*, b*, and B** which are polynomial of degree < k in the variable S :

The exterior part U7}

Uy, =a'g+ Y bFul, +BMFL,. (2.15)
k+{l=n
The first terms are given by a° = 0, a! = (1 — 9)I, a® = %c(t)(S2 - 11,
b =0, b' = (S —1)ad,, b®>=—3c(t)(S? — 1)ad,, (2.16)

and B™® = B0 =0, B*" = (52 — 1)I
As practical consequences of the above formulas we obtain:
Corollary 2.4
()If fi =0, foxt =0, and g # 0, the series @) starts with cu' .
(i) If fint =0, foxt #0, and g = 0, the series L) starts in general with £*u?
(iii) More precisely, if fix =0, g =0, and OF foi|lr = 0 for k = 0,...,0 — 1 with 0% foxr
non identically 0, the series @) starts with +2u!*2,

This result, in particular (iii), is fundamental. It will be used in the proof of Lemma E.4 on
which the construction of the asymptotic expansion is based.
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2.2 Neumann external b.c.

If we consider the boundary condition Oy exy = 0 on 't in problem (P)), a similar algorithmic
construction can be done. Due to compatibility conditions, the situation is more complex than in
the Dirichlet case.

The compatibility conditions (LTT)) in the exterior part can be written as

0—/ / [1+ sc(z)] fexe(z + sn(z) dxds-s/ / [1+eSc(t)]| Fo(t, S)dtdsS, (2.17)

where c¢(t) denotes the curvature of I' at the point of arclength ¢ and n(z) the unitary outer
normal to iy ; see (Z4) for the behavior of FS, with respect to . Since we want @.I7) to be
satisfied for every € > 0, we shall assume

Ve >0 / [FLe(t) +c(t)Fi (t)]dt =0 (with the convention F.l =0).  (2.18)
r

Note that for analytic Fy , relation @I8)) is a consequence of @I7).

We now explain the construction of the first terms in the iterative procedure. Starting from
the same Ansatz Z3)), we get again problems ([Z.6) (whose third line is replaced by the Neumann
condition 9,U", = 0) and @7). Atstep n = 0, U2, (¢,-) solves a totally homogeneous one-
dimensional Neumann problem, hence U2 (t,S) is a function of the arc length ¢, denoted by

Bo(t) which cannot be determined at this stage.
For n = 1, we get (note that A;UY, = c(t)0sBo(t) = 0)

QUL = 0 for0 < S <1,
osULy = adyud, —g forS=0,
osUL, = 0 for S =1,

which is solvable if a0 umt = g on I'. Thus, let umt be solution of the Neumann problem:
ozAumt = fint in Qe and @O umt = g on I' (whose data satisfies the compatibility condi-
tion (CTI)). Then SBo(t) is determined as u, |r, thanks to the continuity condition across T'.

Let us now present the general construction: Let us assume that the terms U and uf, were
built for k£ < n, satisfying the condition on I":

Ve [0,0r), aduuls (t) = By (t) (Hp_1)

int

where ®,, 1 is defined as

B, (t) ;_gag—/o (F;;ﬁ 1S = Y AUL( )ds.

l+p=n
The construction of Ug; and uj, consists of three steps.

e Step 1. Definition of Ul; up to a constant. Thanks to assumption ({,_1)), the problem

LU, = FL2(t )Sn*Q _ ZHp: UL, for0< S <1,
osU™ a0, umt — g0y for S =0, (2.19)

ext

osU. = 0 for S =1

ext
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satisfies the compatibility condition. Thus, UJ%, can be determined up to a constant (of S') 3" (t).
o Step 2. Compatibility condition for Ug:{l

lem (ZI9) at rank n + 1. The right-hand side

Fe?ctl( )Sn_l - Z Af ext
l+p=n+l

and construction of uj,,. Let us consider prob-

is well defined since A;5"(t) = 0 (remember A; = ¢(t)0Js). The compatibility condition is
nothing but (H,, ): It reads ad,uil, = ®,,.

If we insert the previous condition (7, ) into the interior problem at rank 7, we obtain

aAu = fingd)  in Qing,
(2.20)
adpull, = @, onT.

Therefore, we can uniquely determine wuj;, with the condition fQ . uiy, = 0, provided the com-
patibility condition for this Neumann problem is fulfilled:

Lemma 2.5 The interior Neumann problem @20) is compatible.

Proof: For n = 0, ®, = ¢ and it directly follows from the compatibility condition for
problem (J), see (CII). For n > 1, we must show that the integral of ®,, over I" vanishes.
Thus, the condition to be satisfied is the following:

/ t)dt = // Fg;tl )5 ST AU ]det_o 2.21)
l+p=n+1

In the sum, we isolate the term corresponding to £ =1 and p = n; integrating the first equation
of ZI9)), we obtain an expression for dsU.%, which can be used to obtain

// AUL(t,S)dSdt = /// —FRPOYT 4 Y AUR( ]deSdt

l+p=n
(2.22)
Inverting the integrals in S and Y yields

// AU (t,8)dS dt = // — cOFEPOY™ 4 ) Ye(t) AU (t, )] dy dt.

l+p=n
(2.23)
Using equality I8}, we can deduce from [Z.23)) the compatibility condition @2T)) if
3 / / [Sc(t)Ag + Apy 1 |UE (2, S) dtdS = 0. (2.24)

l+p=n

From @J)) and @2), it follows that By = Sc(t)Ays—1 + Ay is nothing but the operator of rank ¢
in the formal expansion

T, :=[1+ €SC(t)][52Aext - ag‘] —ec(t)0s = ZEZBE'
>2
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But for any smooth function ¢ defined on I", @.JJ) gives

/ T.o(t)dt = £ / O [(1+eSc(t)) o] dt =0,
r r

since I' is a closed curve. Therefore fF Byp = 0 for every ¢ > 2 and every smooth function ¢.
This implies Z24). n

e Step 3. Complete determination of Ul . The continuity requirement UZ; = uj,, determines
(1) = uipylr-
We have just shown that the construction of the terms UZ

vt and wui, can be achieved by
induction. We can obtain a similar result as Theorem 2.1}

Theorem 2.6 Let fin € C°(Qnt), fext € C(QY,) for an g9 > 0, and g € C®(T) satis-
fying the assumptions (LI)). The solution u. of (PJ) with external Neumann b.c. determined by

fQA , Ue,int dx = 0 has a two-scale expansion which can be written for each N € N in the form

N
Ue = E g™ + Nt withu™g,, = ul

int

and u"|q: (t,s) = Ug (t,e1s).

xt
n=0

The remainders satisfy, with a constant C independent of € < gq:

[0 g+ VIR g, < Cn e 225)

int
Remark 2.7 For external Neumann boundary conditions we also have a statement like Proposition
231 with the following distinctive feature: If finy =0, g =0, and fexs # 0, the series (Z.8) starts
in general with eu! instead of e2u? for external Dirichlet b.c., and more precisely, if OF fo.|r = 0
for k=0,...,0 —1 and O foxt|r # 0, then @) starts with e/T1yt+1, o

2.3 Uniform a priori estimates

Since the transmission problem () is elliptic, the solution u. has an optimal piecewise regularity
depending on the regularity of the data and satisfies correspondingly a priori estimates. In fact, it
is even possible to prove that such estimates are uniform with respect to €. Using techniques of
differential quotients like in [[1]] or [2] we prove in the appendix the following local estimates: We
assume that Qi is a smooth domain or a corner domain as introduced in §L.J1 We fix a point
A €T, Az# O if O is the corner of ;. Let Br be the ball of center A and radius R. We
choose R small enough, so that in particular, O & Bp. Let p be fixed, 0 < p < R.

The following result applies both to Dirichlet and Neumann boundary conditions:

Theorem 2.8 With the above assumption on R and p, let m > 1 be an integer. For € small
enough, we consider the solution . of problem (PJ) with a right-hand side satisfying the regular-
ity assumptions fing € H™ 1 (Qing N BR), fext € H"Y(QE,, N Br), and g € Hmfé(I’ N Bg).
Then

Ue int € HmH(Qint NB,) and Ugexi € Herl(Q8

ext

N B,).
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Moreover, there exists a constant C', independent of ¢, f, and g such that

H“&thHerl,Qinthp + H“&exthJrl,QE nB, < C{Hfinth—LQinthR + erxth—LQf NBr

ext ext

+ HgHmfé,FﬂBR + Hué‘Ho,QamBR]'
(2.26)

As a consequence, for a smooth domain {2, there holds the following global estimate for the
solution u. € H(Q°) of problem (PJ) with a right-hand side satisfying the regularity assumptions

fint S Hm_l(Qint) s fext S Hm_l(Q€ ), and g € Hm_é(:[‘):

ext

Ue,int € Hm+1(Qint) and Ug ext € Hm—H(ngt)'

Moreover, there exists a constant C' independent of ¢ such that

letcsotll s, + ozt s e, < € el + Mestl s,

gt p+ lluclly o] @2

For external Dirichlet b.c., one can remove the contribution Hus

eZD.
When comparing (Z27)) with the expansions given in Theorems Z1] and 226 we can remark

that uniform estimates are corroborated by the fact that the degree in S = £ inside the exterior

stretched part UZ,, is less than n, see Proposition 2.3

Ho,ﬂa in the right hand side of

3 Corner singularities and profiles at infinity

From now on we consider the corner case. In this section, we prepare for the special treatment
needed by the corner point O of i, . The solution w. has singular parts, not only at O, but also
at the external vertex O°. We refer to [[17]], [L1]], or [8] for singularities of elliptic boundary value
problems and to [23]] for interface problems.

Examining problems Z8)-@7) and their solution via Proposition 23] we see that the singu-
larities of problem (Pg)) are of importance: The application of formula (Z-I3) presupposes that the
traces of hkufm on I are at least in H'/2 (I"). Since the operator h* is of degree k in general,
ufnt should belong to H¥1(;,). But the presence of singularities stops the regularity at the
level of H'*3 | in general.

We propose the following strategy in order to overcome this: We use the standard splitting of
u?nt into regular and singular parts, and replace the singular parts by profiles suitably constructed,

so as to solve the whole transmission problem in a neighborhood of O.

3.1 Dirichlet and Neumann corner singularities

Before constructing and investigating these profiles, we describe the singularities of the interior
problem (Pg)), see [[L1]]. We first introduce the following notations.
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Definition 3.1 (i) The set of singular exponents for the Dirichlet problem ([P is
S={L;q€eZ, q#0}. (3.1)

The singular function associated with the Dirichlet problem corresponding to \ € G is

A

5 =

rrcos(\0) if\ = wzth odd,
{ (A\0) if q 32

rAsin(\) if A = L with q even,

where (r,0) are polar coordinates centered in O such that the plane sector —5 < 6§ < %

coincides with Qi in a neighborhood of O.

(ii) The set of singular exponents for the Neumann problem @20) is & U {0}. The singular
function associated with the Neumann problem corresponding to A € G is

A

5 =

rrsin(\0)  if A = L= with q odd,
{ (N) fA=12 q 33)

rrcos(A0) if A = L= with q even.

The singularity associated with A\ = 0 is s° = logr.
(iii) For any positive number K let G(K) denote the finite set S N (0, K).

We recall the result of splitting into singular and regular part of the solutions of the Dirichlet
problem ([Pg)), in the situation where the data are “flat” in O, i.e. belong to some weighted spaces
of Kondrat’ev type, see [[L7]:

Definition 3.2 Let v € R and m € N. Let
H (Qine) = {0 € LEo(Qune) 5 77H110%0 € L2(Qua), |8 < m).

m—1/2

We denote by Hv +1/2

(') the trace space of HX(Qint). Finally HS® is defined as (1, HY' -
Theorem 3.3 Let m € N and K > 0 be a real number such that K ¢ &, and let the data satisfy

fint € B (Qing) and - h e H™EYE (D).
Then the solution u), € H'(Qint) of the Dirichlet problem (Pg)) admits the following decomposi-
tion:
u?nt =u0K 4y Z ens” with uOK € HT}il(Qim) and c) € R. (3.4)
AES(K)

Here x is a smooth cut-off function as introduced in Definition[[ ]

Remark 3.4 (i) If m > 1, the regular part v>% isa O(r¥).

(ii) For the Neumann problem there holds a similar decomposition like (B.4) with an extra constant
term corresponding to A = 0. In fact there are two “singular” functions associated with A = 0,
namely 1 and logr. The latter does not belong to Hl(Qint) . However, we will have to take it
into account as far as singularities at infinity will be concerned. o
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Figure 2: The infinite domain Q.

3.2 Introduction to the profile analysis

As already mentioned, the solution algorithm of Proposition 23] does not apply because of the
singularities in the splitting 3.4). An essential ingredient to obtain an ¢ -expansion for problem
() in this case is the construction of profiles solving an associated problem on an infinite domain,
see [6] or [[7].

Focusing on the corner point O, we perform the dilatation z — X = Z. When & goes to
0, the domain ¢ becomes an infinite sector ) (see Figure P): ) consists of an interior plane
sector Qint of opening w and of a straight layer Qoy¢ of thickness 1. Let Gy be the external
boundary of ) and G denote the common boundary of Q;int and Qext -

A standard feature of the singularities s* is to solve the Dirichlet (or Neumann) problem on
the sector @iyt of opening w with zero data, and to be homogeneous of degree \. The associated
profiles &* are solution of complete transmission problem (Py))

aARiy = fint in Qinta
Aﬁext = fext in Qexta

ﬁint - JZiext = 0 on Gu (Poo)
aOpRing — OpRext = g on G,
external b.c. on Gy,

for zero data fin¢, fext and g. The external b.c. is of course Rexy = 0 for Dirichlet and 9, RKexy = 0
for Neumann. Moreover, & has to imitate s* at infinity, namely

AMX) —sMX) =0o(RY), R=|X|— oo (3.5)

In this §3 we prove the existence of & solving the homogeneous ([P)) problem together with
condition @A) for external Dirichlet and Neumann conditions. For each case, this requires three
steps:

(i) An algorithmic part providing an asymptotic series R&*, solution of a model transmission
problem (EI) with zero data, see [3.3.2)
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(ii) Truncating this asymptotic series solution, we define the function £* on the infinite sector
(@ thanks to a variational formulation, see B3.3]

(iii) The expansion of the latter solution at infinity, see 3.4l

Throughout this section we use the following cut-off “at infinity”:

Definition 3.5 Let po be the distance OO’ between the internal and external corners of Q. Let
¥ be a smooth cut-off function equal to 1 for |X| > 2py and 0 for | X| < py.

3.3 Existence of Dirichlet profiles
3.3.1 Variational formulation

We need a variational framework for problem (P.J). Our variational space U is defined as

Y= {n : Vo e L2(Q), % €L?(Q)and v|g,,, = 0}, (3.6)

endowed with the natural norm

ol = 90llg.q + 16) "0l 0

where the weight is (X) := (|X|? + 1)'/2. This is a standard space for the solution of exterior
problems, see [22]]. The variational formulation is: Find u € J such that

Vg - Vo do + Vilext * Vgt do =
Qint Qex(‘,

/ fintVint dx+/ fextDext dx+/ godo, VYoeU. (3.7
Qint ext G

Proposition 3.6 If (X)f € L?(Q) and (X)ég € L2(Q), then problem (P)) admits a unique
solution v €Y.

Proof:  The bilinear form a associated with the variational formulation of (Py)) is obviously
continuous on ‘U . For the ellipticity, we use the polar coordinates centered in O (see Figure D)),
denoted by (p, ). Thanks to the Dirichlet conditions in Gy , We can write a Poincaré inequality
in the variable ¢: There exists a constant C' independent of p and v such that

B B
/w lo(p, p)[? de < CQ/w 10,0(p, )| dp.
-5 -5

Multiplying this inequality by p~! and integrating, we get ||p~

the coercivity of the bilinear form on .
The same technique shows that the prescribed conditions for §{ and g ensure the continuity of
the linear form associated with the right-hand side. ]

1““0,@ < CHVUHQQ , which gives
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R =0
. =% +1
I 0 . 2
: L’R ext w
E— =
|

0 v
i LR Qint
|
| o
| p S 0=-%
| L, QO
- h=—2—1
R =0
|

Figure 3: Definition of (R, ) coordinates, after polar transformation in the interior domain.

3.3.2 Algorithmic construction of kernel elements

We recall that for any fixed A > 0 in &, we are looking for a solution £* of (Py)) with fin, =
fext = g = 0, behaving at infinity like s*. This is possible because s* does not belong to 0. We
proceed by constructing a series of terms decreasing more and more at infinity, until they belong
to the variational space 2, which allows the determination of £ .

The first step involves an algorithmic construction in singular function spaces. It is more
canonical to define these spaces on a new domain Q instead of (), see Figure B

Definition 3.7 In Qiynt, we denote by (R, 0) the polar coordinates centered in O. Thus, consid-
ering (R,0) as new variables Qi is transformed into

Qvint - {(R7 H)a R > 07 0 S (_%7 %)}7

and G becomes

9

G={(R,0); R>0, 0 ==£%}.
We consider the exterior layer(s) Qext = Cu);;t U ngt around Qint

Qb ={(R,0); R>0,0€ (5.5 +1)} and Quy={(R.0); R>0,0¢€ (~1-4% —

NI

)}

Thus, in the exterior layer, R and 0 are the tangential and normal coordinates. For A\ € R, we
set

Q) = { Y RMog'Ru(0); wec®-%.31},
£>0, finite

S)‘(é) = { Z c}tR)‘long for 0 =+% ; c},c[ ER}, (3.8)
£>0, finite

PQet) = { X 0wl e SNO)}

£>0, finite
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Let Q the union of th, G, and QeXt We denote by SA(Q) the space of funcnons continuous
inside Q) and whose restrictions to Qi and Qext belong to S)‘(th) and S» (Qext) respec-
tively.

It is important to note that # does not represent any more an angular variable in Qext . Rather,
(R, 0) are cartesian coordinates. The change of variables defined on Qext y

(R,0) — X = (Rcos%,Rsin%) + (0 — %)(—sin %

2 cos %)

27

ot » MApSs Qext either onto a subset of Qo (if w < 7) or a superset of
Qext (if w > 7). Nevertheless, inside the support of 1), cf. Definition B3 this correspondence is
one to one. This is the reason why we can introduce:

and accordingly on Qi

Definition 3.8 We assume that the cut-off 1) = 1(R) in Definition[Z3does not depend on 6. For
A ER, let SMNQ) be defined as the space of functions w such that

Ji e SMQ), u(X)=y(R)u(R,0).
A direct consequence of the definition is:
Lemma 3.9 For any \ < 0, the space S*(Q) is contained in the variational space 0.
The problem in Q corresponding to problem (P can be written as
aAxRint = fine 0 Qint,
(892 +8]2%)uext = ¥ext in Qext,

v

fint —Rext = 0 on G, (Pa)
%aO-Rint _69-ﬁext - g on év
Rt = 0 on 0=%(¥+1),

¢

\
Problem (EI) can be solved in the sense of “asymptotic series at infinity:

Proposition 3.10 Let A € G. Let 56‘ denote the extension of the singularity s* in &2) by 0 on
Qext - The function s belongs to S*(Q). We initialize the series M for = A+2,\+1, and
A by setting

A2 @AM g and R = 5.

Then there exists R3¢ € §A 1 (Q) ¢ =1,2,..., satisfying the following sequence of equa-
tions: FAA-E EAA—L+2
89 ext = _8}22ﬁe>7<t NS i(%? % + 1)7
Ryt = 2R =y, (3.9)
LA | 0=+%+1,
ARG =00 inQun, 10
R = @ g — '

forall £ > 0. The degree in 0 o FMin Qext is equal to €. For each integer p > 0 the
partial sum Y_}_, I solves for

fint =0,  foxt = —0% [5’&“ P gL e 09, 8NP (3.11)

ext ext int
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Proof:  The terms £~ are built by induction. For ¢ = 0, the algorithm is initialized with
ﬁg\xi‘ = 0 and ﬁ’\ A= g solving the homogeneous Dirichlet problem in Q. Then we solve
alternatively problems @) and @I0): If " are constructed for n = 0,...,¢ — 1, the
exterior problem (Z.9) is a one-dimensional Sturm-Liouville problem with parameter R and we
check that it has a unique solution in S A_Z(Qext) , whereas the interior Dirichlet problem (BI0)
with boundary data from the trace space S*¢(G) of S*¢(Qeyx) has a solution in S*¢(Qiyt)

cf. [8, Ch.4]. Then (BII) is an easy consequence of equations (3.9) and G.I0). n

Remark 3.11 Since the terms in @I1) are O(R*~P~!) as R — oo, we may say that the series

SN BAN—L
= ZQOR (3.12)

solves (EI) with ;‘ = g = 0 in the sense of “asymptotic series at infinity”. m

Remark 3.12 (i) If 7/w ¢ Q, the terms L > 1 are unique in SA_Z(Q) since \—{ ¢ &,
and as a consequence the kernel of the Dirichlet problem @I0) in S*~¢(Q) is reduced to zero.
Moreover, 2~ contains no logarithmic term logR.

(ii) If m/w € Q, for each ¢ such that A — ¢ € &, aresonance phenomenon may occur, exciting a
logarithmic singularity (the degree of R aga polynomial in log R is at most ¢). In that case
the asymptotic series &> contains arbitrary choices. Any other asymptotic series Rk D, RN
satisfying the sequence of equations in Proposition B.10| can be compared to the specified one.
There exist coefficients (7)) foreach v =\ -/ € &, E > 1, such that

a\ _ a\ A Gr
ﬁ* =R —i_ZI/:)\fZEGF)/V.Q ’

3.3.3 Effective construction of profiles

Using the asymptotic series Zﬁ)")‘*z, we are able to construct genuine solutions for prob-
lem (PyJ)) with zero right hand side and asymptotics @.3) at infinity:

Theorem 3.13 Let A € &, A > 0, and let py denote the smallest integer p such that
A—31<p (3.13)

Recall that 1 is the cut-off function from Definition There exists wMP> in the variational
space U such that

PA
M=) R (3.14)

=0
defines a solution £ of problem ([Py) for § = g = 0, such that &, ~ s as R — oo.

int

Moreover for any integer p > py, the function WP defined as £ — 1) Zp 1—0 £ also belongs
to U

p
Vp=py, R =9) MM with M € D, (3.15)
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Proof:  For any integer ¢, we define v*? as the sum —1) ZZZO RAAL By construction, the
function v*9 solves problem (P)) with, compare with (T13):

AN A— AAA— AAA—
fint = Pint, fext = Pext — w8}22 ﬁe;(t 7 + ﬁe;(t atl , 8= —lb %695%11{*5 1 (316)

where ¢ comes from the cut-off: Its support is contained in supp(V). For ¢ large enough, i.e.
q> A+ % the above right-hand sides satisfy the assumptions of Proposition As a conse-
quence, there exists uM¢ € U, solving the same problem as v™¢. Then £ = 1) ZZZO RAAL
uM? solves problem (P)) with f = g = 0. Finally the statement concerning u’? for p =
pa, px + 1, ... follows directly from Lemma 3.9 ]

3.4 Expansion at infinity of the Dirichlet profiles

Equality (&I4) provides the expansion of & up to o(1) as R — co. But we need to know the
expansion of & at any order o(r~) for the construction of the expansion of the solution of
problem (PJ) in Section @l The theorem below provides the complete expansion of £ . For this,
the introduction of several sets of indices is useful:

Definition 3.14 Ler Q™ be the set of negative exponents defined as
Q" ={-2_g; hgeN with h>1, ¢>0}. (3.17)
For any \ > 0 we introduce the infinite set of exponents depending on \:
D=0 U-1A-2... A0} (3.18)
and for any number P > 0 the finite set Q)(P) = Q)N [P, \).

Theorem 3.15 Let A€ &, A >0, and P > 0.
(i) The solution & of problem (Ps)) introduced in @13 has the following expansion at infinity:

VP>0, fR'=s3+ » S +oRF), R- . (3.19)
peQ N (P)

where for any p € Q) the function £** belongs to the space S*(Q) cf. Definition B8 The

degree of Ré‘)’(’g as a polynomial in 0 € £(%,% + 1) is less than \ — pi. Moreover, one can take

derivatives of expansion B.19), still having estimates on the remainder, see 3.30).

(ii) More precisely, we have the identity between asymptotic series:

so+ Y /M =/ > QR (3.20)
peQA V=7%<0

with the 8" defined by GID), and ¢\ are real coefficients, characteristic for the domain Q.

The proof of this theorem requires regularity results for the variational terms u™? and uses the
Mellin transform. It is performed in the next Sections B.Z1] and B.Z7]
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ffffff ; =241
L., Qb
ffffffffffffff =4
eLt CTjin‘c
ffffffffffffff =4
[ Qo
ffffffffffffff o=—2—1

Figure 4: The strip @

3.4.1 Regularity of the variational terms in weighted spaces

We are going to study the regularity of the variational terms u™?, cf. (313)), in a scale of weighted
Sobolev spaces, as is usual for corner problems, see [I7]. Rather than in the sector (), we work in
the strip ) obtained from Q by the change of variable RT™ > R+ t = log R € R, see Figure @l

Let us now introduce the scales of weighted spaces.

Definition 3.16 (i) Let m be a non-negative integer and v a real number. The space K;”(@im)
is defined by

Ktyn(éint) = {E, e’yt’t‘]’ € Hm(@in‘c)}u

endowed with the natural norm HEHKm = H(ﬂt EH

(Qint) . We define similarly
o' mt

mvéint
~ m—L1 ~ ~ ~ ~
"(Qext) = {8 €8 € H"(Qewr)} and Ky 2(G)={5; v e H" 2(G)}.

(ii) We set Kg ’Y—l(é) = {E, Eint € Kg(@int)u Eext €K’ (@ext)}, and for m > 1
T3

1
2

’Y’Y_*

K™ (@) = {E, Eint € KT(@int)a Eext S K,Ym_%(éext) and Eint = Eext on é} (3.21)

Jun

Last, we denote by KT;E 1 (é) the space of traces of K;”W_ 1 (@) on the interface G.
’ 2 ’ 2

Remark 3.17 (i) The above definitions are inspired by Kondrat’ev spaces, see [[17]. Namely,
K (Qint) is the image of H?" ; (Qint) , see Definition 3.2 by the change of variables X +— (2, 0).

m)H@D’MEL%Q)@mmPMWMwﬁuEQDJMn@ﬂ%ewumm%ﬁoK&wd@)
(iii) The natural trace spaces on G of the spaces K;”(@im) and KT_I /2(©ext) do not coincide.

Thus the transmission condition v;,; = ey enriches the topology of the space @G.Z1). o

Using the elliptic regularity away from the corner (see Theorem 28}, we can prove the follow-
ing “shift theorem”. Note in the following result that more regularity is required for fex than for
fint due to the inhomogeneity of the operator in the strips.
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Theorem 3.18 Let 1t be solution of problem @ with data § and §. Let W, §, and § denote
their transforms on Q. We assume the following on the data for some integer m > 2 and v € R:
3
m=3

fint € K72 (Qune N[t > 0]), fexs € Kﬁ;j_%(ém NE>0]), §eK2(GN[t>0).

If u belongs to Kg 8 (QN[t>0)), then it also belongs to KTW (QN[t>n]) forall n> 0.

_1 _1
2 A

Proof: In the variables (¢, 6), the Laplace operators present in the first two equations of (EI)
become
T’int = €72t[8752 + 83] and Text = 672t [6? — 6t + 62t692] .

Let us fix the real number 7 > 0 and consider for some arbitrary ¢, > 0 the rectangle R :=
Q Nto+n <t < to+ 2n]. On such a rectangle, the non-principal parts of the above operators
can be neglected and the variable coefficients can be frozen in #y. Finally we use the following
dilatation of the exterior strips:

— . ~4+
s=+¥%+e 0F %) in Quy.
As a consequence, the domain R becomes a rectangle with layers of thickness € = ¢~ and the
considered operators can be written as

T =e 2007 + 03] and To, =e 2 [0 + 2],

1 ext T

which are nothing but the Laplace operator (multiplied by a constant). Moreover the transmission
condition on G becomes

e 0 adyling — € 0 O4llex = g
This is the same as in (), since 9y and O are the normal derivatives along the transmission
boundary. Using Theorem 2.8 and going back to the variables (t, ), we obtain the estimate, with

C independent of ¢ty — in the following the derivation multi-indices with respect to the variables
t and 6 are denoted by 5 = (5, Fy):

1
[+ (0 0070 e, ) <
1B|<m

1
C {e% [Fiills e, + (2 @ 0%eulloz,)

|B|<m—2

@],z 0+ |[Binelo 2

int

b oz, |+ G2

where R is the rectangle Q N [to < t < to+ 3n], T its boundary along G. If we multiply
inequality 222) by €Y% and use 0 < By < m, we get

[Tt 7y, + €072 st 7, <

e [ A L

m72,7/?\,int Rext 7%7f
€ il 2., + €02 el 2, |
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Since t ~ tq in the rectangles, we can replace the norms e HUHS by He‘Sths. Summing up all
these inequalities for ty € nN*, we get the result. ]

As a consequence there holds the following result on the regularity of the variational term.

Proposition 3.19 Letr p be an integer, p > py, and let WP denote the “variational” function
YuMP | see @13, in the variables (t,0), t € R, and 0 € (=1 — %,% + 1). For every integer
m > 0, we have B

e K 1(Q)- (3.23)
Proof:  We apply Theorem BI8 for v = 0. Since uM? € 9, we have uP € K8,71/2(©)’
cf. Remark 317 (ii). It remains to check the assumptions on the right-hand side, which is defined
by @EI8). Since it is smooth with compact support, the function ¢ belongs to every weighted
space. On the other hand, thanks to the structure of the functions in S*((), we can check that for
p>A+m—1, ,

foxt € K" %(Qext) and g€ K| *(G).

Theorem B.T8 yields that u € K{'_, /2(@) in this case. To examine the situation where p is such
that py < p < AX+m — 1, let us write

p+m
u)\,p — u)\,erm - ¢ Z R)\,)\ff.
{=p+1

Since p > py, we have p+m > A\+m—1, thus whPT™ ¢ Kg?_l/Q(Q) by the first step. Besides,
forall £ > p+1 > py+1,the exponent A — ¢ is < 0. The structure of the spaces S*(Q) allows
to show that for any p < 0 they are embedded in Kg}o(@) , thus in K", /Q(Qv) , which concludes
the proof. ]

3.4.2 Proof of the expansion of the profiles at infinity

We can now prove the asymptotic expansion @I9) of the profile &£ constructed in Proposi-
tion BI3l The main tool for this study is the Mellin transform, which is a Fourier-Laplace trans-
form in the variable ¢ whose argument is complex, see [[L7], [8] or [21].

Let A € C;if vy, is defined in the strip @int , we set, when meaningful

i (A, 0) = / e*AtEim(t,H) dt, 0¢€ Oy :=(-%,9). (3.24)
R

The variable € is a parameter: If A = £ + in, Eint(-,ﬁ) is the Fourier transform of ¢ +—
e~ Vi (-, 0) evaluated at the point 7. Similarly, we define a Mellin transform in the exterior
strips:

ext ext * T

v, (A, 0) —/eAtEext(t,H) dt, 0€ 0L, =+(2,%+1). (3.25)
R

The weighted spaces defined above can be characterized by Mellin transform:

[Bine e 3, = /R B0 (=1 + i) [, 1) V1 (3.26)
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where H gHIQ{m ( =2 6,4 8o=m |l pProPe gHa@im . Conversely, if the integral

®int 7p) ’

/]R HUint(_7 + in)HIQ-Im(Ginu‘?ﬂJrl) d??

is finite, then Uy, is the Mellin transform of a function i, € K;”(vat) on the line Re A = —~.
The function v is reconstructed by the inversion formula:

1
2T

Eint(ta 0) = M_l (Uint) =

-

/ eV (= + i, 0) dny.
R

These results are consequences of the Plancherel identity. The same equivalences hold for the
exterior domain eyt .

We are ready to study the asymptotics of &' . Thanks to equality &I3)), it is sufficient to
investigate YuMP for p > py:

Proposition 3.20 Let A\ belong to & and let p be an integer, p > py. Let k denote the Mellin
transform of the function WP, cf. Proposition There holds:

(i) k is holomorphic in the half-plane Re A > %

(ii) Let b be a positive number such that p > X\ + b — 1. The function k admits a meromorphic
extension in the half-plane Re A > —b. The set of its poles is contained in Q~, cf. GID).

Proof: (i) Since by Proposition the variational term u*? belongs to the weighted space

Kg,, 1 (@), the equivalence above shows that xin (A, 0) is well defined for Re A > 0 (remember

uMP vanishes near R = 0) and that, similarly, rex(A,6) is defined for Re A > % Therefore, it
is clear that A — k(A,#) is holomorphic in the domain II: , where
2

II,={A €C; ReA > a}. (3.27)

(ii) After Mellin transformation the problem satisfied by u™? becomes

( (A2+8g)’fint(A) = fint(A_2) 0e(-%.%),
Kint (A) =  Kext (A) 0= i%’
jkext(A) = fext(A) = AA — Dk (A+2) 0 € (4,9 +1) (3.28)
89'%6)(‘5(‘/\) = Oéagﬁlint(A + 1) — @(A) 0 = j:%’
o (8) = 0 9=(5 +1)

where the terms fint , fext , and gi come from the Mellin transform of the terms defined by (B.16)
and from the truncation. Since p is sufficiently large (p > X\ + b — 1), this right-hand side is
holomorphic for Re A > —b.

We will build the meromorphic extension of «(A) in II, by descending induction over a,
starting from a = % .

If such an extension is known in the half plane II,, we can define Téiit (A) as the unique
solution of the last three equations (whose right-hand side is known). As a second step we put
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KZ.(A) in the right-hand side of the second equation of (B28) and we set in;(A) to the solution

of the interior problem given by the first two equations in &28)), which is possible if A ¢ &.

For A € II,, we obviously have k(A) = k(A) since both satisfy problem (Z.28]), which has
a unique solution because it corresponds to the variational problem (P in the Mellin variables.
The function k is hence an extension of x. Moreover, k is meromorphic in II,_;, the poles
being inherited from x by translation by negative integers and coming from the interior problem
(the singular exponents). ]

Thanks to the Mellin inversion formula, we are able to deduce the asymptotic behavior of u*?
from meromorphic properties of its Mellin transform.

Proposition 3.21 Let )\ belong to & and let p be an integer, p > px. The function wP is

defined through equality @I3). Let P be a positive number such that p > \+ P — 1. There exist
functions 8N € SH(Q) (cf. Definition B3), independent of p, such that

YuMP = Z AMH uz\l’% where u?];p) =o(R™") as R — +oo, (3.29)
pneN—, p>—"P

and the set of indices Q- defined by @I1). Moreover the first order derivatives of the remainder
satisfy the decay properties

8R(uAm

) =0(R"Y) and 9y(uif) = o(R™") as R — 40, (3.30)

(P)
Proof:  Like in Proposition #(A) is the Mellin transform of P ~ ¢uMP. Let us fix
o, ¢ Q" suchthat « < f and p > A — o — 1. For ) > 0, the boundary of the rectangle

a<ReA<p and |ImA|<n

will be denoted by G,. By Cauchy’s formula, Proposition gives that

A=
a<u<f K

/ e k(A) dA = 2ir Z Res ek (A),
G

with residues for p € Q7. We let 1 go to infinity in the above identity. The vertical sides of G/,
give inverse Mellin transforms:

n .
[ oty inidy — 2mM Q) = a.f,
-n

where M7 1 denotes the inverse Mellin transform along the line Re A = 7.

Standard resolvent estimates for the system @.28]) combined with the descending induction
argument of the proof of Proposition show that x(§ + in) is rapidly decreasing as |n| — oo.
Thus, there is no contribution of the horizontal sides of G, . In conclusion, we obtain

We can check that, for 1 € Q7 , the function M := ¢ Resp—y e k(M) belongs to the space
SH(Q). The expansion (329) is obtained for 3 = § and « = —P — § for some § such that
[P —6,-P)NQ~ = 0.
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It remains to prove that the remainder u( P) satisfies the decay properties in (329)-@.30). We

set U(p) NP (t,0) = ¢u ( ). Thus u()‘lgp) coincides with M [r(A)] for large . Since k(£ + in)

is rapldly decreasmg as |n| — oo, the norms

[ e+l ooy 0

are finite for any m > 0. This shows that u( p) belongs to KP+5(Q) for any m. For m > 1,

this implies that W Igp) = o(RP) as R — oo, and, for larger values of m, it proves the decay

properties (B30). [

Proof of Theorem B.15k Let us fix P > 0. Letustake p > X such that A —p < —P.
According to Theorem B.13] there holds

p
R)\ — w Z.é)\,)\ff + u)\,p.

=0

Proposition B.2ZT] yields that

W= Y @oRT).
HEQTMZ*P

Therefore we obtain the expansion (Z19) for this P. By virtue of the uniqueness of asymptotic
expansions in powers of R at infinity, the terms £M* do not depend on P.

The expression of £* as a formal series — see (3.20) — follows again from the Cauchy formula:
indeed the terms (8N ~%), satisfy the equations @10) and (&9).

The assertion about the degree in 6 of RA i in the layer Qe results from the equality G.20):
R&2H s a linear combination of terms of the form YR~ with pw=v—{and v < \. According

ext

to Proposition BI0 the degree in 6 of £~ is ¢, whence < \ — 1. [

3.5 Neumann boundary conditions

In this section, we try to follow the same arguments as before for the Dirichlet boundary conditions.
The variational formulation is the same as above, but due to the absence of the Poincaré inequality,
the previous variational space cannot be used in this case. Nevertheless, it is possible to find a
suitable variational space: Let X be defined as

v
(14 R)log(2+ R)

X = {n : Vo € L%(Q) and € LQ(Q)} , (3.31)

endowed with its natural norm (again R is the distance to the interior corner point O). Since the
constant functions belong to X, we introduce the quotient space U = X/R. The space U is
clearly a Hilbert space and we will show that the H' -seminorm is an equivalent norm for U :

Proposition 3.22 The bilinear form a(u,v) = |, o Vu- Vo dx is continuous and coercive on ‘U.
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Proof: Only the coercivity needs to be checked. For R > 0, let Br denote the ball of radius R
centered in O’ (exterior corner point of @, see Figure @) and x a smooth radial cut-off function,
supported in By and equalto 1 in B;.

Let v € X, we denote by (v) its mean value on By N Q:

1
(o) = meas(Bz N Q) /3ng o) dz.

By the Poincaré-Wirtinger inequality in the bounded domain By N (), there exists a constant C
such that

lo— < O[Vollg pno

HO ,B2aN@Q

which gives the following estimate for x(v — (v)):
Ie(o = ) < ClVollo,q: (332)

where C' is another constant, independent of v. Let then u be defined as u = (1 — x)(v — (v)).
If we denote by (p, ) the polar coordinates centered in O’, then u = 0 on the circular arc
corresponding to p = 2. We can use this information to get a Hardy inequality (in this limit case,
it corresponds to a “weighted Poincaré inequality”, see [[14]): for any R > 2,

R 2
// ’21 o) dpds0<0//|8up, )P pdpde.
og®p

Together with (E32)), we obtain the result. n

Corollary 3.23 If (1 + R)log(2 + R)f € L?(Qint) and (1 + R)% log(2 + R)g € L%(G), with
the compatibility condition (note that the integrals make sense)

/ fdx—l—/gda—o, (3.33)
; G

int

then problem (P)) admits a unique solution v € 0.

With the space U, we get a suitable variational framework which allows us to define unique
solutions for problem (Py)) in the case of Neumann boundary conditions. We will continue to use
X instead of ‘U, i.e. functions instead of equivalence classes modulo constants, but we have to
make sure that elements of the dual space are orthogonal to constants, i.e. satisfy the compatibility

condition (E33)).

Similarly to the Dirichlet case, we start from a singularity s* (A > 0) of the interior problem
(with Neumann condition on I" this time). Since it does not belong to the variational space U, we
perform a few algorithmic steps in order to decrease the degree in the variable R at infinity.

Proposition 3.24 Ler A € & U {0}. Let s denote the extension of s* GA) in Q such that
55:(R7 0) = 5)\‘9:i% (R) in Qext

We set SN = 5i‘ and, for convenience, RAAL — gAA+2 )
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There exist R3¢ € §A 1 (Q), {=1,2,..., satisfying the following sequence of equations
arA—L AANA—L+2
agﬁext = _612%ﬁext NS i(%? % + 1)7
ANA—L AANA—L41
DRy = 7Ry 0=+, (3.34)
SAN—L .
Op R =0 0=+35+1,
A.vﬁi);;t)\ie = 0 in Qintu
+¥41 (3.35)
Oy 2 oy
ad, it = / O 0RRTTT (R 0) O for 6 = £,
j:_
2
ANA—L

The exterior part is defined up to a constant, which is determined by the condition R, =~ =

A on T,

For each integer p > 0 the partial sum y_}_, KM solves the Newmann problem @) with

fie =0,  foxt = —0F {?@’H’ AL IR QR B (3.36)

ext ext int

Proof: Due to the compatibility conditions for Neumann problems, the construction of the terms
AN s not as straightforward as in the Dirichlet case. Let us give a brief description: If RAAL
are constructed for ¢ < k, then consider equations 334)) for ¢/ = k+ 1. This is a one-dimensional
Neumann problem (with parameter R) whose compatibility condition reads

gl H% EIA—(k=1) O wA Ak LA A=k
R Vext (R7 ﬂ) dd = _69'Qint - iaaﬂﬁin‘c )

w R
+£3

this gives the Neumann data for the interior problem @33) for ¢ = k (whose compatibility
condition is fulfilled). As for the Dirichlet case, the interior boundary value problem with data

in S**=1(@) always has a solution in S ¥ vmt . We can then define &% ; the condition
Y int

ﬁixi"" = ;il);lt’\_k on GG completely determines the exterior part. n

Here is now the analogue of Theorem B.13lin the Neumann case.

Theorem 3.25 Let A € &, A > 0, and let py be defined by B13). There exists uwMP> in the
variational space X and, if A € N, a constant I A such that the sum

P
o= ) /e if\ &N

0 ] (3.37)
o= ) AL Pt i eN

=0

defines a solution & of problem ([P)) for f =g = 0, satisfying ﬁi);lt ~ s as R — oo.

Proof: For any integer ¢, we define

q
oM = —gp Y " /M (3.38)
{=0



G. Caloz et al. — Asymptotic expansion in a polygonal domain with thin layer. 29

By construction, the function v™4 solves problem (P)) with

fit = g, (3.39)
ot = g — V0% [ﬁ@;ﬁ*%ﬁé@*q“], (3.40)
g = —PLGRNTY, (3.41)

where ¢, comes from the cut-off; its support is contained in supp(V).

For ¢ large enough, i.e. ¢ > A+ i, the above right-hand sides satisfy the assumptions of
Corollary B23 If we are able to verify the compatibility condition (333)), we can conclude that
there exists uM? € X, solving the same problem as v*?. Then

q
R)\ _ w Zﬁ)\,)\*f + u)\,q
=0

solves problem (P)) with f = g = 0; the statement concerning uM? directly follows from the
inclusion G* C X for p < 0.

Let us focus on the compatibility condition (333). For R > 0, we define QF as Q N Bg,
where Bp denotes the ball of radius R, centered in O. Similarly, G* (resp. GZE,) denotes
G N Br (tesp. Gexy N Br). With the help of an integration by parts, we get

Iy :_/ fdx—i—/ gda——/ d,0™M do, (3.42)
QR GR QNOBg

the terms on Gf and GE, vanishing by construction of &\, Thanks to definition (338) of

v, we get the following expression for the integral [ }’\2 :

M L
In=>Y_> amR*™log'R, (3.43)
m=1 /=0

with unknown coefficients a,,¢. For ¢ large enough, expressions (B.39)—G.41)) show that f and
g have finite integrals over  and G. Hence, 1 ﬁ has a finite limit Iéo as R — +o0, which
imposes @,y =0 for A—m > 0 or (A =m and ¢ > 0).

If X is not an integer, we can deduce I, g‘o = 0: This is the expected compatibility condition.

If A is an integer, 12, does not necessarily vanish. But the compatibility condition can be
fulfilled with the help of the logarithmic singularity. Indeed, if we apply the same technique as
above, starting with s° = log R ¢ X, we obtain I?, = —1. Hence, for A € N* we do not know
if T2, vanishes but

M=

60 = (YA el

o~
Il

0
satisfies the compatibility condition. ]

Then we can prove by the same tools as in §3.4.1] and §3.47] that the Neumann version of
the & satisfies an expansion at infinity like (3I9) with the same set of exponents Q* GIJ).
At this stage there is essentially no difference between Dirichlet and Neumann external boundary
conditions.
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3.6 Non-homogeneous profile problems

The same techniques apply to the non-homogeneous problem (PJ):

Theorem 3.26 Let \ € R. Under the following assumptions: fin = @b;‘im, fext = @D;‘ext, g=1g
with

?mt S S)\72(Qint)7 fext € S)‘(Qext), and g€ S)‘(é), for Dirichlet b.c.
fint € S22 Qint)s fext € SN HQext), and §e S*YQ), for Newmann b.c.

problem (Py)) with Dirichlet or Neumann external boundary conditions admits a solution 20*
which has an asymptotics at infinity of the form

wr=w+ Y wM o) (VPeN), (3.44)
peEQN(P)

with X0 in the space S*(Q) of Definition B8 for all € {\} U Q*.

Proof: ~ We have only to check that the algorithmic construction performed in Proposition .10l
can be started in the situation of a non-zero right-hand side. We still have to solve the series of
problems @9)-@I0) with the initialization 2031 = 992 +2 = (. For ¢ = 0 and Dirichlet
b.c., problems ([Z9)-@.I0) are now:

RWay = for O€ (2,9 +1),

ext

AN _ Lw
0p20, =g 0==3, and {

)

<A .
a A = fint mn Qinta

int

W = g for 6 = +%,

int ext

ext

Wes = 0 f=+2+1,

ext

The problem in Qext can be explicitly solved in S A(C)) . Then the problem in Qim is a Dirichlet
problem with boundary data in S*((¥) and interior data in S*~2(Qin;). According to [, Ch.4]
for example, it is solvable in S A(Qim) .

For Neumann external b.c., we have to take into account the different order in the iterative
algorithm, see Proposition The right hand sides ;‘ext and g then only appear in the equation
for 9071 | see also the Remark below.

The whole construction and analysis is then similar to that for £*. |

Remark 3.27 In the case of external Neumann b.c., if fext and g satisfy the compatibility condi-
tion

+5E1
VR, ﬁ(R, i%) = / fext(Rp 79) dv
£3

then one can allow fex; € S*(Qex) and § € S*(G) in the hypotheses of Theorem B26 o
This result will be used for polynomial right hand sides ;‘im , that is why we introduce:
Definition 3.28 Ler k € N, k > 2. For any multi-index 3 = (01, B2) of length k — 2 we set:

2% solution of ) for: Fimt = Xﬁ( = RF2 cos 0 sin® 9), fet =0, §=0.
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The function 26%P) has the form GZ&) with \ = k. The first term 2055 5) of its expansion
B22) satisfies

RWERD =0, 6e (2, ¢ +1),

ext vk k,(B) 8 .

. aA20, = X in Qint,

QD = 0, 6=, and k) Gt 3 4s)
W = Wey 0==x5.

Qi]l;;(]:’(ﬂ) _ 0’ 9 — :t% + 1’ int ext
Remark 3.29

(i) For Neumann external boundary conditions, the profiles 20%(%) are pertaining to the second
case in (337). Thus a term in log R may appear in their expansion (3.44) at infinity (even if
T ¢ Q), together with lower order terms of the form R71og"R, j=1,2,... and k < j.

(ii) It is also possible to introduce profiles solving polynomial right sides for g. There we have to
take into account the different degrees appearing in the Dirichlet and Neumann cases, cf. Remark

B.2Z7 o

4 c-Expansion in the coated domain with corner

In this section, we reach our initial aim, that is to build an asymptotic expansion in ¢ for the
solution u. of problem ([FJ) with Dirichlet or Neumann external boundary conditions in the case
where ()i,¢ has a corner at the origin O.

4.1 Notations, assumptions, plan

We recall that the Cartesian coordinates with origin O are denoted by x. They are the “slow”
variables in {2;, . The polar coordinates centered at O are denoted by (r, ), the arclength along
the interface I' by ¢, and the normal coordinate to I' inside Qf by s. Note that s is well
defined outside an ¢ -neighborhood of O.

We still need the cut-off function y introduced in Definition [Tl which allows a localization
independent of ¢, in the region where 2° coincides with a sector. In order to avoid non-zero
commutators of x with the normal derivatives 0y and Os on I', we assume for simplicity that

x=x(r)in Qine  and  x = x(¢) in Qexs - (4.1)

We assume that the data of problem () are smooth and, to avoid unnecessary difficulties, that
fext 18 zero near the corner, that is

fint € COO(Qint)p g€ COO(F)a and fext € Coo(ﬁz}(t)’ fext‘v/ =0. (42)

The construction of ¢-expansions for the solution u° of problem () is performed with ex-
ternal Dirichlet boundary conditions. With the results of §3.3] at hand, the Neumann case can be
treated similarly.

The study of the Dirichlet case is organized in four parts. First we start like for the smooth
case and draw the principles of the special treatment of singularities (§4£2). Then we construct the
first terms in the asymptotics (§43) before we reach the expression of general terms (§£4). We
end with alternative expansions (§.3]) and the Neumann case (§L6).
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4.2 A recursive approach of the c-expansion

Let us first try to start with the algorithm we have already used for a smooth domain. It consists in
solving equations (Z.6)) and [@Z.7) for all integers n > 0.

For n = 0, we find U, = 0 and that u?nt solves the homogeneous Dirichlet problem (Pg))
with source term fmt

For n = 1, Ul is explicitly given by Uk, = (S — 1) [adpul,|r — g] . Its trace on T is
g — adyul, and has to be inserted as a Dirichlet data into the problem deﬁnlng ul, . But, due
to the corner, we cannot ensure a sufficient regularity: A singularity in re can arise in u?nt, cf.
@3). Thus 9,ud|r is like 7%, which does not define an H'/2(T') -function as soonas T < 1,
and the problem defining uim is then not solvable in H* (Qyps) .

Then our technique consists in splitting u?nt according to @.4), into a regular and a singular
part which are handled separately. The singular part is a linear combination of the singular func-
tions s*, see (32). Taking advantage of Theorem BI3l we replace each s*(z) = £*s*(£) by its
counterpart 5)‘5%)‘(@ solution of the homogeneous transmission problem.

Thus we are left with a residual transmission problem () associated with the regular part of
the expansion of u° and a finite number of problems (PJ) generated by the localized differences
x(2) (e*RMZ) — 53(x)) . The structure of these latter terms is given by the expansion (ZI9) of
£, resulting in smaller (in the e -scale) right hand sides, smooth and identically zero near the
corner. However, the data in QO ; depend on € in a special way. For this reason, we will consider
broader assumptions than @2) concerning the generic right hand side in QZ_, which we now
denote by f: ext:

ext »

, and

—L —
€ C®(0E
fa,ext - z : 6_2_£fe:(€ with { feXt ( ext) fext 4.3)

k0] — _
€€N, finite il =0, k=0,...,0—1.

Our strategy is constructive: Instead of starting from a general multi-scale Ansatz and trying to
identify terms, we construct first terms in such a way that the corresponding remainder is solu-
tion of problem (EJ) with new data finy and f; ext of the form fmt =Y eVfl, and foext =
> €" fZ ext » Where v spans a finite set of positive exponents, and fl., f! . have the same struc-
ture as the data of the initial problem (PJ). After that point is reached, the general expansion

becomes clear.

4.3 The first terms of the c-expansion in the Dirichlet case

From now on, we assume that the exterior right-hand side f; .« has the structure &3), that will
show to be stable through the recursive construction. We emphasize that such a f; .« will not
lead to negative powers in the expansion of wu. , see Corollary 2.4

Additionally, in order to make the exposition slightly 31mplel we assume that fi,; and g have
a zero Taylor expansion at the corner O :

{ fint € COO(th) 8 )=0 (V8 €N?) and 44

f(O
geC®(), dg(0,£%)=0(VjeN).

"The general case @2 is considered in A by treating separately the Taylor expansion of fine at O. By the
same techniques, one could also treat non-vanishing Taylor expansion of g.
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Our construction consists, for each term which is a solution of a Dirichlet problem in €2,
in considering its splitting into (flat) regular and singular parts. As we know from Theorem B3]
this requires to fix in advance a regularity index K . For each term this regularity index is chosen
according to its rank in the ¢ -expansion. For the beginning we need

o A maximal regularity index K >0, K £ &.

o A target precision N > 0 in €, with the aim of constructing an ¢ -expansion with a remain-
der of order ¢V

We will see in the course of the construction that K has eventually to be chosen (at least) larger
than NV + %

4.3.1 Terms of order 0

In the case of exterior data f; oy satisfying @&3), we first solve the exterior equation:

RUS = 3,208 fou(t,008° for0< S <1,
osUY. = 0 for S = 0, 4.5)

ext
Uy = 0 for S = 1.
Since the functions f_.¢ o<t vanish in a neighborhood of O, the extension by zero of the solution of
problem @3) uniquely defines a function US,, in the entire layer Q. Then u, solves (Pg)
with f = fine and h = Ul|r.
Since fin, and U2, |r are smooth and infinitely flat near the corner, we can apply Theorem B3]
to obtain the splitting:

uhe =y +x Y AsMr0) (R ER), (4.6)
AEG(K)
where umt = O(rX) near the corner O and, more precisely, u*® € H®, | (Qune). In Q5
we do not modify U2, and set ul:X (t,s) = U2, (t, 2) — notice here that the equahty makes sense
since U2, vanishes in a neighborhood of O, see @23). Thus we have defined u* in the entire
domain 2°.
The main idea in our construction is, instead of considering (ud,, US,) as a first term, to mod-
ify it by substituting the s*(z) occurring in its singular part with the profiles skﬁk(f) , defining a
new term, @ :
@d(z) = u™E Z e* ﬁ)‘ (x € Q°). 4.7)
AES(K

We recall that rapid variables Z are defined by the homothecy centered in the interior corner point

O with ratio e~! and that s} denotes the extension of s* by 0 in the exterior part.
The arguments in favor of considering 7)) instead [8) rely on Theorem B.13

e Since &* solves the homogeneous problem (P)), £*(%) solves problem (EJ) with zero
data in the neighborhood V of O,
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e Since e*s*(Z) = s*(z), we find
e ﬁk(f) —53(r,0) = 0(e) for z¢ V.
Thus we take @ as our starting point for the expansion of u. , and define the first remainder as

=, —a? (4.8)

4.3.2 Further decomposition of the first remainder

We are going to prove that the first remainder 7! is solution of problem () with data which can
be expanded in positive powers of ¢:
0 — 49 in Q¢ and QF

Let us set w? = @2 that is:

ext

w? = x Z € c)\[ —53‘}(%). 4.9)

AeS(K
Then 7! = u. — u® — w? and the problem satisfied by 7. is
QATE ,int _aAws ,int in Qinta
~1 _ 0 €
A’I”€ ext T _Awe,ext + (fa,ext - fa,ext) in Qextv
~1 ~1
Ts ,int Ts ext 0 onl’, 4.10)
a@ 5 ,int -0 Ts ,ext - (a@ ws ,int a We ext) + g ad umt on F
~1 _ €
Te,ext =0 on 1_‘ext

Here f0 =Y ,e77250} L f5(t,0) st Moreover, thanks to (@), @) and @9J) we find that

— (@Opw? ;. — On EeXt)—Fg—aau =g—adu®® on T. 4.11)

£,int

— 0pR2¢ = 0.
int xt

Comparing then problem @.I0) with the problem @I0) satisfied by the standard remainder
ue — uY, we find the presence of Awg inside Qi and QF,, instead of O, and a@nuior’f instead
of a@nuiont on I'. Thus we have gained regularity on T', but, in return, have to evaluate Aw?, see

Lemmal2l New sets of indices have now to be introduced:

Here we have taken advantage of the fact that & satisfies a.d,, &

Definition 4.1 Let 34 be the infinite set of non negative numbers
U=NU{p="1"4p;p>0h>2}, (4.12)

and for any N > 0, let 4(N) = N[0, N].
Moreover we denote the subset of the positive elements of 3 by \* :

=4\ {0} and U*(N)=U(N)\ {0}. (4.13)

Lemma 4.2 In Q;t and Q% , for all number N > 0 the residual Awg can be written as

ext

I 0
Aw€ int = Z 'k, 11;1t + k?em )|Qint
veU(N) N
with || c=o0(EN). (.14
Awg,ext = Z ng (le/xt + k‘?em( ) Qs H rem )HO,Q (™)

v e U (N)
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The functions kg’;;lt and kg’gxt are C*° and vanish near the corner point O. Their behavior in
is the following

k:g’iynt = klonf; [loge] i.e. possible polynomial dependence inloge,
KV = Y ek M loge] with 9EKS Y| =0, k=0,...,0—1. *19
(€N, finite

Remark 4.3 The degree in loge of k2" is < v. Moreover, if = ¢ Q, no logarithm appears. ©

Proof: From the definition @9} of w , and since, by construction AR = A50 = 0 inside
Qint and Qe , we find inside ;¢ and Qex

A= % )cge* (2vx- V(8 = ) (9)] + Ax (8 - ) (2)).
AES(K

We now use the expansion (EI9) of & given in Theorem BI3with P = N — \:

S L g T (mere] ) ek, e
AeS(K pEQMN(N-A)
with a remainder k%, (¢).

(i) In Qi each term ﬁl’\’“ satisfies an homogeneity property modulo logarithms, cf. (Z.8)):

At (2) = e logel(x) and  V(RM(2)) = e FVEMfloge](x),

int

Thus equation @I6) becomes in Qi

S B (2vx VEMlloge] + Ay FM loge]) + Ku(e), (417)
AES(K) peQM(N-2A)

where the remainder k0, () satisfies, thanks to (3.29)-(BZ30) and to assumption EI):

k?em( ): Z 5 C)\ |:25 1VX F( )+AXF(%)}, with
AeB(K)

F(X):o(|X|’\_N> and ﬁ(X):o(|X|A_N_1> when | X| — +oo.

To estimate the norm of this remainder, we notice that its support is contained in an annulus defined
by 0 <7 < |z| < ro. Hence

—2N
t dt = o(e?V).

72 t
Ko @, < 01) [ |

T1

Finally, we check that the set of the v = A—u when A\ € G(K) and 1 € Q*(N —)) is contained
in the set 5.1*( ). We reorder the sum @I7) according to the values v of A — u, defining the
functions k%", and we obtain @I4) in Qi .

£,int °
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(ii) In ey each term ﬁext satisfies

(A—n]

R (E) = 3 e g log e (1) s

£=0

and a similar formula for its gradient. Again we reorder the sum (E:EZI) according to the values
v of A\ — p+ 2, defining the functions k2" . The above splitting of Rext ( ) yields expression

e,ext *

®EI3) for kg v+ - The estimate of the remainder is similar. n

Taking advantage of Lemma[.2] we come back to problem (I0) solved by the first remainder
7! and prove:

Lemma 4.4 The first remainder 7} @X) satisfies (for all N > 0)

7l = Z "0 loge] 4+ & + o(eN), (4.18)
veU*(N)

where v2 “llog €] is defined as the solution of the problem (PJ) with data

fint = k?nty [log 6] fext - kgxl; [log 5] (fe ext — Jg ext)7 ifV =1,
fint = klnt [1Og 6] feXt = ext [log 5] l.fV # 1’

and zero boundary data on I'. The new remainder r& is solution of

aA'rg:ilnt =0 in Qint,
Arg:;xt 0 in Qextv
g:ilnt Tg:;xt 0 on r ’
a@nrg’llnt On g’éxt g — a0, u?nf( onT,
rg:;xt =0 onT’ gxt

Proof: The problem solved by 7Y directly results from the definitions. We only need to

6 lnt

check that the final remainder is o(e ) it is produced by k%, cf. @I4), whose contribution is
of order ¢V thanks to the a priori estimate (3. m

As a corollary, since u. = @ + 7!, gathering formulas 7)) and @IS, we find

Corollary 4.5 The solution u. of problem (BJ) with assumptions @3)-@Z) on the data satisfies
forall N >0

ue = u"K + Z 5>‘c0ﬁ>‘ Z " loge] 4+ r& + o(eN), 4.19)
AEG(K) veUs(N)

where the terms ve “llog ] and the new remainder rg Y are solutions of problems (BJ) given in
Lemma B4
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By construction, ™! ( fz,ext— f2 o) satisfies assumption @3), and so do the terms k&Y [log €],
see (ET3). Thus, each term v”" solves a problem (PJ) with a right-hand side satisfying the same
conditions as the original one, which shows that v*" reproduces the same structure @I9) as u, :

e floge] = e"u " lloge] +x Y e K[loge] £} (L)
AES(K—v)

+ Z e/ TV Y loge] + €1t + o(eN).  (4.20)
v e (N-v)

yOll

Note that the equality # + £f = I ensures that the exponents generated by ¢ for v € Y

remain in .

4.3.3 Terms of order 1

To continue the expansion construction, the only term we need to study is the new remainder at
order 1, 'rg 1
To explore the content of r*>*, applying the formulas of the smooth case, cf. Proposition 23]

we define u], as the solution of the Dirichlet problem

0,1

1
Ui,

{aAuilnt = 0 in Qipg,

= —adu ]p—l—g onT.

int

Since u belongs to the weighted space H>. _;(Qin¢), the normal trace 0, u®X belongs to
H> 41 /2( ), and the above Dirichlet problem in ;,; has a solution which can be itself split
according to Theorem B3]

uilnt*ullnf( "+ x Z ¢k sM(r,0) with ullnf( L e H% (Qint), (4.21)
AES(K 1)

if we assume that K — 1 ¢ &. We note that “11 KL = O(rE-1),

According to the formulas for the regular case, we define U,

(t,8) = U-E"1 (¢, 5) by

ext

ULEY(1,8) = (S — 1){aanu?r;{< Ir — g}(t) for (£,5) el x[0,1],  (4.22)

ext

which does not make sense in the entire layer €25, . Since uior’f does not identically vanish in

any neighborhood of O, we have to use the cut-off z — ¢(§) cf. Definition to define
1 1,K-1

Uext = Uext

in an unambiguous way:
1,K-1 1L,K—1 0K
ugh Tt = 0 () UST (1 8) = w(2) (8 = Dty I - g} 1) (4.23)
Then, as a continuation of Lemmal4] we state

Lemma 4.6 The remainder 2" in ( ) can be split in

Tg’l lK 1+X Z €1+>\ I[IOgE ﬁ)\ Z €1—1—1/ l’jlogs]
AES(K—1) Ve (N-1)

_'_TE, _’_O(emm{Kfl,N})’ (4.24)
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where the v [log ] solve problem ([P) with data satisfying conditions @2)-@3) and the resid-

0,2 . .
ual term r¢’° is solution of:

aArg:iQnt =0 in Qing,
Argﬁxt = _¢(%) R;Uel;cf_l in oy
rg:?nt - T?ﬁxt =0 onT,
aanrgfnt B 8nrg:§xt = _5aanuilr;f(71 on F,
T?,’fxt =0 on Ty,

where RL pertains to the expansion of A in curvilinear coordinates around T, see @2).

Proof: The sum of the second and the third block on the right hand side of [24) is constructed
so as to contribute ©(¢") data for problem (PJ), therefore generating a remainder of the same
order 0(¢™). Combining formulas for 72", «»¥~1 and r2?, we find that @24) holds with an

additional term p. , solution of the problem

¢

aAps,int = 0 in Qin‘ca
T 1,K-1 . £
Apeext = —5[A,¢(g)] U, in

ext ext»

De,int — Pe,ext on F,

0
T 0,K
aanpe,int - 6npe,ext = (1 - lb(g))(g — a@nuim ) onl,
0

€
onl'c,

\ De ext

where [A,1(2)] denotes the commutator of A with the multiplication by (2 ). Making use of
X

the fact that the support of g does not intersect the support of 1 —14/(Z) and that u®¥ belongs to
the weighted space H*% ,(Qint), ensuring a behavior in O(rX~1) for 9,u®X, we check:

=12 92 v gz, = OE*) and |1 = b(E)(g = aduuiyi) o = OE*2).

A priori estimate (I73) then yields that ||p.||, . = O(e% 7).
We note that the number K can be slightly shifted upwards so that the set G(K) remains
unchanged, but guaranteeing that %% is a little flatter, so that our remainder can be written as

o(ek=1). [

4.4 Complete c-expansions
4.4.1 Data with zero Taylor expansion at the corner point

The above construction of the first terms in the asymptotic expansion of the solution u. of (J)
can be extended to any order. Only two kinds of terms appear in this expansion:

e The “flat” terms «**% " which have a similar structure as the terms in the expansion (8]

of the smooth case. They are linked with each other by the formulas ZI3) and @I3)) of
the smooth case. Their exterior parts are functions of the semi-scaled variables (¢, !s)
whereas their interior parts are functions in the “slow” variable x. They vanish at the corner
O likea O(r¥=v).
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e The profiles & which take into account the singular behavior of . near the corner point

and involve the scaled variable % .

We recall that x and 1) are cut-off functions respectively equal to 1 and 0 in a neighborhood
of the corner point O . The notation [log €] marks a polynomial dependence with respect to log ¢ .

Theorem 4.7 Let u. be solution of (PJ) with data satisfying @3)-@Z). Ler K > 0 be a number
such that K, K —1,..., K — [K] do not belong to the set of singular exponents S, and &(K)
denote &N (0,K). Let N > 0 be a number such that N + 3 < K. We recall from Definition
BTl that SU(N) denotes UN[0, N] with 4 = NU {,u = }L—” +p;p>0,h> 2}. Then, u. admits
the following asymptotic expansion:

Ueine = Y uli floge] + x(z) > > Kllogele P RYL(E) + 1l (425)

ve HU(N) veU(N) AeS(K—v)
ue,ext = ¢(%) Z VUerf V( ) [log gl + X Z Z log € V+>\ﬁ(>e\xt( m)
ve HU(N) veU(N) NeS(K—v)

N
+ Toext (4.26)
with a remainder Y satisfying the estimates

175 0, + VEIR N g, = 0€™). (4.27)
Moreover, u v and Uext " vanish as r — 0 according to

UK=Y — 05"y and wE7" = 0EY)

ext int

v, K—v

— more precisely, u;/ ~" is polynomial in the variable S .

ext

€ HX_ gy, (Qing) . Finally Uk

Proof: We continue the procedure initiated in Lemmas EE4l and .6, that is, we expand rd?
in @24) as r%! before, but leave the other terms unexpanded, and so on. The successive terms
along this “main branch” are given recursively for n =1,..., N + 1 by:

e . is the solution of problem (P with fin; = 0 and the Dirichlet data

n—1,K—n+1 n 0,K
int | +..t h"u 1nt I

h" =g"g + hlu
compare with @13)),

e ui issplitin

K- A K-
uﬁlt = uﬁlt " +x Z 6?\5 (T, (9) with Uﬁlt " S H301,K+n(Qint)7
AeG(K—n)

n,K—n
int

defining the “flat” part u;

n,K—n .
° uext is defined as

n—1,K—n+1

nK n_w( ) nK n -

Uext ext

compare with @ZI3),

where UMK™" = amg + b'u + b udk

1nt

+
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e The remainder %" is solution of:
( aArg,’iTrLlJtrl =0 in Qi
AP = (5 RIULE T L RIS i,
it~ Teet = 0 onT,
adp ngrLlJtrl On g:thrl = —<"ad, UﬁltK " onT,
\ Tg,:xtl = 0 on ngh

compare with the remainder of the smooth case (ZI0).

With these constructions, we obtain expansions of wu. of the following form:

Ue :uO,K+€u1,K—1 +. +€nunK noy X Z Z Z—i—)\ Z IOgE] ﬁ)\( )
=0 AeS(K-Y)

+ Z > e loge] + rdm 4 o(emMETENY) 4.28)
=0 veUx(N=0)

We have to estimate the “last” remainder with the help of the a priori estimate (I3)). Like for the
smooth case, if we want to have a remainder in o(e"), we have first to estimate the remainder
rON+2 at the rank N + 2. Since K is larger than N + 2, the trace of d,ul, """ ~" on T
belongs to L2(T"). Therefore we can prove like in the smooth case that

[N+ e < CVE.

Each vf’” in @28) can be expanded in a similar way, thus generating other “branches” suc-
cessively. Each of these branches starts with a common factor of ¢, v > 0. This shows that
this recursive procedure terminates after a finite number of steps. We gather everything and con-
clude similarly to the smooth case by subsumming into the final remainder 2 all the terms of the
asymptotics with powers v > N of ¢. |

4.4.2 Data with non-zero Taylor expansion at the corner point

Using the profiles 20%(%) introduced in Definition B28 we may consider general C*° functions
for fint, without condition on their Taylor expansion.

Corollary 4.8 Under the general assumptions @2), we still assume that the Taylor expansion of
g at O is zero. Let K > 0 be a non-integer number such that K, K — 1,..., K — [K] do not
belong to &. Let N > 0 be a number such that N + % < K. Then u., solution of (BJ), has an
expansion similar to @23)) with extra terms due to the Taylor part of degree [K| —2 of fin. The
interior expansion writes

v = 3 U o @ Y 3 Ko ()

ve T(N) VET(N) AES(K—v)
9° flnt ok ok (8) N
§ S w2y 1N @
51[52 int (s) g,int )

k=2 |B|=k—2
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The new index set T(N) is defined as T N [0, N| where
T=UU{Z+4+¢q qeN, ¢g>1}.

The exterior part uZ has a structure as in @20), with new terms corresponding to those present

in @230). The remainder rY satisfies the estimates EZT).

Proof:  We first split fi,, into a Taylor part at O and a remainder, flat at the order [K] — 2

a 11! .
Fint = X z S LwlO) sy ) wim fK) € HED (),
po el 51'52

Note that the remainder satisfies the assumption on the right hand side in Theorem B3l
Let us denote m@ﬁ fint(O) by dg for short. Then we define v, and w, by

(K]
Ve = ue — x() Z Z ds ek qpk-(8)

k=2 |B|=k—2

and, in a similar way to (9)

DY Y et [ _aphho) (2).
k=2 |B|=k—2

Using (B:43), we find that the function v, solves the following problem of type (PJ), similar to

E.10D:
aAUs,int = _aAws,int + fr(eKm) in Qin‘ca
AUs,ext = _Aws,ext + fs,ext in ngta
Veint — Vgext — 0 onTl, (4.29)
aanve,int - anva,ext = g onl,
Veext = 0 onI¢,,.

The right hand side of @29)) is the sum of data satisfying @2)-E73) and of data similar to those
investigated in LemmaL.2t We find for Awy i and Aw, ex expansions like in @T4), involving
the set of indices T*(N) := T(N) \ {0} instead of LU*(N). ]

Remark 4.9 (i) If fi,; vanishes up to the order [K]| — 2 in O, i.e. if

then expansion @23 is still valid.

(ii) We may cut off the “slow” terms u;’ f( " in @23) or @23 by (Z). Since u;) f( Y is “flat”
like 75—, we only produce a new contrlbution of order 0(¢¥) to the remalnder Wthh, thus, still
satisfies the estimates E.27)).

(iii) The terms pk-k—6(8) composing the asymptotics at infinity of the profiles 0%(8) are mainly
polynomial functions. They are all polynomial if k,k —1,...,0 are not in &. Thus the 20%:(%)
take possible Taylor expansion of the solution into account. m
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4.5 Alternative c-expansions
In this section we answer the two questions:

e Is it possible to have K = N in expansions @23 or (EZ3T]) ?

e [s it possible to construct an asymptotic expansion independently of a threshold fixed in
advance?

To answer (positively) to both questions, we start from expansions @23)) or @23I)), we split up
some of the terms & and redistribute their pieces to the terms in slow variables. We base our
analysis upon the following definition and result:

Definition 4.10 Ler A € &, \ > 0. Relying on @14, we define on Q the profile D> as
ANA—L ANA—L
@i)\nt = ﬁf;lt - Z ﬁlnt and @é\xt - ext lb Z ﬁext . (430)
0<l<A 0<E<A
We are going to prove

Proposition 4.11 Let A € &, \ > 0. The profile 9> satisfies the estimates as € — 0

) 0(1) ifAEN
gm%f{

Ix(@) DN, g, + VEllx(@) D (4.31)

O(|loge|*) ifreN.

We prove this proposition as a particular case of the more general statement, which will also
yield (77 as another particular case:

Lemmad4.12 Let A€ S, A > 0. For 0 <v < A, we set

D S (4.32)

0<l< A=

There holds the energy estimate

@) D> (@) g, + VElX@ D E)]; o
where [\ —v], =X —vif \—v €Nand [\ —v], =0 ifnot.

.= 0(e"|loge|*"ho), (4.33)
Proof: Thanks to (&I9) there holds for all P > 0
A\v o @A, Ay
PV =y Y Ry

HEQN(P), p<v

where the remainder @?‘PV) isa o(R~T) and satisfies also the estimates (330), whence

@ V& 0, + VEIX@ D ) g, = O

Let us choose P < T and P < [A] +1 — A. Thus Q)‘(P) C [0, 7], cf. Definition B14 The
degree of AN asa polynomial in log R is < A — u. We check that for p > 0:

) SR g, + VEIXE BRI, = O 1ogel )

Then estimate (m is a consequence of the last three equalities. [

int
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The proof of Proposition EETT] is obtained by taking v = 0 in Lemma (note that the
absence of the cut-off function ¢(Z) in the definition of 22 does not modify the estimates).
The proof of (L) is obtained with v = \.

int

Theorem 4.13 TheoremB N holds with K = N, i.e., we assume properties @3)-@4) on the data
and choose a number N > 0 such that NN — 1,..., N — [N] do not belong to S. Then u.,
solution of (BJ), admits the asymptotic expansion @23) with K = N with the estimate @2ZT)) on
the remainder.

Proof: ~ We start from @Z3) fora K > N + 3. We want to get rid of the profiles &* appearing
in @23)-E28) for A > N — v. Thus, for each v € (N) and A € S(K —v)\ S(N —v) we
split & into two blocks according to

X(@)e" AR (2) = X(@)e" DR (2) + x(z) D e Pa(D),

0<l<A

in Qi and accordingly in €25, and redistribute them into the remainder and the slow terms,

respectively:

ext »

1. Since by definition v + A > N, Proposition E-1T] yields that X5”+’\Qj’\(§) contributes to
the remainder.

AL

2. Thanks to their quasi-homogeneous structure the can be converted into slow variable

functions. We can write:

A —L AA—L; :
X( ) V+>\ﬁ1nt (%) = Z €V+>\ >\+£10g 551nt ‘1( ) m Qint
>0 finite
A EAA—L A=A+L AA—L; ;
X(CC)T,Z)(%) vt A (%) = X(x)q][)(%) Z vt + logqesext q(tag) in Qexy.
>0 finite

We gather the above terms according to the value of v/ = v+/ and we add them to uw/ K

in order to obtain u* V="' . Note that the s»*~¢:7 are homogeneous of degree A — ¢, and
since A > N — v, they are of order o(rVN~"") as r — 0.

This ends the proof. u

The same splitting of the profiles &, now applied for all values of X, allows to prove the final
theorem:

Theorem 4.14 Let us assume the same hypotheses as in Theorem E131 We have the expansion

Ug,int = Z o mt log&' + X Z Z 10g€ V+>\2'jlnt( ) + Te ,int (434)

ve u(N) ve U(N) ANeG(N—v)
Ue,ext = Z EVUert 10g€ + x(= Z Z Slloge] V—M@ext(%)
VGL[ (V) vEU(N) NeS(N—v)

+ i (4.35)

with a remainder v satisfying estimate @ZT) and with functions (independent of N ) u¥,[log €]
in HY(Qin). Moreover, for any k < =, uk  is given by the formulas of the smooth case, cf.
Proposition

int
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We only have to check that the terms in expansions #@34) and @33)) do not depend on N .
This can be proved by using energy estimates as follows. We note that the energy estimates
@31 can be completed by estimates from below, so that we have for a suitable integer q:

Je,d >0, Vee (0,6, < ||x(x)DE

E)Hl,ﬂim < d]logell.

Likewise, and in an obvious way, as soon as u! [log €] is not identically zero, there holds
g eN, Je,d >0, Vee (0,e%, c< ||uly logel|, o L= d|logeld.

From this we can see that the terms in the expansion @34) are not modified if N is increased:
When going from N to N + 1, we only add terms

Yoo ufylloge] + x(@) D > cKlloge] e DR(2),

ve U(N+1)\U(N) Ve U(N+1) AES(N+1-1)\S(N—v)

the energy of which is of order o(¢"). Consequently they do not affect the terms in the expansion
at order N .

Remark 4.15 (i) Introducing in a similar way as @30) the layers 3%(%) for £ > 2 and |3| =
k—2:

Sk(ﬂ o5k (8) Zwkk L6 and 3 _ o) ¢kak£

int mt int ext ext ext

we can easily prove the analogues of Theorems .13l and E.T4lin the situation when fiy is C*° u
to the boundary of . .

(ii) A variant of the interior expansion @34) is possible. We may multiply the slow terms u"(z)
by the cut-off +(Z) but, as opposed to the case of flat terms, see Remark (ii), such an op-
eration is not transparent: We have to modify the definition of the corner layers 9* and 3%:(%)
accordingly through the multiplication of the terms ﬁ’\ A~ and Qﬂﬁf —6) by the same cut-off

1), just like in the layer part. m

4.6 Neumann boundary conditions

The above techniques directly apply to the Neumann case: We still have the splitting of the interior
terms into regular and singular parts and the corresponding profiles £ are constructed in Theorem
For integer A, they may contain a term in log R in their asymptotics at infinity.

Note that in this case the corner layers 2)* keep this logarithmic term, see (EZ30). Thus they
are no more decreasing as R — oo, but we still have the energy estimate @31]) above.

5 Concluding remarks

The type of results we have obtained and the techniques we have used evoke the well-known
concept of matched asymptotic expansion where inner and outer expansions are constructed, see
[15)]. However, our analysis differs since our different scales coexist in a transition region, as
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opposed to the inner and outer expansions which contain the rapid and slow scales separately. For
a rigorous approach of this method, see [25]].

Most of the difficulty of the above analysis is due to the singularities, mainly those of the limit
problem, the s*. The profiles & which we have constructed perform the transition between the
s and the behavior near the corner of the solution of the actual problem with ¢ -layer. Note that
the singularities of the transmission problem are different from the s*: They are asymptotically
contained in the profiles .

An essential feature of these asymptotics is the possible communications between the terms
in slow variables u”(z) and those in rapid variables £*(%), 20%(%), 9*(%), or 33 (Z). A
priori the v and the profiles do not exist in the same world but they are forced to “live” together
thanks to cut-off functions (%) for the u” and x(z) for the profiles. This kind of product form
combining rapid and slow variables is an Ansatz of constant use in homogenization, see [24] for
instance. Note that such a product Ansatz is not used in [[18} [19]] where many singular perturbations
of a domain (without layer) are investigated. This has to be related with the fact that the presence
of (%) inside (i is optional in our situation.

Nevertheless, in our opinion, the product form Ansatz is more powerful, allowing to take into
account more general situations where the interior domain 2;,; also depends on ¢: The results of
this paper can be extended to cases when (i, presents self-similar structures at scale ¢, such as
curved corners with curvature radius in O(e). This can be combined with the presence of a layer
presenting self-similar structures at scale ¢, too. This is the subject of a forthcoming work.

The Helmholtz equation could be treated in a similar way, though new difficulties appear, due
to the importance of the zero-th order part of the operator, see for instance [[16]] where the special
Helmholtz features are described in a problem involving a thin structure.

6 Appendix: Elliptic regularity near the boundary

The aim of the appendix is to prove the elliptic regularity result stated in Theorem By a

classical argument of local mappings, it is sufficient to consider the case of a straight boundary.
For any positive real number a, we define the layered rectangle R** = (—a,a) x (—a,1+¢),

composed of R{, = (—a,a) x (—a,1) and Rgy; = (—a,a) x (1,1 + £). We denote by 7* its

interior boundary (—a,a) x {1}, by 7%, its exterior boundary (—a,a) x {1 + €}, and by ~{,
the set OR¥*\%, (see FigureB). Clearly R*® C R®® if b < a. Let B be the bilinear form

1—{—5:

a,e : a
Re);t : rYext

Figure 5: The rectangle R**.
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associated to problem (BJ) on R*<:

B(u,v) =« Vu-Vodr + Vu - Vude.
RE RYE

int int

We shall use different variational spaces for Dirichlet external b.c. and Neumann external b.c.,
namely we define

Vo = HY (R*9) for Dirichlet external b.c.
Vo ={veH (R*); v=0o0n14} for Neumann external b.c.

From the Lax-Milgram lemma, we immediately obtain

Proposition 6.1 If the linear form F belongs to the dual space V, of V,, then the variational
problem

Vv eV, B(u,v)=(F,v)

admits a unique solution u € V. Moreover, there exists a constant C, independent of € and u,
such that

lelly, <€l7| (6.1)

%8

We emphasize on the fact that we make no use of the Dirichlet condition on 7§ to prove the
coercivity of the form B the condition on 7 is enough to get a Poincaré inequality (which
consequently also applies for Neumann external b.c.).

Finally we define the linear form F;, by

Vo eV, (Fup) =-« A pdx — / Ayt o dx + / (OpUint — Opext)p do.
R RS ~a

int

We easily check the following lemma:

Lemma 6.2 If u € V, (together with Onucxt = 0 on v in the case of Neumann external b.c.)
satisfies the assumptions
Auipg € LAH(REL),  Atexy € L2(RES)  and  adnuing — Ontiexs € L2(7), (6.2)

ext

then F, € V, and there exists a constant C' independent of € and u such that

17|

vy S C [HAuin‘:Ho,Rgnt + HAueX':Ho,Rg;j + || @O iy — 3nuextHo,w} : (6.3)
We are now able to prove the first step of Theorem 28t

Proposition 6.3 Let u belong to the space V,, and satisfy @2). For any b < a, there exists a
constant C' independent of € and w such that

el e < € [IIF]

V! + Huuo,Ra,s] : (6.4)
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Proof: Let ¢ be such that b < ¢ < a. We introduce a smooth cut-off function y, defined by
x(x) = x1(z1)x2(z2), with

x1(z1) =1if |x1| <b and xi(x1) =0if |21| > ¢, 65)
X2(z2) =1if g > —b and xa(z2) =0if 2o < —c. '

In particular, Y = 1 on R”¢ and x = 0 on R**\R%*.

The truncated function yu belongs to V;, and satisfies for any v € V;,, B(xu,v) = (Fyu,v).
Thanks to Proposition we get

[Peelly gae < Ol Pl

v (6.6)

We write

We still need to estimate Hqu‘ Vi

Ve Vi (Fuod) = (Puxd) = [ Gl up+29x- Vugl do.

with & the function taking the value « in R¢, and 1 in Ry . Thanks to an integration by parts

using the tensorial structure of y , we can estimate the second term and finally obtain

Frn@)] < C [l + ol ne] 12l e 67

Since xy = 1 on R>%, we obtain the result from (&.8) and @&.7). n

Using Nirenberg translations, we prove the following result of elliptic regularity at any order:

Proposition 6.4 Let d be a positive real number. Let w belong to the space V, (together with
Onliexs = 0 on 2, in the case of Neumann external b.c.) satisfying the following conditions for
m €N,

Auint € Hm_l(Ridnt), JAN TP Hm_l(Rd’E), and aOpUint — OnUext € Hm_%(’yd).

ext

), Uext to H™TH(RES), and there exists a constant

For any ¢ < d, uiy belongs to H" (RS,
C independent of € and u such that

et g, st g s < © |1l g, + 1Aty e

(6.8)
+Haanuim - 8nuexth,%,»yd + HUHO,R"LE]

Proof: We proceed by induction over m > 1 and make use of the horizontal difference operator
Dy, defined for any real h # 0 by

[p(z1 + h, 22) — (21, 22)] .

SRS

Dpp(x1,22) =

Let 0 € R be such that ¢ < 0 < d.
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e For m = 1, we use a similar cut-off function as in the previous proof, defined by x(x) =
x1(z1)x2(x2) with

xi(z1) =1if[z1| < ¢ and  xi(z1) = 0if |z1] > <2,

xo(z2) = 1ifzg > —c and xa(x2) = 0if 2o < —C+",

and we apply Proposition 03 with b = ¢ and a = o to u, = x1Dp(x1u), for |h| < hg
sufficiently small

ol e < € [IFunllyy + sl ] (6.9)
To estimate F, , we use the decomposition
(Fup, ) = (Fp,paus X19) — /R . g [AX1Dh(X1U)SO +2Vx1 - VDr(xau)p| dz
ﬁ)tU Z-Xi

= - 2],

with & the function taking the value « in RY, and 1 in Ry .
the proof of Theorem 6.3l A discrete integration by parts yields

We use the same technique as in

2= [ altawbodae) + 290 DoV e)] da,

int ext

which then gives [2] < C 1w, e

<pH L Roe Similarly for the first part, we get

. / Xl U)D—h(Xl 90) dz — / Xl(aanuint - anuext)D—h(XlSO) do.
g URDS ~e

int ext

Since x1(0puint — Onext) Vanishes at the extremities of 77, we can use the duality Hl/ Z_HV?

on ¥’ to obtain

‘.‘ <C [HAUHORU ure: T Haa Uing, — O uQXtH } H('DHLRU!E‘

int ext

Together, F;,, can be estimated in the dual of V;:

1#n v,

< O Aully o orrs + 1Dt = Oty . + [lu], e | (6.10)
Since x1 = 1 on R*€ and HuhHRU,E < CH“HRU,E for h small enough, equations (6.9) and @TI0)
lead to

HDh“HLRc»E < C|:HAUHO RS,

RgURZE T [ tting — 8nuextH%,ya + HuulRaa}

ext

Passing to the limit 4 — 0, we obtain the same estimate for the second order derivatives d?u and
0109u . For 3w, we obtain the estimate by writing 93u = Au — 0. Then, we get

ot e+ Wl < 1Al g e + lantsion = Butese |y o+ ]y e |

int ext

Using the estimate (@.4) for b = o and a = 7, we conclude

s+ 00t — Oty oo+ [y ]

ext

H“lntszc - Huextumz” < C[HA’U’HOR? URZ,
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e Suppose the estimation H™~! — H™*! known and apply it to u;, = x1Dp,(x1u). With the
same techniques as in the case m = 1, we can prove

Huin‘:HmH,ant T HueX'JHerzRC’E < C{HAuin‘ﬂHm,Rgm T ”Auexth,R"’f

ext ext

ot~ s e+ By, + e e

int ext

Using the induction assumption for u (with o instead of c), we get the stated result.

el + sty < C 10l s+ ([t

ext

+ladntine = Ontent [y 1 1+ [l ]
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