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Abstract

We consider the solution of an interface problem posed in a bounded domain coated with

a layer of thickness ε and with external boundary conditions of Dirichlet or Neumann type.

Our aim is to build a multi-scale expansion as ε goes to 0 for that solution.

After presenting a complete multi-scale expansion in a smooth coated domain, we focus

on the case of a corner domain. Singularities appear, obstructing the construction of the

expansion terms in the same way as in the smooth case. In order to take these singularities

into account, we construct profiles in an infinite coated sectorial domain.

Combining expansions in the smooth case with splittings in regular and singular parts

involving the profiles, we construct two families of multi-scale expansions for the solution in

the coated domain with corner. We prove optimal estimates for the remainders of the multi-

scale expansions.

1 Introduction

The interface problem investigated in this paper originates from an electromagnetic model for

bodies coated with a dielectric layer. In many practical situations, the layer thickness ε is small

compared to the characteristic lengths of the body and the domain has corner points.

The problem is of practical importance and has been widely studied in the mathematical lit-

erature, in particular with respect to the question of approximately replacing the effect of the thin

layer by effective boundary conditions (cf. e.g. [4], [9], [12], [13], [5], [3]). The usual technique

is to build the first terms of an asymptotic expansion of the solution of the problem in powers of

the thickness ε . In the previous works, the body is required to have a smooth boundary, which is

often not true for the situations encountered in the applications.

The purpose of our paper is to provide an ε -expansion for corner domains in the two-dimen-

sional case. We point out the arising mathematical difficulties and the difference from the smooth

case in the structure of the asymptotics. Our method has similarities with [7], [6], and [20] in

which asymptotic problems involving singularities are discussed. A detailed comparison of the

effect of the thin layer with impedance boundary conditions, together with numerical simulations

can be found in [26]. Similar problems can arise in other applications, for instance in elasticity for

bonded joints, see [10].

Although we have restricted ourselves to the case of the Laplace operator with Dirichlet and

Neumann boundary conditions, our study keeps the fundamental features useful for the applica-

tions. The basic tools introduced in this paper have a wider range of applications.

Our paper is organized as follows:
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After formulating the problems that we are going to investigate, we present an outline of our

results, in both situations of a smooth domain and a corner domain. Each time, we consider

Dirichlet or Neumann external boundary conditions.

Section 2 is devoted to the smooth case: We improve results of [9] by the proof of an optimal

remainder estimate. Moreover, the treatment of external Neumann boundary conditions requires

in our case to deal with compatibility conditions on the data, which is not the case in [9], since

the domains considered there are unbounded. The description of the structure of the ε -expansion

in the interior domain and its coating, together with uniform estimates is one of the fundamental

tools for the study of the coated corner domains.

After recalling some well-known results about the splitting in regular and singular parts of the

solution of Dirichlet or Neumann problems in a corner domain, we build in Section 3 new objects

called profiles and denoted by Kλ . These objects enter the ε -expansion as contributions in the

rapid variable x
ε . They interpolate between the singularities of the transmission problem and the

singularities sλ of the limit problem.

In Section 4, relying on the results of the two previous sections, we achieve our goal, which

consists in the construction of two families of multi-scale ε -expansions of the solution of our

problem in a coated domain with corner. This result will be outlined in formulas (1.6)-(1.8) and

presented with full details in Theorems 4.7 and 4.14.

We draw a few conclusions in Section 5 before developing in the appendix the proof of a

uniform (in ε ) a priori estimate for the transmission problem with a smooth thin layer.

For any positive integer N , HN (Ω) is the standard Sobolev space of L2(Ω) functions with

derivatives of order less than N in L2(Ω) , and its norm is denoted by ‖ · ‖N,Ω . For positive real

N , HN (Ω) is the standard Sobolev space defined by interpolation.

1.1 Formulation of the problem
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Figure 1: Smooth and corner domains with thin layer Ωε .

As already mentioned we consider both smooth and corner situations. The “smooth case” cor-

responds to the following situation: Let Ωint ⊂ R2 be a bounded domain with smooth boundary

Γ . For any t ∈ Γ let n(t) denote the unit outward normal at t . For ε > 0 small enough, let Ωε
ext

be the layer of uniform thickness ε around Ωint given by

Ωε
ext = {x ∈ R2; x = t+ sn(t), t ∈ Γ, s ∈ (0, ε)}. (1.1)
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The “corner case” involves the situation where Ωint is a polygonal domain of R2 . By a stan-

dard argument of localization, it is enough to consider one corner at a time: In order to simplify the

presentation, we deal with a single corner point in the domain. Now Ωint ⊂ R2 is a bounded do-

main whose boundary Γ is smooth except at the origin O : We assume that inside a neighborhood

of O , Γ coincides with a plane sector of opening ω ( 6= 0, π, 2π ). Let us fix some notations:

Definition 1.1 Let V ′ ⊂ V be the two balls centered in O with radii 0 < ρ′ < ρ such that

Ωint ∩ V is a sector. Let χ ∈ C∞
0 (V) be a cut-off function, χ ≡ 1 in V ′ .

We assume that, for 0 < ε ≤ ε0 small enough, inside V the external boundary of Ωε
ext is a

sector of opening ω too, at a distance ε from Γ , with vertex Oε ∈ V ′ , see Figure 1. Outside V ,

the external layer Ωε
ext is defined as (1.1) above in the smooth case.

In both regular and corner cases, the whole domain Ωint ∪ Γ ∪ Ωε
ext is denoted by Ωε and its

boundary (the “external” boundary) by Γε
ext .

Let α be a fixed positive real number. We are interested in the following transmission problem:

Find uε , defined by uε,int in Ωint and uε,ext in Ωε
ext satisfying the equations





α∆uε,int = fint in Ωint,

∆uε,ext = fext in Ωε
ext,

uε,int − uε,ext = 0 on Γ,

α∂nuε,int − ∂nuε,ext = g on Γ,

external b.c. on Γε
ext,

(Pε)

where ∂n denotes the normal derivative (outer for Ωint , inner for Ωε
ext ). The right-hand sides fint

and g do not depend on ε and fext is supposed to be the restriction to Ωε
ext of an ε -independent

function. All data are real and supposed to be smooth, i.e., fint ∈ C∞(Ωint) , fext ∈ C∞(Ωε
ext)

and g ∈ C∞(Γ) . In the corner case we assume moreover that fext is zero near O .

The external boundary conditions (b.c.) which we consider are either Dirichlet or Neumann

conditions.

1.2 Dirichlet external b.c.

Here the external b.c. in (Pε) is uε,ext = 0 on Γε
ext . Problem (Pε) is a well-posed elliptic problem

in H1
0(Ω

ε) whose variational formulation is

α

∫

Ωint

∇uε,int · ∇vint dx+

∫

Ωε
ext

∇uε,ext · ∇vext dx =

−
∫

Ωint

fint vint dx−
∫

Ωε
ext

fext vext dx+

∫

Γ
gv dσ, ∀v ∈ H1

0(Ω
ε). (1.2)

Existence and uniqueness of a weak solution directly follow from the Lax-Milgram lemma. We

also have an a priori estimate with a constant C independent of ε :

∥∥uε

∥∥
1,Ωε ≤ C

[∥∥fint

∥∥
0,Ωint

+
∥∥fext

∥∥
0,Ωε

ext

+
∥∥g

∥∥
0,Γ

]
. (1.3)
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The limit problem as ε→ 0 is the following Dirichlet problem without the thin layer:

{
α∆u0

int = f in Ωint,

u0
int = h on Γ,

(P0)

with f = fint and h = 0 .

1.2.1 The smooth case

In the smooth case the interior part expansion of the solution of problem (Pε) has the simple form,

cf. [9] or [5],

uε,int(x) = u0
int(x) + εu1

int(x) + · · · + εNuN
int(x) + O(εN ), (1.4)

each uk
int being independent of ε . We further investigate expansion (1.4) in two directions: (i) We

prove optimal estimates for the remainder, and (ii) exhibit a construction algorithm for all terms

uk
int . We will see that for any k ≥ 1 , uk

int is solution of the Dirichlet problem on Ωint with

f = 0 and h = hk , with hk the trace of differential operators acting on the previous terms uℓ
int

for ℓ < k .

1.2.2 The corner case: Expansion into regular parts and profiles

In the case of a corner domain, the expansion (1.4) is not valid anymore, because the generic

presence of singularities prevents the traces hk produced by the construction algorithm of the

smooth case to belong to the right trace space H
1

2 (Γ) .

Let us present the form of our results. To avoid unnecessary complications, we assume here

that the data fint and g are 0 at the corner point O , and the same for all their derivatives, and

that the ratio π
ω is irrational. The general case is addressed in Section 4.

Let (r, θ) be polar coordinates centered at O and such that −ω
2 ≤ θ ≤ ω

2 in Ωint ∩ V . The

singularities of the Dirichlet problem (P0) take the form

sλ =

{
rλ cos(λθ) if λ = qπ

ω with q odd,

rλ sin(λθ) if λ = qπ
ω with q even,

(q ∈ N).

For the limit term u0
int(x) , we have the well-known expansion into regular and singular parts, cf.

[17, 11]: Since the right-hand side is C∞(Ωint) , it takes the form for each fixed integer N > 0

u0
int(x) = u0,N

int (x) +
∑

q; 0< qπ
ω

<N

cq χ(x) s
qπ
ω (x), cq ∈ R and u0,N

int ∈ HN+1(Ωint). (1.5)

Here χ is the cut-off function of Definition 1.1. In fact, with our simplifying hypotheses, the

remainder is also flat: u0,N
int = O(rN ) as r → 0 . Thus (1.5) can also be seen as an expansion in

powers of r as r tends to 0 .

The main result of our paper is a complete ε -expansion for uε,int . We have found different

ways to assemble terms together, resulting into two distinct formulas. The first one is an expansion

into regular and singular terms. But, in contrast with (1.5), the singular terms cannot be simply
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a linear combination of the sλ . They now involve singular profiles Kλ depending on the rapid

variable x
ε : For each fixed integer N > 0

uε,int(x) = u0,N
int (x) + εu1,N−1

int (x) + ε2u2,N−2
int (x) + · · ·

+ ε
2π
ω u

2π
ω

,N− 2π
ω

int (x) + ε1+
2π
ω u

1+ 2π
ω

,N−1− 2π
ω

int (x) + ε
3π
ω u

3π
ω

,N− 3π
ω

int (x) + · · ·

+ ε
π
ω (c1 + c′1ε+ · · · )χ(x)K

π
ω (x

ε )

+ ε
2π
ω (c2 + c′2ε+ · · · )χ(x)K

2π
ω (x

ε ) + · · · + O(εN ),

(1.6)

with the following features

• The terms uλ,µ
int are independent of ε and flat in O at the order µ , i.e., uλ,µ

int = O(rµ)

as r → 0 . The exponent λ indicates the power of ε in front of uλ,µ
int . It is an integer

or a number of the form qπ
ω + p with q ≥ 2 , p ≥ 0 integers. In the above expansion

µ = N −λ , which means in particular that these terms depend on the given precision N of

the expansion.

• The numbers cq , c′q, . . . are real coefficients independent of N .

• The profiles X 7→ Kλ(X) are defined for λ = qπ
ω in a model infinite sector with layer

of thickness 1 , see Figure 2, p.15. They solve a transmission problem with zero data and

behave like sλ as R→ ∞ . In expansion (1.6), only those with λ ≤ N are involved. They

play a similar role as the singularities sλ arising in (1.5), which solve a Dirichlet problem

with zero data in the infinite sector without layer. Note also that, owing to its homogeneity,

sλ can be written as ε
qπ
ω s

qπ
ω (x

ε ) in rapid variables.

The different terms in (1.6) satisfy the following energy estimates:

∥∥uλ,µ
int

∥∥
H1(Ωint)

= O(1) and
∥∥χ(·)Kλ( ·

ε)
∥∥

H1(Ωint)
= O(ε−λ). (1.7)

There are fundamental differences between the expansions (1.4) and (1.6): Non-integer powers of

ε appear and a new scale is introduced in the functions Kλ .

1.2.3 The corner case: Corner layer expansion

The expansion (1.6) has two features which can be considered as inconvenient: (i) The limit term

u0
int is not clearly visible, and (ii) the “flat” terms are of the form uλ,N−λ , thus depend on the

given precision N . To go from N to N + 1 , these terms have to be split themselves into flatter

terms and singularities, to produce the uλ,N+1−λ and contribute to coefficients on profiles Kν .

It is possible to construct a different type of ε -expansion, by a mere rearrangement of terms

inside the former expansion (1.6). This rearrangement relies on the asymptotic structure at infin-

ity of the “canonical” profiles Kλ , which consists of a finite number of homogeneous functions

Kλ,λ−ℓ of positive degree λ− ℓ with integer ℓ . Setting

Yλ := Kλ −
∑

ℓ
Kλ,λ−ℓ,
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we find the new asymptotics for uε :

uε,int(x) = u0
int(x) + εu1

int(x) + ε2u2
int(x) + · · ·

+ ε
2π
ω u

2π
ω
int(x) + ε1+

2π
ω u

1+ 2π
ω

int (x) + ε
3π
ω u

3π
ω

int(x) + · · ·

+ ε
π
ω (c1 + c′1ε+ · · · )χ(x)Y

π
ω (x

ε )

+ ε
2π
ω (c2 + c′2ε+ · · · )χ(x)Y

2π
ω (x

ε ) + · · · + O(εN ),

(1.8)

where, now, the terms uν , for ν = 0, 1, . . . are no more “flat” nor regular, but they are independent

of the target precision O(εN ) . Moreover u0
int is the solution of problem (P0). As opposed to the

profiles Kλ , the Yλ tend to zero at infinity and, if λ is not integer, have a bounded H1 energy on

Ωint : ∥∥χ(·)Yλ( ·
ε)

∥∥
H1(Ωint)

= O(1). (1.9)

They deserve the appellation of corner layer although they do not decrease exponentially, but as

a negative power of the distance to the origin. The expansion (1.8) fits better the standard idea of

asymptotic expansion, where one only adds terms in O(εν) with ν ∈ (N,N + 1] to get from a

remainder in O(εN ) to a remainder in O(εN+1) .

1.3 Neumann external b.c.

The external b.c. in (Pε) is now ∂nuε,ext = 0 . Since the problem has now the constant functions

in its kernel, a compatibility condition is needed on the right-hand side:

−
∫

Ωint

fint dx+

∫

Γ
g dσ −

∫

Ωε
ext

fext dx = 0. (1.10)

Since we want (1.10) to be satisfied for every ε > 0 , it requires

−
∫

Ωint

fint dx+

∫

Γ
g dσ = 0 and ∀ε > 0,

∫

Ωε
ext

fext dx = 0. (1.11)

Under the assumptions (1.11), we can ensure uniqueness of a solution to the Neumann interface

problem by imposing the following mean-value property:

∫

Ωint

uε,int dx = 0. (1.12)

A expansion similar to (1.4) holds in this situation, u0
int solving the interior Laplace problem

in Ωint with homogeneous Neumann boundary conditions on Γ . In the corner case, we have

expansions analogous to (1.6) and (1.8). The main new difficulty is the construction of a suitable

variational space for the profiles.

2 Asymptotics for a smooth coated domain

This section is devoted to the smooth case whose understanding is necessary for the treatment of

a corner domain. In other words, we first focus on the situation “layer without corner” before
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treating in the next sections the situation “corner without layer” and, next, “corner with layer” we

are interested in.

In the smooth case the curve Γ is supposed infinitely differentiable. Let ℓΓ be its length. The

layer can be represented as the product [0, ℓΓ) × (0, ε) thanks to the decomposition

Ωε
ext = {x(t) + sn (x(t)) ; x(t) ∈ Γ and s ∈ (0, ε)},

where t denotes the arclength on Γ . The introduction of the stretched variable

S = ε−1s

maps [0, ℓΓ)×(0, ε) onto [0, ℓΓ)×(0, 1) . The parameter does not appear anymore in the geometry,

but in the equations through the expression of the Laplace operator in the layer (in the following

formula, c(t) is the curvature at the point of Γ of arclength t ):

∆ext = ε−2∂2
S +

ε−1c(t)

1 + εSc(t)
∂S +

1

1 + εSc(t)
∂t

(
1

1 + εSc(t)
∂t

)
. (2.1)

Expanding (2.1) into powers of ε , we obtain the formal expansion ∆ext = ε−2
[
∂2

S +
∑

ℓ ε
ℓAℓ

]
.

More precisely we can write

∆ext = ε−2
[
∂2

S +

L−1∑

ℓ=1

εℓAℓ + εLRL
ε

]
for all L ≥ 1. (2.2)

Here the differential operators Aℓ = Aℓ(t, S; ∂t, ∂S) have C∞ coefficients in t , polynomial in S
of degree ℓ−2 , and contain at most one differentiation with respect to S . Note that, in particular,

A1 = c(t)∂S . The operators RL
ε also have C∞ coefficients in t and S , bounded in ε . There

holds

∂n = ε−1∂S

in the layer. Finally, for a function vext defined in Ωε
ext , we denote by Vext the function such that

vext(x) = Vext(t, S), (t, S) ∈ [0, ℓΓ) × (0, 1).

2.1 Dirichlet external b.c.

After the change of variables s 7→ S in Ωε
ext , problem (Pε) becomes





ε−2
[
∂2

SUε,ext +
∑

ℓ≥ 1
εℓAℓUε,ext

]
= F ε

ext in [0, ℓΓ) × (0, 1),

ε−1∂SUε,ext = α∂nuε,int − g on [0, ℓΓ) × {0},
Uε,ext = 0 on [0, ℓΓ) × {1},

α∆uε,int = fint in Ωint,

uε,int = Uε,ext on Γ,

(2.3)

where F ε
ext(t, S) = f̃ext(t, Sε) with f̃ext(t, s) = fext(x) . If the function fext is sufficiently

smooth, the Taylor expansion of f̃ext in the variable s at s = 0 leads to the expansion for all

L ∈ N

F ε
ext(t, S) =

L∑

ℓ=0

εℓF ℓ
ext(t)S

ℓ + εL+1F (L+1)
rem with F ℓ

ext(t) =
1

ℓ!
∂ℓ

sf̃ext(t, 0) (2.4)
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and F
(L+1)
rem smooth and bounded. Inserting the Ansatz

uε,int =
∑

n∈N

εnun
int and Uε,ext =

∑

n∈N

εnUn
ext (2.5)

in equations (2.3), we get the following two families of problems, coupled by their boundary

conditions on Γ (corresponding to S = 0 ):





∂2
SU

n
ext = Fn−2

ext (t)Sn−2 −
∑

ℓ+p =n
AℓU

p
ext for 0 < S < 1,

∂SU
n
ext = α∂nu

n−1
int − g δn

1 for S = 0,

Un
ext = 0 for S = 1,

(2.6)

{
α∆un

int = fintδ
n
0 in Ωint,

un
int = Un

ext on Γ.
(2.7)

In the cases n = 0 and n = 1 , the problems (2.6)-(2.7) are simple to solve. From (2.6) with

n = 0 we obtain U0
ext = 0 and (2.7) yields that u0

int solves the interior Laplace problem (P0) with

f = fint and h = 0 . At step n = 1 , we find successively that U1
ext = (S − 1)[α∂nu

0
int|Γ − g]

and that u1
int solves problem (P0) with f = 0 and h = −α∂nu

0
int + g .

The whole construction follows from a recurrence argument. Suppose the sequences (un
int)

and (Un
ext) known until rank n = N−1 , then the Sturm-Liouville problem (2.6) uniquely defines

UN
ext whose trace is inserted into (2.7) as a Dirichlet data to determine the interior part uN

int .

Note that the variable t only appears as a parameter in equations (2.6) which are thus one-

dimensional. Therefore there is no elliptic regularization in the tangential direction: Un
ext is not

more regular than α∂nu
n−1
int , which implies that we loose regularity at each step. However, an

assumption of infinite smoothness on the right-hand sides fint, fext , and g ensures that the con-

struction can be performed. This is not true in the case of a corner domain, as we will see later on,

and the loss of regularity will be a major difficulty.

Theorem 2.1 Let fint belong to C∞(Ωint) , fext to C∞(Ωε0

ext) for an ε0 > 0 , and g to C∞(Γ) .

The solution uε of (Pε) with Dirichlet external b.c. has a two-scale expansion which can be written

for each N ∈ N in the form

uε =

N∑

n=0

εnun + rN+1
ε , with un|Ωint

= un
int and un|Ωε

ext
(t, s) = Un

ext(t, ε
−1s). (2.8)

The remainders satisfy, with a constant CN independent of ε ≤ ε0 :

∥∥rN+1
ε

∥∥
1,Ωint

+
√
ε
∥∥rN+1

ε

∥∥
1,Ωε

ext

≤ CN εN+1. (2.9)

Proof: By construction, the remainder rN+1
ε is solution of problem (Pε)





α∆rN+1
ε,int = 0 in Ωint,

∆rN+1
ε,ext = εN−1

[
−

∑N

ℓ=0
RN+1−ℓ

ε U ℓ
ext + F (N−1)

rem

]
in Ωε

ext,

rN+1
ε,int − rN+1

ε,ext = 0 on Γ,

α∂nr
N+1
ε,int − ∂nr

N+1
ε,ext = g δN

0 − εNα∂nu
N
int on Γ,

rN+1
ε,ext = 0 on Γε

ext.

(2.10)
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If we denote the data of this system by fN+1
ε,ext and gN+1

ε , we find the estimates

∥∥fN+1
ε,ext

∥∥
0,Ωε

ext

= O
(
εN− 1

2

)
and

∥∥gN+1
ε

∥∥
0,Γ

= O(εN ).

Using the a priori estimate (1.3), we immediately obtain
∥∥rN+1

ε

∥∥
1,Ωε ≤ C εN− 1

2 . (2.11)

Moreover by definition,

rN+1
ε = εN+1uN+1 + εN+2uN+2 + rN+3

ε . (2.12)

Since for every integer n ,
∥∥un

∥∥
1,Ωint

= O(1) and
∥∥un

∥∥
1,Ωε

ext

= O(ε−
1

2 ) , we obtain the stated

result from (2.11) and (2.12).

Remark 2.2 The estimate (2.9) is optimal, since uN+1 does not vanish, in general. �

Observing the inductive solution of problems (2.6)-(2.7) we can write the relations between its

interior terms un
int without mention of the exterior terms Un

ext . We can also give an expression of

Un
ext as a function of the interior terms un

int only. This is done thanks to the introduction of four

series of partial differential operators, according to:

Proposition 2.3 Let n ∈ N , n ≥ 1 . The interior solution un
int of problems (2.6)-(2.7) solves the

Dirichlet problem (P0) with f = 0 and h = hn where

hn = gng +
∑

k+ℓ=n

(
hkuℓ

int + Hk,ℓF ℓ
ext

)∣∣
Γ
. (2.13)

Here gk is a differential operator in t of order ≤ k−1 , Hk,ℓ a differential operator in t of order

≤ k − 2 − ℓ (with the convention that Hk,ℓ = 0 if k − 2 − ℓ < 0 ) and hk a partial differential

operator hk(t; ∂t, ∂n) of order ≤ k . The coefficients of the operators are smooth functions on Γ
depending on the geometry of Γ . The first terms are given by g0 = 0 , g1 = I , g2 = −1

2c(t)I ,

h0 = 0, h1 = −α∂n, h2 = α
2 c(t)∂n, and H0,0 = H1,0 = 0, H2,0 = −1

2I. (2.14)

The exterior part Un
ext is given by a similar formula as (2.13), with operators gk , hk , and Hk,ℓ

replaced by operators ak , bk , and Bk,ℓ which are polynomial of degree ≤ k in the variable S :

Un
ext = ang +

∑

k+ℓ=n

bkuℓ
int + Bk,ℓF ℓ

ext. (2.15)

The first terms are given by a0 = 0 , a1 = (1 − S)I , a2 = 1
2c(t)(S

2 − 1)I ,

b0 = 0, b1 = (S − 1)α∂n, b2 = −1
2 c(t)(S

2 − 1)α∂n, (2.16)

and B0,0 = B1,0 = 0 , B2,0 = 1
2(S2 − 1)I

As practical consequences of the above formulas we obtain:

Corollary 2.4

(i) If fint ≡ 0 , fext ≡ 0 , and g 6= 0 , the series (2.8) starts with εu1 .

(ii) If fint ≡ 0 , fext 6= 0 , and g ≡ 0 , the series (2.8) starts in general with ε2u2 .

(iii) More precisely, if fint ≡ 0 , g ≡ 0 , and ∂k
nfext|Γ ≡ 0 for k = 0, . . . , ℓ − 1 with ∂ℓ

nfext|Γ
non identically 0 , the series (2.8) starts with εℓ+2uℓ+2 .

This result, in particular (iii), is fundamental. It will be used in the proof of Lemma 4.4, on

which the construction of the asymptotic expansion is based.
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2.2 Neumann external b.c.

If we consider the boundary condition ∂nuε,ext = 0 on Γε
ext in problem (Pε), a similar algorithmic

construction can be done. Due to compatibility conditions, the situation is more complex than in

the Dirichlet case.

The compatibility conditions (1.11) in the exterior part can be written as

0 =

∫ ε

0

∫

Γ

[
1 + sc(x)

]
fext(x+ sn(x)) dxds = ε

∫ 1

0

∫

Γ

[
1 + εSc(t)

]
F ε

ext(t, S) dt dS, (2.17)

where c(t) denotes the curvature of Γ at the point of arclength t and n(x) the unitary outer

normal to Ωint ; see (2.4) for the behavior of F ε
ext with respect to ε . Since we want (2.17) to be

satisfied for every ε > 0 , we shall assume

∀ℓ ≥ 0

∫

Γ

[
F ℓ

ext(t) + c(t)F ℓ−1
ext (t)

]
dt = 0 (with the convention F−1

ext = 0 ). (2.18)

Note that for analytic Fext , relation (2.18) is a consequence of (2.17).

We now explain the construction of the first terms in the iterative procedure. Starting from

the same Ansatz (2.5), we get again problems (2.6) (whose third line is replaced by the Neumann

condition ∂nU
n
ext = 0 ) and (2.7). At step n = 0 , U0

ext(t, ·) solves a totally homogeneous one-

dimensional Neumann problem, hence U0
ext(t, S) is a function of the arc length t , denoted by

β0(t) which cannot be determined at this stage.

For n = 1 , we get (note that A1U
0
ext = c(t)∂Sβ0(t) = 0 )





∂2
SU

1
ext = 0 for 0 < S < 1,

∂SU
1
ext = α∂nu

0
int − g for S = 0,

∂SU
1
ext = 0 for S = 1,

which is solvable if α∂nu
0
int = g on Γ . Thus, let u0

int be solution of the Neumann problem:

α∆u0
int = fint in Ωint and α∂nu

0
int = g on Γ (whose data satisfies the compatibility condi-

tion (1.11)). Then β0(t) is determined as u0
int|Γ , thanks to the continuity condition across Γ .

Let us now present the general construction: Let us assume that the terms Uk
ext and uk

int were

built for k < n , satisfying the condition on Γ :

∀t ∈ [0, ℓΓ), α∂nu
n−1
int (t) = Φn−1(t) (Hn−1)

where Φn−1 is defined as

Φn−1(t) := g δn
0 −

∫ 1

0

(
Fn−2

ext (t)Sn−2 −
∑

ℓ+p=n

AℓU
p
ext(t, S)

)
dS.

The construction of Un
ext and un

int consists of three steps.

• Step 1. Definition of Un
ext up to a constant. Thanks to assumption (Hn−1), the problem





∂2
SU

n
ext = Fn−2

ext (t)Sn−2 −
∑

ℓ+p =n
AℓU

p
ext for 0 < S < 1,

∂SU
n
ext = α∂nu

n−1
int − g δn

0 for S = 0,

∂SU
n
ext = 0 for S = 1

(2.19)
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satisfies the compatibility condition. Thus, Un
ext can be determined up to a constant (of S ) βn(t) .

• Step 2. Compatibility condition for Un+1
ext and construction of un

int . Let us consider prob-

lem (2.19) at rank n+ 1 . The right-hand side

Fn−1
ext (t)Sn−1 −

∑

ℓ+p =n+1

AℓU
p
ext

is well defined since A1β
n(t) = 0 (remember A1 = c(t)∂S ). The compatibility condition is

nothing but (Hn ): It reads α∂nu
n
int = Φn .

If we insert the previous condition (Hn ) into the interior problem at rank n , we obtain

{
α∆un

int = fintδ
n
0 in Ωint,

α∂nu
n
int = Φn on Γ.

(2.20)

Therefore, we can uniquely determine un
int with the condition

∫
Ωint

un
int = 0 , provided the com-

patibility condition for this Neumann problem is fulfilled:

Lemma 2.5 The interior Neumann problem (2.20) is compatible.

Proof: For n = 0 , Φn = g and it directly follows from the compatibility condition for

problem (Pε), see (1.11). For n ≥ 1 , we must show that the integral of Φn over Γ vanishes.

Thus, the condition to be satisfied is the following:

−
∫

Γ
Φn(t) dt =

∫

Γ

∫ 1

0

[
Fn−1

ext (t)Sn−1 −
∑

ℓ+p=n+1

AℓU
p
ext(t, S)

]
dS dt = 0. (2.21)

In the sum, we isolate the term corresponding to ℓ = 1 and p = n ; integrating the first equation

of (2.19), we obtain an expression for ∂SU
n
ext which can be used to obtain

∫

Γ

∫ 1

0
A1U

n
ext(t, S) dS dt =

∫

Γ

∫ 1

0

∫ 1

S
c(t)

[
− Fn−2

ext (t)Y n−2 +
∑

ℓ+p=n

AℓU
p
ext(t, Y )

]
dY dS dt.

(2.22)

Inverting the integrals in S and Y yields

∫

Γ

∫ 1

0
A1U

n
ext(t, S) dS dt =

∫

Γ

∫ 1

0

[
− c(t)Fn−2

ext (t)Y n−1 +
∑

ℓ+p=n

Y c(t)AℓU
p
ext(t, Y )

]
dY dt.

(2.23)

Using equality (2.18), we can deduce from (2.23) the compatibility condition (2.21) if

∑

ℓ+p=n

∫ 1

0

∫

Γ

[
Sc(t)Aℓ + Aℓ+1

]
Up

ext(t, S) dt dS = 0. (2.24)

From (2.1) and (2.2), it follows that Bℓ = Sc(t)Aℓ−1 + Aℓ is nothing but the operator of rank ℓ
in the formal expansion

Tε := [1 + εSc(t)][ε2∆ext − ∂2
S ] − εc(t)∂S =

∑

ℓ≥2

εℓBℓ.
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But for any smooth function ϕ defined on Γ , (2.1) gives

∫

Γ
Tεϕ(t) dt = ε2

∫

Γ
∂t

[
(1 + εSc(t))−1∂tϕ

]
dt = 0,

since Γ is a closed curve. Therefore
∫
ΓBℓϕ = 0 for every ℓ ≥ 2 and every smooth function ϕ .

This implies (2.24).

• Step 3. Complete determination of Un
ext . The continuity requirement Un

ext = un
int determines

βn(t) = un
int|Γ .

We have just shown that the construction of the terms Un
ext and un

int can be achieved by

induction. We can obtain a similar result as Theorem 2.1:

Theorem 2.6 Let fint ∈ C∞(Ωint) , fext ∈ C∞(Ωε0

ext) for an ε0 > 0 , and g ∈ C∞(Γ) satis-

fying the assumptions (1.11). The solution uε of (Pε) with external Neumann b.c. determined by∫
Ωint

uε,int dx = 0 has a two-scale expansion which can be written for each N ∈ N in the form

uε =
N∑

n=0

εnun + rN+1
ε , with un|Ωint

= un
int and un|Ωε

ext
(t, s) = Un

ext(t, ε
−1s).

The remainders satisfy, with a constant CN independent of ε ≤ ε0 :

∥∥rN+1
ε

∥∥
1,Ωint

+
√
ε
∥∥rN+1

ε

∥∥
1,Ωε

ext

≤ CN εN+1. (2.25)

Remark 2.7 For external Neumann boundary conditions we also have a statement like Proposition

2.3, with the following distinctive feature: If fint ≡ 0 , g ≡ 0 , and fext 6= 0 , the series (2.8) starts

in general with εu1 instead of ε2u2 for external Dirichlet b.c., and more precisely, if ∂k
nfext|Γ ≡ 0

for k = 0, . . . , ℓ− 1 and ∂ℓ
nfext|Γ 6= 0 , then (2.8) starts with εℓ+1uℓ+1 . �

2.3 Uniform a priori estimates

Since the transmission problem (Pε) is elliptic, the solution uε has an optimal piecewise regularity

depending on the regularity of the data and satisfies correspondingly a priori estimates. In fact, it

is even possible to prove that such estimates are uniform with respect to ε . Using techniques of

differential quotients like in [1] or [2] we prove in the appendix the following local estimates: We

assume that Ωint is a smooth domain or a corner domain as introduced in §1.1. We fix a point

A ∈ Γ , A 6= O if O is the corner of Ωint . Let BR be the ball of center A and radius R . We

choose R small enough, so that in particular, O 6∈ BR . Let ρ be fixed, 0 < ρ < R .

The following result applies both to Dirichlet and Neumann boundary conditions:

Theorem 2.8 With the above assumption on R and ρ , let m ≥ 1 be an integer. For ε small

enough, we consider the solution uε of problem (Pε) with a right-hand side satisfying the regular-

ity assumptions fint ∈ Hm−1(Ωint ∩BR) , fext ∈ Hm−1(Ωε
ext ∩BR) , and g ∈ Hm− 1

2 (Γ ∩BR) .

Then

uε,int ∈ Hm+1(Ωint ∩Bρ) and uε,ext ∈ Hm+1(Ωε
ext ∩Bρ).
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Moreover, there exists a constant C , independent of ε , f , and g such that

∥∥uε,int

∥∥
m+1,Ωint∩Bρ

+
∥∥uε,ext

∥∥
m+1,Ωε

ext
∩Bρ

≤ C
[∥∥fint

∥∥
m−1,Ωint∩BR

+
∥∥fext

∥∥
m−1,Ωε

ext
∩BR

+
∥∥g

∥∥
m− 1

2
,Γ∩BR

+
∥∥uε

∥∥
0,Ωε∩BR

]
.

(2.26)

As a consequence, for a smooth domain Ωint there holds the following global estimate for the

solution uε ∈ H1(Ωε) of problem (Pε) with a right-hand side satisfying the regularity assumptions

fint ∈ Hm−1(Ωint) , fext ∈ Hm−1(Ωε
ext) , and g ∈ Hm− 1

2 (Γ) :

uε,int ∈ Hm+1(Ωint) and uε,ext ∈ Hm+1(Ωε
ext).

Moreover, there exists a constant C independent of ε such that

∥∥uε,int

∥∥
m+1,Ωint

+
∥∥uε,ext

∥∥
m+1,Ωε

ext

≤ C
[∥∥fint

∥∥
m−1,Ωint

+
∥∥fext

∥∥
m−1,Ωε

ext

+
∥∥g

∥∥
m− 1

2
,Γ

+
∥∥uε

∥∥
0,Ωε

]
. (2.27)

For external Dirichlet b.c., one can remove the contribution
∥∥uε

∥∥
0,Ωε in the right hand side of

(2.27).

When comparing (2.27) with the expansions given in Theorems 2.1 and 2.6, we can remark

that uniform estimates are corroborated by the fact that the degree in S = s
ε inside the exterior

stretched part Un
ext is less than n , see Proposition 2.3.

3 Corner singularities and profiles at infinity

From now on we consider the corner case. In this section, we prepare for the special treatment

needed by the corner point O of Ωint . The solution uε has singular parts, not only at O , but also

at the external vertex Oε . We refer to [17], [11], or [8] for singularities of elliptic boundary value

problems and to [23] for interface problems.

Examining problems (2.6)-(2.7) and their solution via Proposition 2.3 we see that the singu-

larities of problem (P0) are of importance: The application of formula (2.13) presupposes that the

traces of hkuℓ
int on Γ are at least in H1/2(Γ) . Since the operator hk is of degree k in general,

uℓ
int should belong to Hk+1(Ωint) . But the presence of singularities stops the regularity at the

level of H1+ π
ω , in general.

We propose the following strategy in order to overcome this: We use the standard splitting of

u0
int into regular and singular parts, and replace the singular parts by profiles suitably constructed,

so as to solve the whole transmission problem in a neighborhood of O .

3.1 Dirichlet and Neumann corner singularities

Before constructing and investigating these profiles, we describe the singularities of the interior

problem (P0), see [11]. We first introduce the following notations.
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Definition 3.1 (i) The set of singular exponents for the Dirichlet problem (P0) is

S =
{ qπ

ω ; q ∈ Z, q 6= 0
}
. (3.1)

The singular function associated with the Dirichlet problem corresponding to λ ∈ S is

sλ =

{
rλ cos(λθ) if λ = qπ

ω with q odd,

rλ sin(λθ) if λ = qπ
ω with q even,

(3.2)

where (r, θ) are polar coordinates centered in O such that the plane sector −ω
2 ≤ θ ≤ ω

2
coincides with Ωint in a neighborhood of O .

(ii) The set of singular exponents for the Neumann problem (2.20) is S ∪ {0} . The singular

function associated with the Neumann problem corresponding to λ ∈ S is

sλ =

{
rλ sin(λθ) if λ = qπ

ω with q odd,

rλ cos(λθ) if λ = qπ
ω with q even.

(3.3)

The singularity associated with λ = 0 is s0 = log r .

(iii) For any positive number K let S(K) denote the finite set S ∩ (0,K) .

We recall the result of splitting into singular and regular part of the solutions of the Dirichlet

problem (P0), in the situation where the data are “flat” in O , i.e. belong to some weighted spaces

of Kondrat’ev type, see [17]:

Definition 3.2 Let γ ∈ R and m ∈ N . Let

Hm
γ (Ωint) = {v ∈ L2

loc(Ωint) ; rγ+|β|∂βv ∈ L2(Ωint), |β| ≤ m}.

We denote by H
m−1/2
γ+1/2 (Γ) the trace space of Hm

γ (Ωint) . Finally H∞
γ is defined as

⋂
m∈N

Hm
γ .

Theorem 3.3 Let m ∈ N and K ≥ 0 be a real number such that K 6∈ S , and let the data satisfy

fint ∈ Hm−1
−K+1(Ωint) and h ∈ H

m+1/2
−K−1/2(Γ).

Then the solution u0
int ∈ H1(Ωint) of the Dirichlet problem (P0) admits the following decomposi-

tion:

u0
int = u0,K + χ

∑

λ∈S(K)

cλ sλ with u0,K ∈ Hm+1
−K−1(Ωint) and cλ ∈ R. (3.4)

Here χ is a smooth cut-off function as introduced in Definition 1.1.

Remark 3.4 (i) If m ≥ 1 , the regular part u0,K is a O(rK) .

(ii) For the Neumann problem there holds a similar decomposition like (3.4) with an extra constant

term corresponding to λ = 0 . In fact there are two “singular” functions associated with λ = 0 ,

namely 1 and log r . The latter does not belong to H1(Ωint) . However, we will have to take it

into account as far as singularities at infinity will be concerned. �
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Gext
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Qint
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ω

~n

~n

1

O′

Figure 2: The infinite domain Q .

3.2 Introduction to the profile analysis

As already mentioned, the solution algorithm of Proposition 2.3 does not apply because of the

singularities in the splitting (3.4). An essential ingredient to obtain an ε -expansion for problem

(Pε) in this case is the construction of profiles solving an associated problem on an infinite domain,

see [6] or [7].

Focusing on the corner point O , we perform the dilatation x 7→ X = x
ε . When ε goes to

0 , the domain Ωε becomes an infinite sector Q (see Figure 2): Q consists of an interior plane

sector Qint of opening ω and of a straight layer Qext of thickness 1 . Let Gext be the external

boundary of Q and G denote the common boundary of Qint and Qext .

A standard feature of the singularities sλ is to solve the Dirichlet (or Neumann) problem on

the sector Qint of opening ω with zero data, and to be homogeneous of degree λ . The associated

profiles Kλ are solution of complete transmission problem (P∞)





α∆Kint = fint in Qint,

∆Kext = fext in Qext,

Kint − Kext = 0 on G,

α∂nKint − ∂nKext = g on G,

external b.c. on Gext,

(P∞)

for zero data fint , fext and g . The external b.c. is of course Kext = 0 for Dirichlet and ∂nKext = 0
for Neumann. Moreover, Kλ has to imitate sλ at infinity, namely

Kλ(X) − sλ(X) = O(Rλ), R = |X| → ∞. (3.5)

In this §3, we prove the existence of Kλ solving the homogeneous (P∞) problem together with

condition (3.5) for external Dirichlet and Neumann conditions. For each case, this requires three

steps:

(i) An algorithmic part providing an asymptotic series K̆λ , solution of a model transmission

problem (P̆∞) with zero data, see 3.3.2,
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(ii) Truncating this asymptotic series solution, we define the function Kλ on the infinite sector

Q thanks to a variational formulation, see 3.3.3,

(iii) The expansion of the latter solution at infinity, see 3.4.

Throughout this section we use the following cut-off “at infinity”:

Definition 3.5 Let ρ0 be the distance OO′ between the internal and external corners of Q . Let

ψ be a smooth cut-off function equal to 1 for |X| ≥ 2ρ0 and 0 for |X| ≤ ρ0 .

3.3 Existence of Dirichlet profiles

3.3.1 Variational formulation

We need a variational framework for problem (P∞) . Our variational space V is defined as

V =

{
v ; ∇v ∈ L2(Q),

v

〈X〉 ∈ L2(Q) and v|Gext
= 0

}
, (3.6)

endowed with the natural norm

∥∥v
∥∥2

V
=

∥∥∇v
∥∥2

0,Q
+

∥∥〈X〉−1v
∥∥2

0,Q
,

where the weight is 〈X〉 := (|X|2 + 1)1/2 . This is a standard space for the solution of exterior

problems, see [22]. The variational formulation is: Find u ∈ V such that

∫

Qint

∇uint · ∇vint dx+

∫

Qext

∇uext · ∇vext dx =

∫

Qint

fintvint dx+

∫

Qext

fextvext dx+

∫

G
gv dσ, ∀v ∈ V. (3.7)

Proposition 3.6 If 〈X〉 f ∈ L2(Q) and 〈X〉 1

2 g ∈ L2(G) , then problem (P∞) admits a unique

solution v ∈ V .

Proof: The bilinear form a associated with the variational formulation of (P∞) is obviously

continuous on V . For the ellipticity, we use the polar coordinates centered in O′ (see Figure 2),

denoted by (ρ, ϕ) . Thanks to the Dirichlet conditions in Gext , we can write a Poincaré inequality

in the variable ϕ : There exists a constant C independent of ρ and v such that

∫ ω
2

−
ω
2

|v(ρ, ϕ)|2 dϕ ≤ C2

∫ ω
2

−
ω
2

|∂ϕv(ρ, ϕ)|2 dϕ.

Multiplying this inequality by ρ−1 and integrating, we get
∥∥ρ−1v

∥∥
0,Q

≤ C
∥∥∇v

∥∥
0,Q

, which gives

the coercivity of the bilinear form on V .

The same technique shows that the prescribed conditions for f and g ensure the continuity of

the linear form associated with the right-hand side.
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θ = ω

2
+ 1

θ = ω

2

θ = −ω

2

θ = −ω

2
− 1

R

θ

R

θ

R

θ

R = 0

R = 0

Q̆+
ext

Q̆int

Q̆−

ext

Figure 3: Definition of (R, θ) coordinates, after polar transformation in the interior domain.

3.3.2 Algorithmic construction of kernel elements

We recall that for any fixed λ > 0 in S , we are looking for a solution Kλ of (P∞) with fint =
fext = g = 0 , behaving at infinity like sλ . This is possible because sλ does not belong to V . We

proceed by constructing a series of terms decreasing more and more at infinity, until they belong

to the variational space V , which allows the determination of Kλ .

The first step involves an algorithmic construction in singular function spaces. It is more

canonical to define these spaces on a new domain Q̆ instead of Q , see Figure 3:

Definition 3.7 In Qint , we denote by (R, θ) the polar coordinates centered in O . Thus, consid-

ering (R, θ) as new variables Qint is transformed into

Q̆int = {(R, θ); R > 0, θ ∈ (−ω
2 ,

ω
2 )},

and G becomes

Ğ = {(R, θ); R > 0, θ = ±ω
2 }.

We consider the exterior layer(s) Q̆ext = Q̆+
ext ∪ Q̆−

ext around Q̆int

Q̆+
ext = {(R, θ); R > 0, θ ∈ (ω

2 ,
ω
2 + 1)} and Q̆−

ext = {(R, θ); R > 0, θ ∈ (−1− ω
2 ,−ω

2 )}.

Thus, in the exterior layer, R and θ are the tangential and normal coordinates. For λ ∈ R , we

set

Sλ(Q̆int) =
{ ∑

ℓ≥0, finite

Rλ logℓRvℓ(θ) ; vℓ ∈ C∞[−ω
2 ,

ω
2 ]

}
,

Sλ(Ğ) =
{ ∑

ℓ≥0, finite

c±ℓ R
λ logℓR for θ = ±ω

2 ; c+ℓ , c
−
ℓ ∈ R

}
,

Sλ(Q̆ext) =
{ ∑

ℓ≥0, finite

θℓ ϕℓ(R) ; ϕℓ ∈ Sλ(Ğ)
}
.

(3.8)
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Let Q̆ the union of Q̆int , Ğ , and Q̆ext . We denote by Sλ(Q̆) the space of functions, continuous

inside Q̆ and whose restrictions to Q̆int and Q̆ext belong to Sλ(Q̆int) and Sλ(Q̆ext) , respec-

tively.

It is important to note that θ does not represent any more an angular variable in Q̆ext . Rather,

(R, θ) are cartesian coordinates. The change of variables defined on Q̆+
ext by

(R, θ) 7−→ X = (R cos ω
2 , R sin ω

2 ) + (θ − ω
2 )(− sin ω

2 , cos
ω
2 )

and accordingly on Q̆−
ext , maps Q̆ext either onto a subset of Qext (if ω < π ) or a superset of

Qext (if ω > π ). Nevertheless, inside the support of ψ , cf. Definition 3.5, this correspondence is

one to one. This is the reason why we can introduce:

Definition 3.8 We assume that the cut-off ψ = ψ(R) in Definition 3.5 does not depend on θ . For

λ ∈ R , let Sλ(Q) be defined as the space of functions u such that

∃ ŭ ∈ Sλ(Q̆), u(X) = ψ(R) ŭ(R, θ).

A direct consequence of the definition is:

Lemma 3.9 For any λ < 0 , the space Sλ(Q) is contained in the variational space V .

The problem in Q̆ corresponding to problem (P∞) can be written as




α∆XK̆int = f̆int in Q̆int,

(∂2
θ + ∂2

R)K̆ext = f̆ext in Q̆ext,

K̆int − K̆ext = 0 on Ğ,
α
R∂θK̆int − ∂θK̆ext = ğ on Ğ,

K̆ext = 0 on θ = ±(ω
2 + 1),

(P̆∞)

Problem (P̆∞) can be solved in the sense of “asymptotic series at infinity”:

Proposition 3.10 Let λ ∈ S . Let sλ
0 denote the extension of the singularity sλ in (3.2) by 0 on

Q̆ext . The function sλ
0 belongs to Sλ(Q̆) . We initialize the series K̆λ,µ for µ = λ+2, λ+1 , and

λ by setting

K̆λ,λ+2 = K̆λ,λ+1 = 0 and K̆λ,λ = sλ
0 .

Then there exists K̆λ,λ−ℓ ∈ Sλ−ℓ(Q̆) , ℓ = 1, 2, . . . , satisfying the following sequence of equa-

tions: 



∂2
θ K̆

λ,λ−ℓ
ext = −∂2

RK̆
λ,λ−ℓ+2
ext θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θK̆
λ,λ−ℓ
ext = α

R∂θK̆
λ,λ−ℓ+1
int θ = ±ω

2 ,

K̆
λ,λ−ℓ
ext = 0 θ = ±ω

2 ± 1,

(3.9)

{
∆K̆

λ,λ−ℓ
int = 0 in Qint,

K̆
λ,λ−ℓ
int = K̆

λ,λ−ℓ
ext for θ = ±ω

2 ,
(3.10)

for all ℓ ≥ 0 . The degree in θ of K̆λ,λ−ℓ in Q̆ext is equal to ℓ . For each integer p ≥ 0 the

partial sum
∑p

ℓ=0 K̆λ,λ−ℓ solves (P̆∞) for

f̆int = 0, f̆ext = −∂2
R

[
K̆

λ,λ−p
ext + K̆

λ,λ−p+1
ext

]
, ğ = −α∂nK̆

λ,λ−p
int . (3.11)
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Proof: The terms K̆λ,λ−ℓ are built by induction. For ℓ = 0 , the algorithm is initialized with

K̆
λ,λ
ext = 0 and K̆

λ,λ
int = sλ solving the homogeneous Dirichlet problem in Qint . Then we solve

alternatively problems (3.9) and (3.10): If K̆λ,λ−n are constructed for n = 0, . . . , ℓ − 1 , the

exterior problem (3.9) is a one-dimensional Sturm-Liouville problem with parameter R and we

check that it has a unique solution in Sλ−ℓ(Q̆ext) , whereas the interior Dirichlet problem (3.10)

with boundary data from the trace space Sλ−ℓ(Ğ) of Sλ−ℓ(Q̆ext) has a solution in Sλ−ℓ(Q̆int) ,

cf. [8, Ch.4]. Then (3.11) is an easy consequence of equations (3.9) and (3.10).

Remark 3.11 Since the terms in (3.11) are O(Rλ−p−1) as R→ ∞ , we may say that the series

K̆λ :=
∑

ℓ≥ 0
K̆λ,λ−ℓ (3.12)

solves (P̆∞) with f̆ = ğ = 0 in the sense of “asymptotic series at infinity”. �

Remark 3.12 (i) If π/ω 6∈ Q , the terms K̆λ,λ−ℓ , ℓ ≥ 1 , are unique in Sλ−ℓ(Q̆) since λ−ℓ 6∈ S ,

and as a consequence the kernel of the Dirichlet problem (3.10) in Sλ−ℓ(Q̆) is reduced to zero.

Moreover, K̆λ,λ−ℓ contains no logarithmic term logR .

(ii) If π/ω ∈ Q , for each ℓ such that λ− ℓ ∈ S , a resonance phenomenon may occur, exciting a

logarithmic singularity (the degree of K̆λ,λ−ℓ as a polynomial in logR is at most ℓ ). In that case,

the asymptotic series K̆λ contains arbitrary choices. Any other asymptotic series K̆λ
∗ =

∑
ℓ K̆

λ,λ−ℓ
∗

satisfying the sequence of equations in Proposition 3.10 can be compared to the specified one.

There exist coefficients (γλ
ν ) for each ν = λ− ℓ ∈ S , ℓ ≥ 1 , such that

K̆λ
∗ = K̆λ +

∑
ν =λ−ℓ∈S

γλ
ν K̆ν .

�

3.3.3 Effective construction of profiles

Using the asymptotic series
∑

K̆λ,λ−ℓ , we are able to construct genuine solutions for prob-

lem (P∞) with zero right hand side and asymptotics (3.5) at infinity:

Theorem 3.13 Let λ ∈ S , λ > 0 , and let pλ denote the smallest integer p such that

λ− 1
2 < p. (3.13)

Recall that ψ is the cut-off function from Definition 3.5. There exists uλ,pλ in the variational

space V such that

Kλ := ψ

pλ∑

ℓ=0

K̆λ,λ−ℓ + uλ,pλ (3.14)

defines a solution Kλ of problem (P∞) for f = g = 0 , such that Kλ
int ∼ sλ as R → ∞ .

Moreover for any integer p ≥ pλ , the function uλ,p defined as Kλ−ψ∑p
ℓ=0 K̆λ,λ−ℓ also belongs

to V :

∀p ≥ pλ, Kλ = ψ

p∑

ℓ=0

K̆λ,λ−ℓ + uλ,p, with uλ,p ∈ V. (3.15)
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Proof: For any integer q , we define vλ,q as the sum −ψ∑q
ℓ=0 K̆λ,λ−ℓ . By construction, the

function vλ,q solves problem (P∞) with, compare with (3.15):

fint = ϕint, fext = ϕext − ψ∂2
R

[
K̆

λ,λ−q
ext + K̆

λ,λ−q+1
ext

]
, g = −ψ α

R∂θK̆
λ,λ−q
int (3.16)

where ϕ comes from the cut-off: Its support is contained in supp(∇ψ) . For q large enough, i.e.

q > λ + 1
2 , the above right-hand sides satisfy the assumptions of Proposition 3.6. As a conse-

quence, there exists uλ,q ∈ V , solving the same problem as vλ,q . Then Kλ = ψ
∑q

ℓ=0 K̆λ,λ−ℓ +
uλ,q solves problem (P∞) with f = g = 0 . Finally the statement concerning uλ,p for p =
pλ, pλ + 1, . . . follows directly from Lemma 3.9.

3.4 Expansion at infinity of the Dirichlet profiles

Equality (3.14) provides the expansion of Kλ up to O(1) as R → ∞ . But we need to know the

expansion of Kλ at any order O(r−P ) for the construction of the expansion of the solution of

problem (Pε) in Section 4. The theorem below provides the complete expansion of Kλ . For this,

the introduction of several sets of indices is useful:

Definition 3.14 Let Q− be the set of negative exponents defined as

Q− =
{
−hπ

ω − q ; h, q ∈ N with h ≥ 1, q ≥ 0
}
. (3.17)

For any λ > 0 we introduce the infinite set of exponents depending on λ :

Qλ = Q− ∪
{
λ− 1, λ− 2, . . . , λ− ℓ, . . .

}
(3.18)

and for any number P > 0 the finite set Qλ(P ) = Qλ ∩ [−P, λ) .

Theorem 3.15 Let λ ∈ S , λ > 0 , and P > 0 .

(i) The solution Kλ of problem (P∞) introduced in (3.14) has the following expansion at infinity:

∀P > 0, Kλ = sλ
0 +

∑

µ∈Qλ(P )

Kλ,µ + O(R−P ), R→ ∞. (3.19)

where for any µ ∈ Qλ the function Kλ,µ belongs to the space Sµ(Q) cf. Definition 3.8. The

degree of K
λ,µ
ext as a polynomial in θ ∈ ±(ω

2 ,
ω
2 + 1) is less than λ− µ . Moreover, one can take

derivatives of expansion (3.19), still having estimates on the remainder, see (3.30).

(ii) More precisely, we have the identity between asymptotic series:

sλ
0 +

∑

µ∈Qλ

Kλ,µ = K̆λ +
∑

ν=−hπ
ω

<0

cλν K̆ν , (3.20)

with the K̆ν defined by (3.12), and cλν are real coefficients, characteristic for the domain Q .

The proof of this theorem requires regularity results for the variational terms uλ,p and uses the

Mellin transform. It is performed in the next Sections 3.4.1 and 3.4.2.
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Figure 4: The strip Q̃ .

3.4.1 Regularity of the variational terms in weighted spaces

We are going to study the regularity of the variational terms uλ,p , cf. (3.15), in a scale of weighted

Sobolev spaces, as is usual for corner problems, see [17]. Rather than in the sector Q , we work in

the strip Q̃ obtained from Q̆ by the change of variable R+ ∋ R 7→ t = logR ∈ R , see Figure 4.

Let us now introduce the scales of weighted spaces.

Definition 3.16 (i) Let m be a non-negative integer and γ a real number. The space Km
γ (Q̃int)

is defined by

Km
γ (Q̃int) =

{
ṽ ; eγt ṽ ∈ Hm(Q̃int)

}
,

endowed with the natural norm
∥∥ṽ

∥∥
Km

γ ( eQint)
=

∥∥eγt ṽ
∥∥

m, eQint

. We define similarly

Km
γ (Q̃ext) =

{
ṽ ; eγt ṽ ∈ Hm(Q̃ext)

}
and K

m− 1

2

γ (G̃) =
{
ṽ ; eγt ṽ ∈ Hm− 1

2 (G̃)
}
.

(ii) We set K0
γ,γ− 1

2

(Q̃) =
{
ṽ ; ṽint ∈ K0

γ(Q̃int), ṽext ∈ K0
γ− 1

2

(Q̃ext)
}

, and for m ≥ 1

Km
γ,γ− 1

2

(Q̃) =
{
ṽ ; ṽint ∈ Km

γ (Q̃int), ṽext ∈ Km
γ− 1

2

(Q̃ext) and ṽint = ṽext on G̃
}
. (3.21)

Last, we denote by K
m− 1

2

γ,γ− 1

2

(G̃) the space of traces of Km
γ,γ− 1

2

(Q̃) on the interface G̃ .

Remark 3.17 (i) The above definitions are inspired by Kondrat’ev spaces, see [17]. Namely,

Km
γ (Q̃int) is the image of Hm

γ−1(Qint) , see Definition 3.2, by the change of variables X 7→ (t, θ) .

(ii) If 〈X〉−1u ∈ L2(Q) (and in particular, if u ∈ V ), then (t, θ) 7→ ψu belongs to K0
0,−1/2(Q̃) .

(iii) The natural trace spaces on G̃ of the spaces Km
γ (Q̃int) and Km

γ−1/2(Q̃ext) do not coincide.

Thus the transmission condition ṽint = ṽext enriches the topology of the space (3.21). �

Using the elliptic regularity away from the corner (see Theorem 2.8), we can prove the follow-

ing “shift theorem”. Note in the following result that more regularity is required for f̃ext than for

f̃int due to the inhomogeneity of the operator in the strips.
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Theorem 3.18 Let ŭ be solution of problem (P̆∞) with data f̆ and ğ . Let ũ , f̃ , and g̃ denote

their transforms on Q̃ . We assume the following on the data for some integer m ≥ 2 and γ ∈ R :

f̃int ∈ Km−2
γ+2 (Q̃int ∩ [t > 0]), f̃ext ∈ Km−2

γ+m− 1

2

(Q̃ext ∩ [t > 0]), g̃ ∈ K
m− 3

2

γ+1 (G̃ ∩ [t > 0]).

If ũ belongs to K0
γ,γ− 1

2

(Q̃∩ [t > 0]) , then it also belongs to Km
γ,γ− 1

2

(Q̃∩ [t > η]) for all η > 0 .

Proof: In the variables (t, θ) , the Laplace operators present in the first two equations of (P̆∞)

become

Tint = e−2t[∂2
t + ∂2

θ ] and Text = e−2t
[
∂2

t − ∂t + e2t∂2
θ

]
.

Let us fix the real number η > 0 and consider for some arbitrary t0 > 0 the rectangle R :=
Q̃ ∩ [t0 + η < t < t0 + 2η] . On such a rectangle, the non-principal parts of the above operators

can be neglected and the variable coefficients can be frozen in t0 . Finally we use the following

dilatation of the exterior strips:

s = ±ω
2 + e−t0(θ ∓ ω

2 ) in Q̃±
ext.

As a consequence, the domain R becomes a rectangle with layers of thickness ε = e−t0 and the

considered operators can be written as

T ε
int = e−2t0 [∂2

t + ∂2
θ ] and T ε

ext = e−2t0
[
∂2

t + ∂2
s

]
,

which are nothing but the Laplace operator (multiplied by a constant). Moreover the transmission

condition on G̃ becomes

e−t0α∂θũint − e−t0∂sũext = g̃.

This is the same as in (Pε), since ∂θ and ∂s are the normal derivatives along the transmission

boundary. Using Theorem 2.8 and going back to the variables (t, θ) , we obtain the estimate, with

C independent of t0 – in the following the derivation multi-indices with respect to the variables

t and θ are denoted by β = (βt, βθ) :

∥∥ũint

∥∥
m,Rint

+
( ∑

|β|≤m

e2βθt0−t0
∥∥∂β ũext

∥∥2

0,Rext

) 1

2 ≤

C

[
e2t0

∥∥f̃int

∥∥
m−2, bRint

+ e2t0
( ∑

|β|≤m−2

e2βθt0−t0
∥∥∂β f̃ext

∥∥2

0, bRext

) 1

2

+ et0
∥∥g̃

∥∥
m− 3

2
,bΓ

+
∥∥ũint

∥∥
0, bRint

+ e−t0/2
∥∥ũext

∥∥
0, bRext

]
, (3.22)

where R̂ is the rectangle Q̃ ∩ [t0 < t < t0 + 3η] , Γ̂ its boundary along G̃ . If we multiply

inequality (3.22) by eγt0 and use 0 ≤ βθ ≤ m , we get

eγt0
∥∥ũint

∥∥
m,Rint

+ e(γ−
1

2
)t0

∥∥ũext

∥∥
m,Rext

≤

C

[
e(2+γ)t0

∥∥f̃int

∥∥
m−2, bRint

+ e(γ+m− 1

2
)t0

∥∥f̃ext

∥∥
m−2, bRext

+ e(1+γ)t0
∥∥g̃

∥∥
m− 3

2
,bΓ

+ eγt0
∥∥ũint

∥∥
0, bRint

+ e(γ−
1

2
)t0

∥∥ũext

∥∥
0, bRext

]
.
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Since t ∼ t0 in the rectangles, we can replace the norms eδt0
∥∥v

∥∥
s

by
∥∥eδtv

∥∥
s

. Summing up all

these inequalities for t0 ∈ ηN∗ , we get the result.

As a consequence there holds the following result on the regularity of the variational term.

Proposition 3.19 Let p be an integer, p ≥ pλ , and let ũλ,p denote the “variational” function

ψuλ,p , see (3.15), in the variables (t, θ) , t ∈ R , and θ ∈ (−1 − ω
2 ,

ω
2 + 1) . For every integer

m ≥ 0 , we have

ũλ,p ∈ Km
0,− 1

2

(Q̃). (3.23)

Proof: We apply Theorem 3.18 for γ = 0 . Since uλ,p ∈ V , we have ũλ,p ∈ K0
0,−1/2(Q̃) ,

cf. Remark 3.17 (ii). It remains to check the assumptions on the right-hand side, which is defined

by (3.16). Since it is smooth with compact support, the function ϕ belongs to every weighted

space. On the other hand, thanks to the structure of the functions in Sµ(Q) , we can check that for

p > λ+m− 1 ,

f̃ext ∈ Km−2
m (Q̃ext) and g̃ ∈ K

m− 3

2

1 (G̃).

Theorem 3.18 yields that ũ ∈ Km
0,−1/2(Q̃) in this case. To examine the situation where p is such

that pλ ≤ p ≤ λ+m− 1 , let us write

uλ,p = uλ,p+m − ψ

p+m∑

ℓ=p+1

Kλ,λ−ℓ.

Since p ≥ pλ , we have p+m > λ+m−1 , thus ũλ,p+m ∈ Km
0,−1/2(Q̃) by the first step. Besides,

for all ℓ ≥ p+1 ≥ pλ +1 , the exponent λ− ℓ is < 0 . The structure of the spaces Sµ(Q) allows

to show that for any µ < 0 they are embedded in Km
0,0(Q̃) , thus in Km

0,−1/2(Q̃) , which concludes

the proof.

3.4.2 Proof of the expansion of the profiles at infinity

We can now prove the asymptotic expansion (3.19) of the profile Kλ constructed in Proposi-

tion 3.13. The main tool for this study is the Mellin transform, which is a Fourier-Laplace trans-

form in the variable t whose argument is complex, see [17], [8] or [21].

Let Λ ∈ C ; if ṽint is defined in the strip Q̃int , we set, when meaningful

v̂int(Λ, θ) =

∫

R

e−Λt ṽint(t, θ) dt, θ ∈ Θint := (−ω
2 ,

ω
2 ). (3.24)

The variable θ is a parameter: If Λ = ξ + iη , v̂int(·, θ) is the Fourier transform of t 7→
e−ξt ṽint(·, θ) evaluated at the point η . Similarly, we define a Mellin transform in the exterior

strips:

v̂±ext(Λ, θ) =

∫

R

e−Λt ṽext(t, θ) dt, θ ∈ Θ±
ext := ±(ω

2 ,
ω
2 + 1). (3.25)

The weighted spaces defined above can be characterized by Mellin transform:

∥∥ṽint

∥∥2

Km
γ ( eQint)

≃
∫

R

∥∥v̂int(−γ + iη)
∥∥2

Hm(Θint,|η|+1)
dη, (3.26)
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where
∥∥g

∥∥2

Hm(Θint,ρ)
:=

∑
βt+βθ=m ‖ρβt∂βθg||20,Θint

. Conversely, if the integral

∫

R

∥∥Uint(−γ + iη)
∥∥2

Hm(Θint,|η|+1)
dη

is finite, then Uint is the Mellin transform of a function ṽint ∈ Km
γ (Q̃int) on the line ReΛ = −γ .

The function ṽ is reconstructed by the inversion formula:

ṽint(t, θ) = M−1
−γ(Uint) =

1

2π

∫

R

e(−γ+iη)tUint(−γ + iη, θ) dη.

These results are consequences of the Plancherel identity. The same equivalences hold for the

exterior domain Q̃ext .

We are ready to study the asymptotics of Kλ . Thanks to equality (3.15), it is sufficient to

investigate ψuλ,p for p ≥ pλ :

Proposition 3.20 Let λ belong to S and let p be an integer, p ≥ pλ . Let κ denote the Mellin

transform of the function ũλ,p , cf. Proposition 3.19. There holds:

(i) κ is holomorphic in the half-plane Re Λ > 1
2 .

(ii) Let b be a positive number such that p > λ + b − 1 . The function κ admits a meromorphic

extension in the half-plane Re Λ > −b . The set of its poles is contained in Q− , cf. (3.17).

Proof: (i) Since by Proposition 3.19 the variational term ũλ,p belongs to the weighted space

K0
0,− 1

2

(Q̃) , the equivalence above shows that κint(Λ, θ) is well defined for ReΛ ≥ 0 (remember

ũλ,p vanishes near R = 0 ) and that, similarly, κext(Λ, θ) is defined for ReΛ ≥ 1
2 . Therefore, it

is clear that Λ 7→ κ(Λ, θ) is holomorphic in the domain Π 1

2

, where

Πa = {Λ ∈ C ; ReΛ > a}. (3.27)

(ii) After Mellin transformation the problem satisfied by uλ,p becomes





(Λ2 + ∂2
θ )κint(Λ) = f̂int(Λ − 2) θ ∈ (−ω

2 ,
ω
2 ),

κint(Λ) = κext(Λ) θ = ±ω
2 ,

∂2
θκext(Λ) = f̂ext(Λ) − Λ(Λ − 1)κext(Λ + 2) θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θκext(Λ) = α∂θκint(Λ + 1) − ĝ(Λ) θ = ±ω
2 ,

κext(Λ) = 0 θ = ±(ω
2 + 1),

(3.28)

where the terms f̂int , f̂ext , and ĝ± come from the Mellin transform of the terms defined by (3.16)

and from the truncation. Since p is sufficiently large (p > λ + b − 1 ), this right-hand side is

holomorphic for Re Λ > −b .

We will build the meromorphic extension of κ(Λ) in Πa by descending induction over a ,

starting from a = 1
2 .

If such an extension is known in the half plane Πa , we can define κ̃±ext(Λ) as the unique

solution of the last three equations (whose right-hand side is known). As a second step we put
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κ̃±ext(Λ) in the right-hand side of the second equation of (3.28) and we set κ̃int(Λ) to the solution

of the interior problem given by the first two equations in (3.28), which is possible if Λ /∈ S .

For Λ ∈ Πa , we obviously have κ̃(Λ) = κ(Λ) since both satisfy problem (3.28), which has

a unique solution because it corresponds to the variational problem (P∞) in the Mellin variables.

The function κ̃ is hence an extension of κ . Moreover, κ̃ is meromorphic in Πa−1 , the poles

being inherited from κ by translation by negative integers and coming from the interior problem

(the singular exponents).

Thanks to the Mellin inversion formula, we are able to deduce the asymptotic behavior of uλ,p

from meromorphic properties of its Mellin transform.

Proposition 3.21 Let λ belong to S and let p be an integer, p ≥ pλ . The function uλ,p is

defined through equality (3.15). Let P be a positive number such that p > λ+P −1 . There exist

functions Kλ,µ ∈ Sµ(Q) (cf. Definition 3.8), independent of p , such that

ψuλ,p =
∑

µ∈Q−, µ≥−P

Kλ,µ + u
λ,p
(P )

where u
λ,p
(P )

= O(R−P ) as R→ +∞, (3.29)

and the set of indices Q− defined by (3.17). Moreover the first order derivatives of the remainder

satisfy the decay properties

∂R

(
u

λ,p
(P )

)
= O(R−P−1) and ∂θ

(
uλ,p

(P )

)
= O(R−P ) as R→ +∞, (3.30)

Proof: Like in Proposition 3.20 κ(Λ) is the Mellin transform of ũλ,p ≃ ψuλ,p . Let us fix

α, β /∈ Q− such that α < β and p > λ− α− 1 . For η > 0 , the boundary of the rectangle

α < Re Λ < β and |ImΛ| < η

will be denoted by Gη . By Cauchy’s formula, Proposition 3.20 gives that

∫

Gη

etΛκ(Λ) dΛ = 2iπ
∑

α<µ<β

Res
Λ=µ

etΛκ(Λ),

with residues for µ ∈ Q− . We let η go to infinity in the above identity. The vertical sides of Gη

give inverse Mellin transforms:

∫ η

−η
e(γ+iη)tκ(γ + iη)idη −→ 2iπM−1

γ [κ(Λ)], γ = α, β,

where M−1
γ denotes the inverse Mellin transform along the line ReΛ = γ .

Standard resolvent estimates for the system (3.28) combined with the descending induction

argument of the proof of Proposition 3.20 show that κ(ξ + iη) is rapidly decreasing as |η| → ∞ .

Thus, there is no contribution of the horizontal sides of Gη . In conclusion, we obtain

M−1
β [κ(Λ)] −M−1

α [κ(Λ)] =
∑

α<µ<β

Res
Λ=µ

etΛκ(Λ).

We can check that, for µ ∈ Q− , the function Kλ,µ := ψResΛ=µ e
tΛκ(Λ) belongs to the space

Sµ(Q) . The expansion (3.29) is obtained for β = 1
2 and α = −P − δ for some δ such that

[−P − δ,−P ) ∩ Q− = ∅ .
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It remains to prove that the remainder u
λ,p
(P ) satisfies the decay properties in (3.29)-(3.30). We

set ũ
λ,p
(P )(t, θ) = ψu

λ,p
(P )(X) . Thus ũ

λ,p
(P ) coincides with M−1

α [κ(Λ)] for large t . Since κ(ξ + iη)

is rapidly decreasing as |η| → ∞ , the norms

∫

R

∥∥κ(α+ iη)
∥∥2

Hm(Θ,|η|+1)
dη

are finite for any m > 0 . This shows that ũ
λ,p
(P ) belongs to Km

P+δ(Q̃) for any m . For m > 1 ,

this implies that u
λ,p
(P ) = O(R−P ) as R → ∞ , and, for larger values of m , it proves the decay

properties (3.30).

Proof of Theorem 3.15: Let us fix P > 0 . Let us take p ≥ λ such that λ − p ≤ −P .

According to Theorem 3.13, there holds

Kλ = ψ

p∑

ℓ=0

K̆λ,λ−ℓ + uλ,p.

Proposition 3.21 yields that

uλ,p =
∑

µ∈Q−, µ≥−P

Kλ,µ + O(R−P ).

Therefore we obtain the expansion (3.19) for this P . By virtue of the uniqueness of asymptotic

expansions in powers of R at infinity, the terms Kλ,µ do not depend on P .

The expression of Kλ as a formal series – see (3.20) – follows again from the Cauchy formula:

indeed the terms (Kλ,ν−ℓ)ℓ satisfy the equations (3.10) and (3.9).

The assertion about the degree in θ of K
λ,µ
ext in the layer Qext results from the equality (3.20):

K
λ,µ
ext is a linear combination of terms of the form ψK̆ν,ν−ℓ , with µ = ν−ℓ and ν ≤ λ . According

to Proposition 3.10, the degree in θ of K̆ν,ν−ℓ is ℓ , whence ≤ λ− µ .

3.5 Neumann boundary conditions

In this section, we try to follow the same arguments as before for the Dirichlet boundary conditions.

The variational formulation is the same as above, but due to the absence of the Poincaré inequality,

the previous variational space cannot be used in this case. Nevertheless, it is possible to find a

suitable variational space: Let X be defined as

X =

{
v ; ∇v ∈ L2(Q) and

v

(1 +R) log(2 +R)
∈ L2(Q)

}
, (3.31)

endowed with its natural norm (again R is the distance to the interior corner point O ). Since the

constant functions belong to X , we introduce the quotient space V = X/R . The space V is

clearly a Hilbert space and we will show that the H1 -seminorm is an equivalent norm for V :

Proposition 3.22 The bilinear form a(u, v) =
∫
Q ∇u · ∇v dx is continuous and coercive on V .
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Proof: Only the coercivity needs to be checked. For R > 0 , let BR denote the ball of radius R
centered in O′ (exterior corner point of Q , see Figure 2) and χ a smooth radial cut-off function,

supported in B2 and equal to 1 in B1 .

Let v ∈ X , we denote by 〈v〉 its mean value on B2 ∩Q :

〈v〉 =
1

meas(B2 ∩Q)

∫

B2∩Q
v(x) dx.

By the Poincaré-Wirtinger inequality in the bounded domain B2 ∩ Q , there exists a constant C
such that ∥∥v − 〈v〉

∥∥
0,B2∩Q

≤ C
∥∥∇v

∥∥
0,B2∩Q

,

which gives the following estimate for χ(v − 〈v〉) :

∥∥χ(v − 〈v〉)
∥∥

X
≤ C

∥∥∇v
∥∥

0,Q
, (3.32)

where C is another constant, independent of v . Let then u be defined as u = (1 − χ)(v − 〈v〉) .

If we denote by (ρ, ϕ) the polar coordinates centered in O′ , then u = 0 on the circular arc

corresponding to ρ = 2 . We can use this information to get a Hardy inequality (in this limit case,

it corresponds to a “weighted Poincaré inequality”, see [14]): for any R > 2 ,

∫ ω

0

∫ R

2

|u(ρ, ϕ)|2
ρ2 log2 ρ

ρdρdϕ ≤ C

∫ ω

0

∫ R

2
|∂ρu(ρ, ϕ)|2ρdρdϕ.

Together with (3.32), we obtain the result.

Corollary 3.23 If (1 + R) log(2 + R)f ∈ L2(Qint) and (1 + R)
1

2 log(2 + R)g ∈ L2(G) , with

the compatibility condition (note that the integrals make sense)

∫

Qint

f dx+

∫

G
g dσ = 0, (3.33)

then problem (P∞) admits a unique solution v ∈ V .

With the space V , we get a suitable variational framework which allows us to define unique

solutions for problem (P∞) in the case of Neumann boundary conditions. We will continue to use

X instead of V , i.e. functions instead of equivalence classes modulo constants, but we have to

make sure that elements of the dual space are orthogonal to constants, i.e. satisfy the compatibility

condition (3.33).

Similarly to the Dirichlet case, we start from a singularity sλ (λ > 0 ) of the interior problem

(with Neumann condition on Γ this time). Since it does not belong to the variational space V , we

perform a few algorithmic steps in order to decrease the degree in the variable R at infinity.

Proposition 3.24 Let λ ∈ S ∪ {0} . Let sλ
⋆ denote the extension of sλ (3.3) in Q̆ such that

sλ
⋆ (R, θ) = sλ|θ=±

ω
2
(R) in Q̆±

ext.

We set K̆λ,λ = sλ
⋆ and, for convenience, K̆λ,λ+1 = K̆λ,λ+2 = 0 .
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There exist K̆λ,λ−ℓ ∈ Sλ−ℓ(Q̆) , ℓ = 1, 2, . . . , satisfying the following sequence of equations





∂2
θ K̆

λ,λ−ℓ
ext = −∂2

RK̆
λ,λ−ℓ+2
ext θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θK̆
λ,λ−ℓ
ext = α

R∂θK̆
λ,λ−ℓ+1
int θ = ±ω

2 ,

∂θK̆
λ,λ−ℓ
ext = 0 θ = ±ω

2 ± 1,

(3.34)





∆K̆
λ,λ−ℓ
int = 0 in Qint,

α∂nK̆
λ,λ−ℓ
int =

∫ ±
ω
2 ±1

±
ω
2

∂2
RK̆

λ,λ−ℓ+1
ext (R,ϑ) dϑ for θ = ±ω

2 ,
(3.35)

The exterior part is defined up to a constant, which is determined by the condition K̆
λ,λ−ℓ
ext =

K̆
λ,λ−ℓ
int on Γ .

For each integer p ≥ 0 the partial sum
∑p

ℓ=0 K̆λ,λ−ℓ solves the Neumann problem (P̆∞) with

f̆int = 0, f̆ext = −∂2
R

[
K̆

λ,λ−p
ext + K̆

λ,λ−p+1
ext

]
, ğ = −α∂nK̆

λ,λ−p
int . (3.36)

Proof: Due to the compatibility conditions for Neumann problems, the construction of the terms

K̆λ,µ is not as straightforward as in the Dirichlet case. Let us give a brief description: If K̆λ,λ−ℓ

are constructed for ℓ < k , then consider equations (3.34) for ℓ = k+1 . This is a one-dimensional

Neumann problem (with parameter R ) whose compatibility condition reads

∫ ±
ω
2 ±1

±
ω
2

∂2
RK̆

λ,λ−(k−1)
ext (R,ϑ) dϑ =

α

R
∂θK̆

λ,λ−k
int = ±α∂nK̆

λ,λ−k
int ,

this gives the Neumann data for the interior problem (3.35) for ℓ = k (whose compatibility

condition is fulfilled). As for the Dirichlet case, the interior boundary value problem with data

in Sλ−k−1(Ğ) always has a solution in Sλ−k(Q̆int) . We can then define K̆
λ,λ−k
int ; the condition

K̆
λ,λ−k
ext = K̆

λ,λ−k
int on G completely determines the exterior part.

Here is now the analogue of Theorem 3.13 in the Neumann case.

Theorem 3.25 Let λ ∈ S , λ > 0 , and let pλ be defined by (3.13). There exists uλ,pλ in the

variational space X and, if λ ∈ N , a constant Iλ , such that the sum

Kλ := ψ

pλ∑

ℓ=0

K̆λ,λ−ℓ + uλ,pλ if λ 6∈ N

Kλ := ψ

pλ∑

ℓ=0

K̆λ,λ−ℓ + Iλs0
⋆ + uλ,pλ if λ ∈ N

(3.37)

defines a solution Kλ of problem (P∞) for f = g = 0 , satisfying Kλ
int ∼ sλ as R→ ∞ .

Proof: For any integer q , we define

vλ,q = −ψ
q∑

ℓ=0

K̆λ,λ−ℓ. (3.38)
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By construction, the function vλ,q solves problem (P∞) with

fint = αϕq, (3.39)

fext = ϕq − ψ∂2
R

[
K̆

λ,λ−q
ext + K̆

λ,λ−q+1
ext

]
, (3.40)

g = −ψ α
R∂θK̆

λ,λ−q
int , (3.41)

where ϕq comes from the cut-off; its support is contained in supp(∇ψ) .

For q large enough, i.e. q > λ + 1
2 , the above right-hand sides satisfy the assumptions of

Corollary 3.23. If we are able to verify the compatibility condition (3.33), we can conclude that

there exists uλ,q ∈ X , solving the same problem as vλ,q . Then

Kλ = ψ

q∑

ℓ=0

K̆λ,λ−ℓ + uλ,q

solves problem (P∞) with f = g = 0 ; the statement concerning uλ,p directly follows from the

inclusion Sµ ⊂ X for µ < 0 .

Let us focus on the compatibility condition (3.33). For R > 0 , we define QR as Q ∩ BR ,

where BR denotes the ball of radius R , centered in O . Similarly, GR (resp. GR
ext ) denotes

G ∩BR (resp. Gext ∩BR ). With the help of an integration by parts, we get

Iλ
R :=

∫

QR

f dx+

∫

GR

g dσ = −
∫

Q∩∂BR

∂nvλ,q dσ, (3.42)

the terms on GR and GR
ext vanishing by construction of K̆λ,µ . Thanks to definition (3.38) of

vλ,q , we get the following expression for the integral Iλ
R :

Iλ
R =

M∑

m=1

L∑

ℓ=0

amℓR
λ−m logℓR, (3.43)

with unknown coefficients amℓ . For q large enough, expressions (3.39)–(3.41) show that f and

g have finite integrals over Q and G . Hence, Iλ
R has a finite limit Iλ

∞ as R → +∞ , which

imposes amℓ = 0 for λ−m > 0 or (λ = m and ℓ > 0 ).

If λ is not an integer, we can deduce Iλ
∞ = 0 : This is the expected compatibility condition.

If λ is an integer, Iλ
∞ does not necessarily vanish. But the compatibility condition can be

fulfilled with the help of the logarithmic singularity. Indeed, if we apply the same technique as

above, starting with s0 = logR /∈ X , we obtain I0
∞ = −1 . Hence, for λ ∈ N∗ we do not know

if Iλ
∞ vanishes but

ṽλ,p = −ψ
( p∑

ℓ=0

K̆λ,λ−ℓ + Iλ
∞s0

⋆

)

satisfies the compatibility condition.

Then we can prove by the same tools as in §3.4.1 and §3.4.2 that the Neumann version of

the Kλ satisfies an expansion at infinity like (3.19) with the same set of exponents Qλ (3.18).

At this stage there is essentially no difference between Dirichlet and Neumann external boundary

conditions.
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3.6 Non-homogeneous profile problems

The same techniques apply to the non-homogeneous problem (P∞):

Theorem 3.26 Let λ ∈ R . Under the following assumptions: fint = ψf̆int , fext = ψf̆ext , g = ψğ

with

f̆int ∈ Sλ−2(Q̆int), f̆ext ∈ Sλ(Q̆ext), and ğ ∈ Sλ(Ğ), for Dirichlet b.c.

f̆int ∈ Sλ−2(Q̆int), f̆ext ∈ Sλ−1(Q̆ext), and ğ ∈ Sλ−1(Ğ), for Neumann b.c.

problem (P∞) with Dirichlet or Neumann external boundary conditions admits a solution Wλ

which has an asymptotics at infinity of the form

Wλ = Wλ,λ +
∑

µ∈Qλ(P )

Wλ,µ + O(r−P ) (∀P ∈ N), (3.44)

with Wλ,µ in the space Sµ(Q) of Definition 3.8, for all µ ∈ {λ} ∪ Qλ .

Proof: We have only to check that the algorithmic construction performed in Proposition 3.10

can be started in the situation of a non-zero right-hand side. We still have to solve the series of

problems (3.9)-(3.10) with the initialization W̆λ,λ+1 = W̆λ,λ+2 = 0 . For ℓ = 0 and Dirichlet

b.c., problems (3.9)-(3.10) are now:





∂2
θW̆

λ,λ
ext = f̆ext θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θW̆
λ,λ
ext = ğ θ = ±ω

2 ,

W̆
λ,λ
ext = 0 θ = ±ω

2 ± 1,

and

{
α∆W̆

λ,λ
int = f̆int in Qint,

W̆
λ,λ
int = W̆

λ,λ
ext for θ = ±ω

2 ,

The problem in Q̆ext can be explicitly solved in Sλ(Q̆) . Then the problem in Q̆int is a Dirichlet

problem with boundary data in Sλ(Ğ) and interior data in Sλ−2(Q̆int) . According to [8, Ch.4]

for example, it is solvable in Sλ(Q̆int) .

For Neumann external b.c., we have to take into account the different order in the iterative

algorithm, see Proposition 3.24. The right hand sides f̆ext and ğ then only appear in the equation

for W̆λ,λ−1 , see also the Remark below.

The whole construction and analysis is then similar to that for Kλ .

Remark 3.27 In the case of external Neumann b.c., if f̆ext and ğ satisfy the compatibility condi-

tion

∀R, ğ(R,±ω
2 ) =

∫ ±
ω
2 ±1

±
ω
2

f̆ext(R,ϑ) dϑ

then one can allow f̆ext ∈ Sλ(Q̆ext) and ğ ∈ Sλ(Ğ) in the hypotheses of Theorem 3.26. �

This result will be used for polynomial right hand sides f̆int , that is why we introduce:

Definition 3.28 Let k ∈ N , k ≥ 2 . For any multi-index β = (β1, β2) of length k − 2 we set:

Wk,(β) solution of (P∞) for: f̆int = Xβ
(

= Rk−2 cosβ1 θ sinβ2 θ
)
, f̆ext ≡ 0, ğ ≡ 0.
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The function Wk,(β) has the form (3.44) with λ = k . The first term Wk,k,(β) of its expansion

(3.44) satisfies





∂2
θW̆

k,k,(β)
ext = 0, θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θW̆
k,k,(β)
ext = 0, θ = ±ω

2 ,

W̆
k,k,(β)
ext = 0, θ = ±ω

2 ± 1,

and




α∆W̆

k,k,(β)
int = Xβ in Qint,

W̆
k,k,(β)
int = W̆

k,k,(β)
ext , θ = ±ω

2 .
(3.45)

Remark 3.29

(i) For Neumann external boundary conditions, the profiles Wk,(β) are pertaining to the second

case in (3.37). Thus a term in logR may appear in their expansion (3.44) at infinity (even if
π
ω /∈ Q ), together with lower order terms of the form R−j logkR , j = 1, 2, . . . and k ≤ j .

(ii) It is also possible to introduce profiles solving polynomial right sides for g . There we have to

take into account the different degrees appearing in the Dirichlet and Neumann cases, cf. Remark

3.27. �

4 ε -Expansion in the coated domain with corner

In this section, we reach our initial aim, that is to build an asymptotic expansion in ε for the

solution uε of problem (Pε) with Dirichlet or Neumann external boundary conditions in the case

where Ωint has a corner at the origin O .

4.1 Notations, assumptions, plan

We recall that the Cartesian coordinates with origin O are denoted by x . They are the “slow”

variables in Ωint . The polar coordinates centered at O are denoted by (r, θ) , the arclength along

the interface Γ by t , and the normal coordinate to Γ inside Ωε
ext by s . Note that s is well

defined outside an ε -neighborhood of O .

We still need the cut-off function χ introduced in Definition 1.1, which allows a localization

independent of ε , in the region where Ωε coincides with a sector. In order to avoid non-zero

commutators of χ with the normal derivatives ∂θ and ∂s on Γ , we assume for simplicity that

χ = χ(r) in Ωint and χ = χ(t) in Ωext . (4.1)

We assume that the data of problem (Pε) are smooth and, to avoid unnecessary difficulties, that

fext is zero near the corner, that is

fint ∈ C∞(Ωint), g ∈ C∞(Γ), and fext ∈ C∞(Ωε
ext), fext

∣∣
V ′ ≡ 0. (4.2)

The construction of ε -expansions for the solution uε of problem (Pε) is performed with ex-

ternal Dirichlet boundary conditions. With the results of §3.5 at hand, the Neumann case can be

treated similarly.

The study of the Dirichlet case is organized in four parts. First we start like for the smooth

case and draw the principles of the special treatment of singularities (§4.2). Then we construct the

first terms in the asymptotics (§4.3) before we reach the expression of general terms (§4.4). We

end with alternative expansions (§4.5) and the Neumann case (§4.6).
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4.2 A recursive approach of the ε -expansion

Let us first try to start with the algorithm we have already used for a smooth domain. It consists in

solving equations (2.6) and (2.7) for all integers n ≥ 0 .

For n = 0 , we find U0
ext = 0 and that u0

int solves the homogeneous Dirichlet problem (P0)

with source term fint .

For n = 1 , U1
ext is explicitly given by U1

ext = (S − 1)
[
α∂nu

0
int|Γ − g

]
. Its trace on Γ is

g − α∂nu
0
int and has to be inserted as a Dirichlet data into the problem defining u1

int . But, due

to the corner, we cannot ensure a sufficient regularity: A singularity in r
π
ω can arise in u0

int , cf.

(3.4). Thus ∂nu
0
int|Γ is like r

π
ω
−1 , which does not define an H1/2(Γ) -function as soon as π

ω < 1 ,

and the problem defining u1
int is then not solvable in H1(Ωint) .

Then our technique consists in splitting u0
int according to (3.4), into a regular and a singular

part which are handled separately. The singular part is a linear combination of the singular func-

tions sλ , see (3.2). Taking advantage of Theorem 3.15, we replace each sλ(x) = ελsλ(x
ε ) by its

counterpart ελKλ(x
ε ) solution of the homogeneous transmission problem.

Thus we are left with a residual transmission problem (Pε) associated with the regular part of

the expansion of u0 and a finite number of problems (Pε) generated by the localized differences

χ(x)
(
ελKλ(x

ε ) − sλ
0(x)

)
. The structure of these latter terms is given by the expansion (3.19) of

Kλ , resulting in smaller (in the ε -scale) right hand sides, smooth and identically zero near the

corner. However, the data in Ωε
ext depend on ε in a special way. For this reason, we will consider

broader assumptions than (4.2) concerning the generic right hand side in Ωε
ext , which we now

denote by fε,ext :

fε,ext =
∑

ℓ∈N, finite

ε−2−ℓf−ℓ
ext with

{
f−ℓ
ext ∈ C∞(Ωε

ext), f
−ℓ
ext

∣∣
V ′ ≡ 0, and

∂k
nf

−ℓ
ext

∣∣
Γ
≡ 0, k = 0, . . . , ℓ− 1.

(4.3)

Our strategy is constructive: Instead of starting from a general multi-scale Ansatz and trying to

identify terms, we construct first terms in such a way that the corresponding remainder is solu-

tion of problem (Pε) with new data fint and fε,ext of the form fint =
∑
ενf ν

int and fε,ext =∑
ενf ν

ε,ext , where ν spans a finite set of positive exponents, and f ν
int , f ν

ε,ext have the same struc-

ture as the data of the initial problem (Pε). After that point is reached, the general expansion

becomes clear.

4.3 The first terms of the ε -expansion in the Dirichlet case

From now on, we assume that the exterior right-hand side fε,ext has the structure (4.3), that will

show to be stable through the recursive construction. We emphasize that such a fε,ext will not

lead to negative powers in the expansion of uε , see Corollary 2.4.

Additionally, in order to make the exposition slightly simpler1 we assume that fint and g have

a zero Taylor expansion at the corner O :

{
fint ∈ C∞(Ωint), ∂

β
xf(O) = 0 (∀β ∈ N2) and

g ∈ C∞(Γ), ∂j
rg(0,±ω

2 ) = 0 (∀j ∈ N).
(4.4)

1The general case (4.2) is considered in §4.4.2, by treating separately the Taylor expansion of fint at O . By the

same techniques, one could also treat non-vanishing Taylor expansion of g .



G. Caloz et al. – Asymptotic expansion in a polygonal domain with thin layer. 33

Our construction consists, for each term which is a solution of a Dirichlet problem in Ωint ,

in considering its splitting into (flat) regular and singular parts. As we know from Theorem 3.3,

this requires to fix in advance a regularity index K . For each term this regularity index is chosen

according to its rank in the ε -expansion. For the beginning we need

• A maximal regularity index K > 0 , K 6∈ S .

• A target precision N > 0 in ε , with the aim of constructing an ε -expansion with a remain-

der of order εN ,

We will see in the course of the construction that K has eventually to be chosen (at least) larger

than N + 3
2 .

4.3.1 Terms of order 0

In the case of exterior data fε,ext satisfying (4.3), we first solve the exterior equation:





∂2
SU

0
ext =

∑
ℓ

1
ℓ!∂

ℓ
nf

−ℓ
ext(t, 0)S

ℓ for 0 < S < 1,

∂SU
0
ext = 0 for S = 0,

U0
ext = 0 for S = 1.

(4.5)

Since the functions f−ℓ
ext vanish in a neighborhood of O , the extension by zero of the solution of

problem (4.5) uniquely defines a function U0
ext in the entire layer Ωε

ext . Then u0
int solves (P0)

with f = fint and h = U0
ext|Γ .

Since fint and U0
ext|Γ are smooth and infinitely flat near the corner, we can apply Theorem 3.3

to obtain the splitting:

u0
int = u0,K

int + χ
∑

λ∈S(K)

c0λ sλ(r, θ) (c0λ ∈ R), (4.6)

where u0,K
int = O(rK) near the corner O and, more precisely, u0,K ∈ H∞

−K−1(Ωint) . In Ωε
ext ,

we do not modify U0
ext and set u0,K

ext (t, s) = U0
ext(t,

s
ε) – notice here that the equality makes sense

since U0
ext vanishes in a neighborhood of O , see (4.23). Thus we have defined u0,K in the entire

domain Ωε .

The main idea in our construction is, instead of considering (u0
int, U

0
ext) as a first term, to mod-

ify it by substituting the sλ(x) occurring in its singular part with the profiles ελKλ(x
ε ) , defining a

new term, ũ0
ε :

ũ0
ε(x) = u0,K(x) + χ(x)

∑

λ∈S(K)

ελ c0λ Kλ
(

x
ε

)
(x ∈ Ωε). (4.7)

We recall that rapid variables x
ε are defined by the homothecy centered in the interior corner point

O with ratio ε−1 and that sλ
0 denotes the extension of sλ by 0 in the exterior part.

The arguments in favor of considering (4.7) instead (4.6) rely on Theorem 3.15:

• Since Kλ solves the homogeneous problem (P∞), Kλ
(

x
ε

)
solves problem (Pε) with zero

data in the neighborhood V of O ,
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• Since ελsλ(x
ε ) = sλ(x) , we find

ελ Kλ
(

x
ε

)
− sλ

0 (r, θ) = O(ε) for x 6∈ V ′.

Thus we take ũ0
ε as our starting point for the expansion of uε , and define the first remainder as

r̃1ε = uε − ũ0
ε (4.8)

4.3.2 Further decomposition of the first remainder

We are going to prove that the first remainder r̃1ε is solution of problem (Pε) with data which can

be expanded in positive powers of ε :

Let us set w0
ε = ũ0

ε − u0 in Ωint and Ωε
ext , that is:

w0
ε = χ

∑

λ∈S(K)

ελ c0λ

[
Kλ − sλ

0

](
x
ε

)
. (4.9)

Then r̃1ε = uε − u0 −w0
ε and the problem satisfied by r̃1ε is





α∆r̃1ε,int = −α∆w0
ε,int in Ωint,

∆r̃1ε,ext = −∆w0
ε,ext + (fε,ext − f0

ε,ext) in Ωε
ext,

r̃1ε,int − r̃1ε,ext = 0 on Γ,

α∂nr̃
1
ε,int − ∂nr̃

1
ε,ext = −(α∂nw

0
ε,int − ∂nw

0
ε,ext) + g − α∂nu

0
int on Γ,

r̃1ε,ext = 0 on Γε
ext.

(4.10)

Here f0
ε,ext =

∑
ℓ ε

−ℓ−2 1
ℓ!∂

ℓ
nf

−ℓ
ext(t, 0) s

ℓ . Moreover, thanks to (4.1), (4.6) and (4.9) we find that

− (α∂nw
0
ε,int − ∂nw

0
ε,ext) + g − α∂nu

0 = g − α∂nu
0,K on Γ. (4.11)

Here we have taken advantage of the fact that Kλ satisfies α∂nKλ
int − ∂nKλ

ext = 0 .

Comparing then problem (4.10) with the problem (2.10) satisfied by the standard remainder

uε − u0 , we find the presence of ∆w0
ε inside Ωint and Ωε

ext instead of 0 , and α∂nu
0,K
int instead

of α∂nu
0
int on Γ . Thus we have gained regularity on Γ , but, in return, have to evaluate ∆w0

ε , see

Lemma 4.2. New sets of indices have now to be introduced:

Definition 4.1 Let U be the infinite set of non negative numbers

U = N ∪
{
µ = hπ

ω + p ; p ≥ 0, h ≥ 2
}
, (4.12)

and for any N > 0 , let U(N) = U ∩ [0, N ] .

Moreover we denote the subset of the positive elements of U by U∗ :

U∗ = U \ {0} and U∗(N) = U(N) \ {0}. (4.13)

Lemma 4.2 In Ωint and Ωε
ext , for all number N > 0 the residual ∆w0

ε can be written as





∆w0
ε,int =

∑

ν ∈U∗(N)

ενk0,ν
ε,int + k0

rem(ε)
∣∣
Ωint

∆w0
ε,ext =

∑

ν ∈U∗(N)

ενk0,ν
ε,ext + k0

rem(ε)
∣∣
Ωext

with
∥∥k0

rem(ε)
∥∥

0,Ωε = O(εN ). (4.14)
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The functions k0,ν
ε,int and k0,ν

ε,ext are C∞ and vanish near the corner point O . Their behavior in ε
is the following





k0,ν
ε,int = k0,ν

int [log ε] i.e. possible polynomial dependence in log ε,

k0,ν
ε,ext =

∑

ℓ∈N, finite

ε−2−ℓ k0,ν ;−ℓ
ext [log ε] with ∂k

nk
0,ν ;−ℓ
ext

∣∣
Γ
≡ 0, k = 0, . . . , ℓ− 1. (4.15)

Remark 4.3 The degree in log ε of k0,ν
ε is ≤ ν . Moreover, if π

ω /∈ Q , no logarithm appears. �

Proof: From the definition (4.9) of w0
ε , and since, by construction ∆Kλ = ∆sλ

0 = 0 inside

Qint and Qext , we find inside Ωint and Ωε
ext

∆w0
ε =

∑

λ∈S(K)

c0λ ε
λ

(
2∇χ · ∇

[(
Kλ − sλ

0

)(
x
ε

)]
+ ∆χ

(
Kλ − sλ

0

)(
x
ε

))
.

We now use the expansion (3.19) of Kλ given in Theorem 3.15 with P = N − λ :

∆w0
ε =

∑

λ∈S(K)

c0λ ε
λ

∑

µ∈Qλ(N−λ)

(
2∇χ · ∇

[
Kλ,µ

(
x
ε

)]
+ ∆χ Kλ,µ

(
x
ε

))
+ k0

rem(ε), (4.16)

with a remainder k0
rem(ε) .

(i) In Ωint each term K
λ,µ
int satisfies an homogeneity property modulo logarithms, cf. (3.8):

K
λ,µ
int

(
x
ε

)
= ε−µFλ,µ[log ε](x) and ∇

(
K

λ,µ
int

(
x
ε

))
= ε−µ∇Fλ,µ[log ε](x),

Thus equation (4.16) becomes in Ωint

∆w0
ε =

∑

λ∈S(K)

∑

µ∈Qλ(N−λ)

c0λ ε
λ−µ

(
2∇χ · ∇Fλ,µ[log ε] + ∆χFλ,µ[log ε]

)
+ k0

rem(ε), (4.17)

where the remainder k0
rem(ε) satisfies, thanks to (3.29)-(3.30) and to assumption (4.1):

k0
rem(ε) =

∑

λ∈S(K)

ελ c0λ

[
2ε−1∇χ · ~F

(
x
ε

)
+ ∆χF

(
x
ε

)]
, with

F (X) = O

(
|X|λ−N

)
and ~F (X) = O

(
|X|λ−N−1

)
when |X| → +∞.

To estimate the norm of this remainder, we notice that its support is contained in an annulus defined

by 0 < r1 < |x| < r2 . Hence

∥∥k0
rem(ε)

∥∥2

0,Ωint

≤ O(1)

∫ r2

r1

∣∣∣∣
t

ε

∣∣∣∣
−2N

t dt = O(ε2N ).

Finally, we check that the set of the ν = λ−µ when λ ∈ S(K) and µ ∈ Qλ(N−λ) is contained

in the set U∗(N) . We reorder the sum (4.17) according to the values ν of λ − µ , defining the

functions k0,ν
ε,int , and we obtain (4.14) in Ωint .
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(ii) In Ωext each term K
λ,µ
ext satisfies

K
λ,µ
ext

(
x
ε

)
= ε−µ

[λ−µ]∑

ℓ=0

ε−ℓ Fλ,µ ; ℓ[log ε](t) sℓ

and a similar formula for its gradient. Again, we reorder the sum (4.17) according to the values

ν of λ− µ+ 2 , defining the functions k0,ν
ε,ext . The above splitting of K

λ,µ
ext

(
x
ε

)
yields expression

(4.15) for k0,ν
ε,ext . The estimate of the remainder is similar.

Taking advantage of Lemma 4.2, we come back to problem (4.10) solved by the first remainder

r̃1ε and prove:

Lemma 4.4 The first remainder r̃1ε (4.8) satisfies (for all N > 0 )

r̃1ε =
∑

ν ∈U∗(N)

ενv0,ν
ε [log ε] + r0,1

ε + O(εN ), (4.18)

where v0,ν
ε [log ε] is defined as the solution of the problem (Pε) with data

fint = αk0,ν
int [log ε], fext = k0,ν

ext[log ε] + ε−1(fε,ext − f0
ε,ext), if ν = 1,

fint = αk0,ν
int [log ε], fext = k0,ν

ext[log ε], if ν 6= 1,

and zero boundary data on Γ . The new remainder r0,1
ε is solution of





α∆r0,1
ε,int = 0 in Ωint,

∆r0,1
ε,ext = 0 in Ωε

ext,

r0,1
ε,int − r0,1

ε,ext = 0 on Γ,

α∂nr
0,1
ε,int − ∂nr

0,1
ε,ext = g − α∂nu

0,K
int on Γ,

r0,1
ε,ext = 0 on Γε

ext.

Proof: The problem solved by r0,1
ε,int directly results from the definitions. We only need to

check that the final remainder is O(εN ) : it is produced by k0
rem , cf. (4.14), whose contribution is

of order εN thanks to the a priori estimate (1.3).

As a corollary, since uε = ũ0
ε + r̃1ε , gathering formulas (4.7) and (4.18), we find

Corollary 4.5 The solution uε of problem (Pε) with assumptions (4.3)-(4.4) on the data satisfies

for all N > 0

uε = u0,K + χ
∑

λ∈S(K)

ελ c0λ Kλ
(

x
ε

)
+

∑

ν ∈U∗(N)

ενv0,ν
ε [log ε] + r0,1

ε + O(εN ), (4.19)

where the terms v0,ν
ε [log ε] and the new remainder r0,1

ε are solutions of problems (Pε) given in

Lemma 4.4.
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By construction, ε−1(fε,ext−f0
ε,ext) satisfies assumption (4.3), and so do the terms k0,ν

ext[log ε] ,

see (4.15). Thus, each term v0,ν solves a problem (Pε) with a right-hand side satisfying the same

conditions as the original one, which shows that v0,ν reproduces the same structure (4.19) as uε :

ενv0,ν
ε [log ε] = ενuν,K−ν[log ε] + χ

∑

λ∈S(K−ν)

εν+λ cνλ[log ε]Kλ
(

x
ε

)

+
∑

ν′ ∈U∗(N−ν)

εν+ν′

vν,ν′

ε [log ε] + ενrν,1
ε + O(εN ). (4.20)

Note that the equality U + U = U ensures that the exponents generated by ενv0,ν
ε for ν ∈ U

remain in U .

4.3.3 Terms of order 1

To continue the expansion construction, the only term we need to study is the new remainder at

order 1 , r0,1
ε .

To explore the content of r0,1 , applying the formulas of the smooth case, cf. Proposition 2.3,

we define u1
int as the solution of the Dirichlet problem

{
α∆u1

int = 0 in Ωint,

u1
int = −α∂nu

0,K
int |Γ + g on Γ.

Since u0,K
int belongs to the weighted space H∞

−K−1(Ωint) , the normal trace ∂nu
0,K belongs to

H∞
−K+1/2(Γ) , and the above Dirichlet problem in Ωint has a solution which can be itself split

according to Theorem 3.3

u1
int = u1,K−1

int + χ
∑

λ∈S(K−1)

c1λ sλ(r, θ) with u1,K−1
int ∈ H∞

−K(Ωint), (4.21)

if we assume that K − 1 6∈ S . We note that u1,K−1
int = O(rK−1) .

According to the formulas for the regular case, we define U1
ext(t, S) = U1,K−1

ext (t, S) by

U1,K−1
ext (t, S) = (S − 1)

{
α∂nu

0,K
int |Γ − g

}
(t) for (t, S) ∈ Γ × [0, 1], (4.22)

which does not make sense in the entire layer Ωε
ext . Since u0,K

int does not identically vanish in

any neighborhood of O , we have to use the cut-off x 7→ ψ
(

x
ε

)
, cf. Definition 3.5, to define

u1
ext = u1,K−1

ext in an unambiguous way:

u1,K−1
ext = ψ

(
x
ε

)
U1,K−1

ext (t, S) = ψ
(

x
ε

)
(S − 1)

{
α∂nu

0,K
int |Γ − g

}
(t). (4.23)

Then, as a continuation of Lemma 4.4, we state

Lemma 4.6 The remainder r0,1
ε in (4.19) can be split in

r0,1
ε = εu1,K−1 + χ

∑

λ∈S(K−1)

ε1+λ c1λ[log ε]Kλ
(

x
ε

)
+

∑

ν ∈U∗(N−1)

ε1+νv1,ν
ε [log ε]

+ r0,2
ε + O

(
εmin{K−1,N}

)
, (4.24)
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where the v1,ν
ε [log ε] solve problem (Pε) with data satisfying conditions (4.2)-(4.3) and the resid-

ual term r0,2
ε is solution of:





α∆r0,2
ε,int = 0 in Ωint,

∆r0,2
ε,ext = −ψ(x

ε ) R1
εU

1,K−1
ext in Ωε

ext,

r0,2
ε,int − r0,2

ε,ext = 0 on Γ,

α∂nr
0,2
ε,int − ∂nr

0,2
ε,ext = −εα∂nu

1,K−1
int on Γ,

r0,2
ε,ext = 0 on Γε

ext,

where R1
ε pertains to the expansion of ∆ in curvilinear coordinates around Γ , see (2.2).

Proof: The sum of the second and the third block on the right hand side of (4.24) is constructed

so as to contribute O(εN ) data for problem (Pε), therefore generating a remainder of the same

order O(εN ) . Combining formulas for r0,1
ε , u1,K−1 and r0,2

ε , we find that (4.24) holds with an

additional term pε , solution of the problem





α∆pε,int = 0 in Ωint,

∆pε,ext = −ε
[
∆, ψ(x

ε )
]
u1,K−1

ext in Ωε
ext,

pε,int − pε,ext = 0 on Γ,

α∂npε,int − ∂npε,ext =
(
1 − ψ(x

ε )
)
(g − α∂nu

0,K
int ) on Γ,

pε,ext = 0 on Γε
ext,

where
[
∆, ψ(x

ε )
]

denotes the commutator of ∆ with the multiplication by ψ(x
ε ) . Making use of

the fact that the support of g does not intersect the support of 1−ψ(x
ε ) and that u0,K belongs to

the weighted space H∞
−K−1(Ωint) , ensuring a behavior in O(rK−1) for ∂nu

0,K , we check:

∥∥ε
[
∆, ψ(x

ε )
]
u1,K−1

ext

∥∥
0,Ωε

ext

= O
(
εK−1

)
and

∥∥(1 − ψ(x
ε ))(g − α∂nu

0,K
int )

∥∥
0,Γ

= O(εK− 1

2 ).

A priori estimate (1.3) then yields that
∥∥pε

∥∥
1,Ωε = O(εK−1) .

We note that the number K can be slightly shifted upwards so that the set S(K) remains

unchanged, but guaranteeing that u0,K is a little flatter, so that our remainder can be written as

O(εK−1) .

4.4 Complete ε -expansions

4.4.1 Data with zero Taylor expansion at the corner point

The above construction of the first terms in the asymptotic expansion of the solution uε of (Pε)

can be extended to any order. Only two kinds of terms appear in this expansion:

• The “flat” terms uν,K−ν which have a similar structure as the terms in the expansion (2.8)

of the smooth case. They are linked with each other by the formulas (2.13) and (2.15) of

the smooth case. Their exterior parts are functions of the semi-scaled variables (t, ε−1s)
whereas their interior parts are functions in the “slow” variable x . They vanish at the corner

O like a O(rK−ν) .
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• The profiles Kλ which take into account the singular behavior of uε near the corner point

and involve the scaled variable x
ε .

We recall that χ and ψ are cut-off functions respectively equal to 1 and 0 in a neighborhood

of the corner point O . The notation [log ε] marks a polynomial dependence with respect to log ε .

Theorem 4.7 Let uε be solution of (Pε) with data satisfying (4.3)-(4.4). Let K > 0 be a number

such that K,K − 1, . . . ,K − [K] do not belong to the set of singular exponents S , and S(K)
denote S ∩ (0,K) . Let N > 0 be a number such that N + 3

2 < K . We recall from Definition

4.1 that U(N) denotes U∩ [0, N ] with U = N∪
{
µ = hπ

ω + p ; p ≥ 0, h ≥ 2
}

. Then, uε admits

the following asymptotic expansion:

uε,int =
∑

ν∈U(N)

ενuν,K−ν
int [log ε] + χ(x)

∑

ν∈U(N)

∑

λ∈S(K−ν)

cνλ[log ε] εν+λKλ
int

(
x
ε

)
+ rN

ε,int (4.25)

uε,ext = ψ
(

x
ε

) ∑

ν∈U(N)

ενUν,K−ν
ext

(
t, s

ε

)
[log ε] + χ(x)

∑

ν∈U(N)

∑

λ∈S(K−ν)

cνλ[log ε] εν+λKλ
ext

(
x
ε

)

+ rN
ε,ext (4.26)

with a remainder rN
ε satisfying the estimates

∥∥rN
ε

∥∥
1,Ωint

+
√
ε
∥∥rN

ε

∥∥
1,Ωext

= O(εN ). (4.27)

Moreover, uν,K−ν
int and Uν,K−ν

ext vanish as r → 0 according to

Uν,K−ν
ext = O(rK−ν) and uν,K−ν

int = O(rK−ν)

– more precisely, uν,K−ν
int ∈ H∞

−1−K+ν(Ωint) . Finally Uν,K−ν
ext is polynomial in the variable S .

Proof: We continue the procedure initiated in Lemmas 4.4 and 4.6, that is, we expand r0,2
ε

in (4.24) as r0,1 before, but leave the other terms unexpanded, and so on. The successive terms

along this “main branch” are given recursively for n = 1, . . . , N + 1 by:

• un
int is the solution of problem (P0) with fint = 0 and the Dirichlet data

hn = gng + h1un−1,K−n+1
int |Γ + . . . + hnu0,K

int |Γ,

compare with (2.13),

• un
int is split in

un
int = un,K−n

int + χ
∑

λ∈S(K−n)

cnλ sλ(r, θ) with un,K−n
int ∈ H∞

−1−K+n(Ωint),

defining the “flat” part un,K−n
int

• un,K−n
ext is defined as

un,K−n
ext = ψ

(
x
ε

)
Un,K−n

ext where Un,K−n
ext = ang + b1un−1,K−n+1

int + . . .+ bnu0,K
int

compare with (2.15),
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• The remainder r0,n+1 is solution of:




α∆r0,n+1
ε,int = 0 in Ωint,

∆r0,n+1
ε,ext = −ψ(x

ε ) εn−1
(
R1

εU
n,K−n
ext + . . .+ Rn

εU
1,K−1
ext

)
in Ωε

ext,

r0,n+1
ε,int − r0,n+1

ε,ext = 0 on Γ,

α∂nr
0,n+1
ε,int − ∂nr

0,n+1
ε,ext = −εnα∂nu

n,K−n
int on Γ,

r0,n+1
ε,ext = 0 on Γε

ext,

compare with the remainder of the smooth case (2.10).

With these constructions, we obtain expansions of uε of the following form:

uε = u0,K + εu1,K−1 + . . .+ εnun,K−n + χ

n∑

ℓ=0

∑

λ∈S(K−ℓ)

εℓ+λ cℓλ[log ε]Kλ
(

x
ε

)

+
n∑

ℓ=0

∑

ν ∈U∗(N−ℓ)

εℓ+νvℓ,ν
ε [log ε] + r0,n

ε + O
(
εmin{K−1,N}

)
. (4.28)

We have to estimate the “last” remainder with the help of the a priori estimate (1.3). Like for the

smooth case, if we want to have a remainder in O(εN ) , we have first to estimate the remainder

r0,N+2 at the rank N + 2 . Since K is larger than N + 3
2 , the trace of ∂nu

N+1,K−N−1
int on Γ

belongs to L2(Γ) . Therefore we can prove like in the smooth case that

∥∥r0,N+2
ε

∥∥
1,Ωε ≤ C εN+ 1

2 .

Each vℓ,ν
ε in (4.28) can be expanded in a similar way, thus generating other “branches” suc-

cessively. Each of these branches starts with a common factor of εν , ν > 0 . This shows that

this recursive procedure terminates after a finite number of steps. We gather everything and con-

clude similarly to the smooth case by subsumming into the final remainder rN
ε all the terms of the

asymptotics with powers ν > N of ε .

4.4.2 Data with non-zero Taylor expansion at the corner point

Using the profiles Wk,(β) introduced in Definition 3.28 we may consider general C∞ functions

for fint , without condition on their Taylor expansion.

Corollary 4.8 Under the general assumptions (4.2), we still assume that the Taylor expansion of

g at O is zero. Let K > 0 be a non-integer number such that K,K − 1, . . . ,K − [K] do not

belong to S . Let N > 0 be a number such that N + 3
2 < K . Then uε , solution of (Pε), has an

expansion similar to (4.25) with extra terms due to the Taylor part of degree [K]− 2 of fint . The

interior expansion writes

uε,int =
∑

ν∈T(N)

ενuν,K−ν
int [log ε] + χ(x)

∑

ν∈T(N)

∑

λ∈S(K−ν)

cνλ[log ε] εν+λKλ
int

(
x
ε

)

+ χ(x)

[K]∑

k=2

∑

|β|=k−2

∂βfint(O)

β1!β2!
εk W

k,(β)
int

(
x
ε

)
+ rN

ε,int. (4.25’)
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The new index set T(N) is defined as T ∩ [0, N ] where

T = U ∪
{

π
ω + q; q ∈ N, q ≥ 1

}
.

The exterior part uε
ext has a structure as in (4.26), with new terms corresponding to those present

in (4.25’). The remainder rN
ε satisfies the estimates (4.27).

Proof: We first split fint into a Taylor part at O and a remainder, flat at the order [K] − 2

fint = χ(x)

[K]∑

k=2

∑

|β|=k−2

∂βfint(O)

β1!β2!
xβ1xβ2 + f (K)

rem , with f (K)
rem ∈ H∞

1−K(Ωint),

Note that the remainder satisfies the assumption on the right hand side in Theorem 3.3.

Let us denote 1
β1!β2!

∂βfint(O) by dβ for short. Then we define vε and wε by

vε = uε − χ(x)

[K]∑

k=2

∑

|β|=k−2

dβ ε
k Wk,(β)

and, in a similar way to (4.9)

wε = χ(x)

[K]∑

k=2

∑

|β|=k−2

dβ ε
k

[
Wk,(β) − Wk,k,(β)

](
x
ε

)
.

Using (3.45), we find that the function vε solves the following problem of type (Pε), similar to

(4.10): 



α∆vε,int = −α∆wε,int + f (K)
rem in Ωint,

∆vε,ext = −∆wε,ext + fε,ext in Ωε
ext,

vε,int − vε,ext = 0 on Γ,

α∂nvε,int − ∂nvε,ext = g on Γ,

vε,ext = 0 on Γε
ext.

(4.29)

The right hand side of (4.29) is the sum of data satisfying (4.2)-(4.3) and of data similar to those

investigated in Lemma 4.2: We find for ∆wε,int and ∆wε,ext expansions like in (4.14), involving

the set of indices T∗(N) := T(N) \ {0} instead of U∗(N) .

Remark 4.9 (i) If fint vanishes up to the order [K] − 2 in O , i.e. if

∂βfint(O) = 0, ∀β, |β| ≤ [K] − 2

then expansion (4.25) is still valid.

(ii) We may cut off the “slow” terms uν,K−ν
int in (4.25) or (4.25’) by ψ(x

ε ) . Since uν,K−ν
int is “flat”

like rK−ν , we only produce a new contribution of order O(εK) to the remainder which, thus, still

satisfies the estimates (4.27).

(iii) The terms W̆k,k−ℓ,(β) composing the asymptotics at infinity of the profiles Wk,(β) are mainly

polynomial functions. They are all polynomial if k, k − 1, . . . , 0 are not in S . Thus the Wk,(β)

take possible Taylor expansion of the solution into account. �
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4.5 Alternative ε -expansions

In this section we answer the two questions:

• Is it possible to have K = N in expansions (4.25) or (4.25’) ?

• Is it possible to construct an asymptotic expansion independently of a threshold fixed in

advance?

To answer (positively) to both questions, we start from expansions (4.25) or (4.25’), we split up

some of the terms Kλ and redistribute their pieces to the terms in slow variables. We base our

analysis upon the following definition and result:

Definition 4.10 Let λ ∈ S , λ > 0 . Relying on (3.14), we define on Q the profile Yλ as

Yλ
int = Kλ

int −
∑

0≤ ℓ < λ

K̆
λ,λ−ℓ
int and Yλ

ext = Kλ
ext − ψ

∑

0≤ ℓ < λ

K̆
λ,λ−ℓ
ext . (4.30)

We are going to prove

Proposition 4.11 Let λ ∈ S , λ > 0 . The profile Yλ satisfies the estimates as ε→ 0

∥∥χ(x)Yλ(x
ε )

∥∥
1,Ωint

+
√
ε
∥∥χ(x)Yλ(x

ε )
∥∥

1,Ωext

=

{
O(1) if λ 6∈ N

O(| log ε|λ) if λ ∈ N.
(4.31)

We prove this proposition as a particular case of the more general statement, which will also

yield (1.7) as another particular case:

Lemma 4.12 Let λ ∈ S , λ > 0 . For 0 ≤ ν ≤ λ , we set

Yλ,ν = Kλ − ψ
∑

0≤ ℓ < λ−ν

K̆λ,λ−ℓ. (4.32)

There holds the energy estimate

∥∥χ(x)Yλ,ν(x
ε )

∥∥
1,Ωint

+
√
ε
∥∥χ(x)Yλ,ν(x

ε )
∥∥

1,Ωext

= O
(
ε−ν | log ε|[λ−ν]

0

)
, (4.33)

where [λ− ν]
0

= λ− ν if λ− ν ∈ N and [λ− ν]
0

= 0 if not.

Proof: Thanks to (3.19) there holds for all P > 0

Yλ,ν = ψ
∑

µ∈Qλ(P ), µ≤ ν

K̆λ,µ + Y
λ,ν
(P ),

where the remainder Y
λ,ν
(P ) is a O(R−P ) and satisfies also the estimates (3.30), whence

∥∥χ(x)Y
λ,ν
(P )(

x
ε )

∥∥
1,Ωint

+
√
ε
∥∥χ(x)Y

λ,ν
(P )(

x
ε )

∥∥
1,Ωext

= O(1).

Let us choose P < π
ω and P < [λ] + 1 − λ . Thus Qλ(P ) ⊂ [0, λ] , cf. Definition 3.14. The

degree of K̆λ,µ as a polynomial in logR is ≤ λ− µ . We check that for µ ≥ 0 :

∥∥χ(x)ψ(x
ε )K̆λ,µ(x

ε )
∥∥

1,Ωint

+
√
ε
∥∥χ(x)ψ(x

ε )K̆λ,µ(x
ε )

∥∥
1,Ωext

= O(ε−µ| log ε|[λ−µ]).

Then estimate (4.33) is a consequence of the last three equalities.
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The proof of Proposition 4.11 is obtained by taking ν = 0 in Lemma 4.12 (note that the

absence of the cut-off function ψ(x
ε ) in the definition of Yλ

int does not modify the estimates).

The proof of (1.7) is obtained with ν = λ .

Theorem 4.13 Theorem 4.7 holds with K = N , i.e., we assume properties (4.3)-(4.4) on the data

and choose a number N > 0 such that N,N − 1, . . . , N − [N ] do not belong to S . Then uε ,

solution of (Pε), admits the asymptotic expansion (4.25) with K = N with the estimate (4.27) on

the remainder.

Proof: We start from (4.25) for a K > N + 3
2 . We want to get rid of the profiles Kλ appearing

in (4.25)-(4.26) for λ > N − ν . Thus, for each ν ∈ U(N) and λ ∈ S(K − ν) \ S(N − ν) we

split Kλ into two blocks according to

χ(x)εν+λKλ
int

(
x
ε

)
= χ(x)εν+λYλ

int

(
x
ε

)
+ χ(x)

∑

0≤ ℓ < λ

εν+λK̆
λ,λ−ℓ
int

(
x
ε

)
,

in Ωint and accordingly in Ωε
ext , and redistribute them into the remainder and the slow terms,

respectively:

1. Since by definition ν + λ > N , Proposition 4.11 yields that χεν+λYλ
(

x
ε

)
contributes to

the remainder.

2. Thanks to their quasi-homogeneous structure the K̆λ,λ−ℓ can be converted into slow variable

functions. We can write:

χ(x)εν+λK̆
λ,λ−ℓ
int (x

ε ) = χ(x)
∑

q≥0 finite

εν+λ−λ+ℓ logq ε s
λ,λ−ℓ ; q
int (x) in Ωint

χ(x)ψ(x
ε )εν+λK̆

λ,λ−ℓ
ext (x

ε ) = χ(x)ψ(x
ε )

∑

q≥0 finite

εν+λ−λ+ℓ logq ε s
λ,λ−ℓ ; q
ext (t, s

ε) in Ωext.

We gather the above terms according to the value of ν ′ = ν+ℓ and we add them to uν′,K−ν′

in order to obtain uν′,N−ν′
. Note that the sλ,λ−ℓ ; q are homogeneous of degree λ− ℓ , and

since λ > N − ν , they are of order O(rN−ν′
) as r → 0 .

This ends the proof.

The same splitting of the profiles Kλ , now applied for all values of λ , allows to prove the final

theorem:

Theorem 4.14 Let us assume the same hypotheses as in Theorem 4.13. We have the expansion

uε,int =
∑

ν∈U(N)

ενuν
int[log ε] + χ(x)

∑

ν∈U(N)

∑

λ∈S(N−ν)

cνλ[log ε] εν+λYλ
int

(
x
ε

)
+ rN

ε,int (4.34)

uε,ext = ψ
(

x
ε

) ∑

ν∈U(N)

ενUν
ext

(
t, s

ε

)
[log ε] + χ(x)

∑

ν∈U(N)

∑

λ∈S(N−ν)

cνλ[log ε] εν+λYλ
ext

(
x
ε

)

+ rN
ε,ext (4.35)

with a remainder rN
ε satisfying estimate (4.27) and with functions (independent of N ) uν

int[log ε]
in H1(Ωint) . Moreover, for any k < π

ω , uk
int is given by the formulas of the smooth case, cf.

Proposition 2.3.
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We only have to check that the terms in expansions (4.34) and (4.35) do not depend on N .

This can be proved by using energy estimates as follows. We note that the energy estimates

(4.31) can be completed by estimates from below, so that we have for a suitable integer q :

∃c, c′ > 0, ∀ε ∈ (0, ε0], c ≤
∥∥χ(x)Yλ(x

ε )
∥∥

1,Ωint

≤ c′| log ε|q.

Likewise, and in an obvious way, as soon as uν
int[log ε] is not identically zero, there holds

∃q ∈ N, ∃c, c′ > 0, ∀ε ∈ (0, ε0], c ≤
∥∥uν

int[log ε]
∥∥

1,Ωint

≤ c′| log ε|q.

From this we can see that the terms in the expansion (4.34) are not modified if N is increased:

When going from N to N + 1 , we only add terms

∑

ν∈U(N+1)\U(N)

ενuν
int[log ε] + χ(x)

∑

ν∈U(N+1)

∑

λ∈S(N+1−ν)\S(N−ν)

cνλ[log ε] εν+λYλ
int

(
x
ε

)
,

the energy of which is of order O(εN ) . Consequently they do not affect the terms in the expansion

at order N .

Remark 4.15 (i) Introducing in a similar way as (4.30) the layers Zk,(β) for k ≥ 2 and |β| =
k − 2 :

Z
k,(β)
int = W

k,(β)
int −

k−3∑

ℓ=0

W̆
k,k−ℓ,(β)
int and Z

k,(β)
ext = W

k,(β)
ext − ψ

k−3∑

ℓ=0

W̆
k,k−ℓ,(β)
ext ,

we can easily prove the analogues of Theorems 4.13 and 4.14 in the situation when fint is C∞ up

to the boundary of Ωint .

(ii) A variant of the interior expansion (4.34) is possible. We may multiply the slow terms uν(x)
by the cut-off ψ(x

ε ) but, as opposed to the case of flat terms, see Remark 4.9 (ii), such an op-

eration is not transparent: We have to modify the definition of the corner layers Yλ and Zk,(β)

accordingly through the multiplication of the terms K̆
λ,λ−ℓ
int and W̆

k,k−ℓ,(β)
int by the same cut-off

ψ , just like in the layer part. �

4.6 Neumann boundary conditions

The above techniques directly apply to the Neumann case: We still have the splitting of the interior

terms into regular and singular parts and the corresponding profiles Kλ are constructed in Theorem

3.25. For integer λ , they may contain a term in logR in their asymptotics at infinity.

Note that in this case the corner layers Yλ keep this logarithmic term, see (4.30). Thus they

are no more decreasing as R→ ∞ , but we still have the energy estimate (4.31) above.

5 Concluding remarks

The type of results we have obtained and the techniques we have used evoke the well-known

concept of matched asymptotic expansion where inner and outer expansions are constructed, see

[15]. However, our analysis differs since our different scales coexist in a transition region, as
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opposed to the inner and outer expansions which contain the rapid and slow scales separately. For

a rigorous approach of this method, see [25].

Most of the difficulty of the above analysis is due to the singularities, mainly those of the limit

problem, the sλ . The profiles Kλ which we have constructed perform the transition between the

sλ and the behavior near the corner of the solution of the actual problem with ε -layer. Note that

the singularities of the transmission problem are different from the sλ : They are asymptotically

contained in the profiles Kλ .

An essential feature of these asymptotics is the possible communications between the terms

in slow variables uν(x) and those in rapid variables Kλ(x
ε ) , Wk(x

ε ) , Yλ(x
ε ) , or Zλ(x

ε ) . A

priori the uν and the profiles do not exist in the same world but they are forced to “live” together

thanks to cut-off functions ψ(x
ε ) for the uν and χ(x) for the profiles. This kind of product form

combining rapid and slow variables is an Ansatz of constant use in homogenization, see [24] for

instance. Note that such a product Ansatz is not used in [18, 19] where many singular perturbations

of a domain (without layer) are investigated. This has to be related with the fact that the presence

of ψ(x
ε ) inside Ωint is optional in our situation.

Nevertheless, in our opinion, the product form Ansatz is more powerful, allowing to take into

account more general situations where the interior domain Ωint also depends on ε : The results of

this paper can be extended to cases when Ωint presents self-similar structures at scale ε , such as

curved corners with curvature radius in O(ε) . This can be combined with the presence of a layer

presenting self-similar structures at scale ε , too. This is the subject of a forthcoming work.

The Helmholtz equation could be treated in a similar way, though new difficulties appear, due

to the importance of the zero-th order part of the operator, see for instance [16] where the special

Helmholtz features are described in a problem involving a thin structure.

6 Appendix: Elliptic regularity near the boundary

The aim of the appendix is to prove the elliptic regularity result stated in Theorem 2.8. By a

classical argument of local mappings, it is sufficient to consider the case of a straight boundary.

For any positive real number a , we define the layered rectangle Ra,ε = (−a, a)×(−a, 1+ε) ,

composed of Ra
int = (−a, a) × (−a, 1) and Ra,ε

ext = (−a, a) × (1, 1 + ε) . We denote by γa its

interior boundary (−a, a) × {1} , by γa
ext its exterior boundary (−a, a) × {1 + ε} , and by γa

D

the set ∂Ra,ε\γa
ext (see Figure 5). Clearly Rb,ε ⊂ Ra,ε if b ≤ a . Let B be the bilinear form

Ra

int

Ra,ε

ext
γa

ext

γa

1 + ε

1

γa

D

−a−a
a

Figure 5: The rectangle Ra,ε .
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associated to problem (Pε) on Ra,ε :

B(u, v) = α

∫

Ra
int

∇u · ∇v dx+

∫

Ra,ε
int

∇u · ∇v dx.

We shall use different variational spaces for Dirichlet external b.c. and Neumann external b.c.,

namely we define

Va = H1
0(Ra,ε) for Dirichlet external b.c.

Va =
{
v ∈ H1(Ra,ε) ; v = 0 on γa

D} for Neumann external b.c.

From the Lax-Milgram lemma, we immediately obtain

Proposition 6.1 If the linear form F belongs to the dual space V ′
a of Va , then the variational

problem

∀v ∈ Va, B(u, v) = 〈F, v〉
admits a unique solution u ∈ Va . Moreover, there exists a constant C , independent of ε and u ,

such that ∥∥u
∥∥

Va
≤ C

∥∥F
∥∥

V ′
a
. (6.1)

We emphasize on the fact that we make no use of the Dirichlet condition on γa
ext to prove the

coercivity of the form B ; the condition on γa
D is enough to get a Poincaré inequality (which

consequently also applies for Neumann external b.c.).

Finally we define the linear form Fu by

∀ϕ ∈ Va, 〈Fu, ϕ〉 = −α
∫

Ra
int

∆uint ϕdx−
∫

Ra,ε
ext

∆uext ϕdx+

∫

γa

(α∂nuint − ∂nuext)ϕdσ.

We easily check the following lemma:

Lemma 6.2 If u ∈ Va (together with ∂nuext = 0 on γa
ext in the case of Neumann external b.c.)

satisfies the assumptions

∆uint ∈ L2(Ra
int), ∆uext ∈ L2(Ra,ε

ext) and α∂nuint − ∂nuext ∈ L2(γa), (6.2)

then Fu ∈ V ′
a and there exists a constant C independent of ε and u such that

∥∥Fu

∥∥
V ′

a
≤ C

[∥∥∆uint

∥∥
0,Ra

int

+
∥∥∆uext

∥∥
0,Ra,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
0,γa

]
. (6.3)

We are now able to prove the first step of Theorem 2.8:

Proposition 6.3 Let u belong to the space Va and satisfy (6.2). For any b < a , there exists a

constant C independent of ε and u such that

∥∥u
∥∥

1,Rb,ε ≤ C
[∥∥Fu

∥∥
V ′

a
+

∥∥u
∥∥

0,Ra,ε

]
. (6.4)
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Proof: Let c be such that b < c < a . We introduce a smooth cut-off function χ , defined by

χ(x) = χ1(x1)χ2(x2) , with

χ1(x1) = 1 if |x1| ≤ b and χ1(x1) = 0 if |x1| > c,

χ2(x2) = 1 if x2 ≥ −b and χ2(x2) = 0 if x2 < −c.
(6.5)

In particular, χ = 1 on Rb,ε and χ = 0 on Ra,ε\Rc,ε .

The truncated function χu belongs to Va and satisfies for any v ∈ Va , B(χu, v) = 〈Fχu, v〉 .

Thanks to Proposition 6.1, we get

∥∥χu
∥∥

1,Ra,ε ≤ C
∥∥Fχu

∥∥
V ′

a
. (6.6)

We still need to estimate
∥∥Fχu

∥∥
V ′

a
. We write

∀ϕ ∈ Va, 〈Fχu, ϕ〉 = 〈Fu, χϕ〉 −
∫

Ra,ε

α̃ [(∆χ)uϕ + 2∇χ · ∇uϕ] dx,

with α̃ the function taking the value α in Ra
int and 1 in Ra,ε

ext . Thanks to an integration by parts

using the tensorial structure of χ , we can estimate the second term and finally obtain

|〈Fχu, ϕ〉| ≤ C
[∥∥Fu

∥∥
V ′

a
+

∥∥u
∥∥

0,Ra,ε

] ∥∥ϕ
∥∥

1,Ra,ε . (6.7)

Since χ = 1 on Rb,ε , we obtain the result from (6.6) and (6.7).

Using Nirenberg translations, we prove the following result of elliptic regularity at any order:

Proposition 6.4 Let d be a positive real number. Let u belong to the space Vd (together with

∂nuext = 0 on γd
ext in the case of Neumann external b.c.) satisfying the following conditions for

m ∈ N ,

∆uint ∈ Hm−1(Rd
int), ∆uext ∈ Hm−1(Rd,ε

ext), and α∂nuint − ∂nuext ∈ Hm− 1

2 (γd).

For any c < d , uint belongs to Hm+1(Rc
int) , uext to Hm+1(Rc,ε

ext) , and there exists a constant

C independent of ε and u such that

∥∥uint

∥∥
m+1,Rc

int

+
∥∥uext

∥∥
m+1,Rc,ε

ext

≤ C
[∥∥∆uint

∥∥
m−1,Rd

int

+
∥∥∆uext

∥∥
m−1,Rd,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
m− 1

2
,γd +

∥∥u
∥∥

0,Rd,ε

]
.

(6.8)

Proof: We proceed by induction over m ≥ 1 and make use of the horizontal difference operator

Dh defined for any real h 6= 0 by

Dhϕ(x1, x2) =
1

h
[ϕ(x1 + h, x2) − ϕ(x1, x2)] .

Let σ ∈ R be such that c < σ < d .
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• For m = 1 , we use a similar cut-off function as in the previous proof, defined by χ(x) =
χ1(x1)χ2(x2) with

χ1(x1) = 1 if |x1| ≤ c and χ1(x1) = 0 if |x1| > c+σ
2 ,

χ2(x2) = 1 if x2 ≥ −c and χ2(x2) = 0 if x2 < − c+σ
2 ,

and we apply Proposition 6.3 with b = c and a = σ to uh = χ1Dh(χ1u) , for |h| ≤ h0

sufficiently small ∥∥uh

∥∥
1,Rc,ε ≤ C

[∥∥Fuh

∥∥
V ′

σ
+

∥∥uh

∥∥
0,Rσ,ε

]
. (6.9)

To estimate Fuh
, we use the decomposition

〈Fuh
, ϕ〉 = 〈FDh(χ1u), χ1ϕ〉 −

∫

Rσ
int

∪Rσ,ε
ext

α̃
[
∆χ1Dh(χ1u)ϕ + 2∇χ1 · ∇Dh(χ1u)ϕ

]
dx

=: 1 + 2 ,

with α̃ the function taking the value α in Rσ
int and 1 in Rσ,ε

ext . We use the same technique as in

the proof of Theorem 6.3. A discrete integration by parts yields

2 =

∫

Rσ
int

∪Rσ,ε
ext

α̃
[
(χ1u)D−h(∆χ1 ϕ) + 2∇(χ1u) · D−h(∇χ1 ϕ)

]
dx,

which then gives | 2 | ≤ C
∥∥u

∥∥
1,Rσ,ε

∥∥ϕ
∥∥

1,Rσ,ε . Similarly for the first part, we get

1 =

∫

Rσ
int

∪Rσ,ε
ext

α̃∆(χ1 u)D−h(χ1 ϕ) dx−
∫

γσ

χ1(α∂nuint − ∂nuext)D−h(χ1ϕ) dσ.

Since χ1(α∂nuint−∂nuext) vanishes at the extremities of γσ , we can use the duality H1/2

0 0 –H−1/2

on γσ to obtain

| 1 | ≤ C
[∥∥∆u

∥∥
0,Rσ

int
∪Rσ,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γσ

] ∥∥ϕ
∥∥

1,Rσ,ε .

Together, Fuh
can be estimated in the dual of Vσ :

∥∥Fuh

∥∥
V ′

σ
≤ C

[∥∥∆u
∥∥

0,Rσ
int

∪Rσ,ε
ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γσ +

∥∥u
∥∥

1,Rσ,ε

]
. (6.10)

Since χ1 = 1 on Rc,ε and
∥∥uh

∥∥
Rσ,ε ≤ C

∥∥u
∥∥
Rσ,ε for h small enough, equations (6.9) and (6.10)

lead to

∥∥Dhu
∥∥

1,Rc,ε ≤ C
[∥∥∆u

∥∥
0,Rσ

int
∪Rσ,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γσ +

∥∥u
∥∥

1,Rσ,ε

]
.

Passing to the limit h→ 0 , we obtain the same estimate for the second order derivatives ∂2
1u and

∂1∂2u . For ∂2
2u , we obtain the estimate by writing ∂2

2u = ∆u− ∂2
1u . Then, we get

∥∥uint

∥∥
2,Rc

int

+
∥∥uext

∥∥
2,Rc,ε

ext

≤ C
[∥∥∆u

∥∥
0,Rσ

int
∪Rσ,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γσ +

∥∥u
∥∥

1,Rσ,ε

]
.

Using the estimate (6.4) for b = σ and a = τ , we conclude

∥∥uint

∥∥
2,Rc

int

+
∥∥uext

∥∥
2,Rc,ε

ext

≤ C
[∥∥∆u

∥∥
0,Rd

int
∪Rd,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γd +

∥∥u
∥∥

0,Rd,ε

]
.
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• Suppose the estimation Hm−1 → Hm+1 known and apply it to uh = χ1Dh(χ1u) . With the

same techniques as in the case m = 1 , we can prove

∥∥uint

∥∥
m+2,Rc

int

+
∥∥uext

∥∥
m+2,Rc,ε

ext

≤ C
[∥∥∆uint

∥∥
m,Rσ

int

+
∥∥∆uext

∥∥
m,Rσ,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
m+ 1

2
,γσ +

∥∥uint

∥∥
m+1,Rσ

int

+
∥∥uext

∥∥
m+1,Rσ,ε

ext

]
.

Using the induction assumption for u (with σ instead of c ), we get the stated result.

∥∥uint

∥∥
m+2,Rc

int

+
∥∥uext

∥∥
m+2,Rc,ε

ext

≤ C
[∥∥∆uint

∥∥
m,Rd

int

+
∥∥∆uext

∥∥
m,Rd,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
m+ 1

2
,γd +

∥∥u
∥∥

0,Rd,ε

]
.
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