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ABSTRACT. We study several mathematical and numerical models of resonance phe-

nomena arising in Magnetic Resonance Imaging. We begin by describing eigenvalues and

eigenfunctions of the Maxwell system with constant coefficients in a three-dimensional

cylindrical domain. As particular cases, we find eigenpairs in a circular cylinder and in

a circular cylinder with a coaxial circular hole. The corresponding eigenfrequencies give

useful approximations of the resonance frequencies of a system consisting of a conduct-

ing wire embedded in homogeneous or heterogeneous physiological tissues encountered

in MRI. We discretize this system with higher order finite elements and present com-

putations describing the variations of the eigenfrequencies and of the structure of the

eigenfunctions with respect to several relevant geometric and physical parameters.
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INTRODUCTION
S0

In this paper, we investigate the possible amplification in the presence of a conducting

body of the electromagnetic field generated by an incident time-harmonic magnetic field.

The application which motivates our work comes from Magnetic Resonance Imag-

ing (MRI): Under certain combinations of circumstances (frequency and geometry of the

emitted magnetic field, nature and length of a conductor wire, position with respect to

physiological tissues) it may happen that an important temperature increase at the surface

of the conductor is observed. In real-life clinical situations, physiological effects have

been observed that can go as far as severe tissue burning near the tip of the wire [12, 9].
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From theoretical and experimental studies in the past decade, it has become clear [13,

19] that dangerous levels of local electromagnetic field concentration are not due to simple

induction phenomena, but that they are caused by a resonance effect: Very strong local

amplification of the field can occur at certain combinations of parameters, even if the

conducting wire is placed at positions where the incident radio-frequency magnetic field

has rather low amplitude. This happens if the (real) frequency of the incident field is close

to the complex (in general non-real) eigenfrequency of the combined system of tissue and

wire.

Studies of these local heating effects that have been conducted in order to establish

general safety guidelines for MRI in the presence of conductors (pacemakers and other

implants, guidewires for MRI-guided surgery, catheters or lengths of wire attached to

measuring devices present during MRI scans) [15, 14, 20] have been based on extremely

simplified models: circular loops or straight wires embedded in a homogeneous material.

For more realistic models with heterogeneous environments, no general theoretical or

experimental studies of the behavior of such resonance phenomena are available, and

precise numerical models have only recently been considered [3].

Very recently, higher order finite element methods for the computation of Maxwell

eigenvalue problems have been studied by several authors, but the geometry so far has

been restricted to empty cavities [5, 11, 18].

In the present paper, we also consider simple model situations with a straight wire, but

we study in particular the influence of a heterogeneous environment consisting of two

different materials. This corresponds to the situation of a wire partially immersed in a

weakly conducting liquid. In addition, whereas the computational domain is supposed to

be axisymmetric, we consider the true magnetic field produced by a wire-frame antenna

(“bird-cage” coil, cf Figure 1) as used in MRI [3, 4], acting on a wire parallel to, but not

incident with, the axis of the bird-cage.

FIGURE 1. 3D view of a bird-cage coil with 8 legs figbirdcage

By using a high-precision numerical method (higher order finite elements, [17]), we

study the dependency of the first few resonance frequencies and of the details of the

corresponding amplified electromagnetic fields, on several relevant parameters: relative

length and thickness of the wire, depth of the immersion, tissue conductivity, and artificial

boundary conditions.

We combine the numerical model with a more simplified theoretical model and com-

pare both, showing a good qualitative and quantitative agreement in many cases. The

paper consists therefore of the following:



4 PATRICE BOISSOLES, MARTIN COSTABEL, AND MONIQUE DAUGE

(1) The consideration of simplified model problems which have a cylindrical (carte-

sian product) geometry together with the assumption that the wire is a perfect

conductor allow explicit analytic determination of the (real) eigenfrequencies.

(2) A larger class of model problems with axisymmetry geometry, consisting of a

straight wire of finite conductivity embedded in a heterogeneous material and

driven by the radio-frequency magnetic field of a small bird-cage antenna, can

be numerically studied using a two-dimensional finite element discretization.

(3) The comparison of the two approaches results in an interesting agreement between

a simple approximation by separation of variables and computations in a more

realistic framework, as soon as appropriate boundary conditions are imposed. Ul-

timately, in the configuration of our numerical models, we obtain a 1D (“dipole

antenna”) approximation of the resonance effect within a 10% error bound.

More details of the organization of our paper are described at the end of the next section

after the presentation of the mathematical model.

1. THE MATHEMATICAL MODEL AND THE MODEL PROBLEMS
S1

Let Ω be a bounded domain in R3 where the magnetic field H will be investigated.

Let Hinc be the incident magnetic field. In our application Hinc is produced by a bird-

cage antenna as specified in §4.1. For the numerical computations, we use the formulas

established in [3, 4] for this field. It has the form of a time-harmonic field with angular

frequency ω

Hinc(x, t) = Re
(
exp(−iωt)Hinc(x)

)
.

The range for ω is from 108 to 3 ·1010, corresponding to a frequency range between 15

MHz and 5 GHz. The incident field satisfies

1E0 (1.1) div Hinc = 0 in Ω.

Let H(x, t) = Re
(
exp(−iωt)H(x)

)
be the scattered magnetic field: After a standard

elimination of the electric field from Maxwell’s equations, we find that H satisfies

1E1 (1.2) curl

(
1

iεω − σ
curlH

)
+ iωµH = −iωµHinc in Ω.

Here ε = ε(x) and µ = µ(x) are the electric permittivity and the magnetic permeability

of the material(s) inside Ω, and σ = σ(x) is the conductivity. In the whole paper we

consider that, in standard SI units:

µ ≡ µ0 = 4π 10−7 in Ω.

We will consider three different classes of configurations

A. The simple cavity filled with air: ε ≡ ε0 ≃ (36π)−110−9 in Ω and σ ≡ 0.
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B. The situation of a metallic conductor body Ωcd ⊂ Ω surrounded by air: ε ≡ ε0 in

Ω, and

σ = σ0 in Ωcd and σ = 0 in Ωair := Ω \ Ωcd.

In most of the numerical experiments, σ0 is taken to be 104.

C. The region around the metallic conductor is made of two sub-regions, one, Ωair,

filled with air as above, and the other, Ωswa, with salted water (modelizing physi-

ological tissues):

Ω = Ωcd ∪ Ωswa ∪ Ωair

and, in Ωswa, ε ≡ 80 ε0 and σ ≡ 4, which correspond to a moderately conducting

material.

Since ω 6= 0, equations (1.1) and (1.2) imply that

1E2 (1.3) div H = 0 in Ω.

The boundary conditions which have to be imposed to complement the equation (1.2)

are artificial and thus, subject to discussion: A priori, they can be chosen among three

types, with the outer unit normal field n to Ω:

(1) Perfect conductor boundary conditions: H · n = 0,

(2) Perfect insulator boundary conditions: H × n = 0,

(3) Impedance boundary conditions: n × curlH + iωεZ n × (n × H) = 0 with the

impedance factor given by Z =
(
µ/(ε + iσ

ω
)
)1/2

.

Note that the perfect insulator b.c. is the limit of the impedance b.c. as Z → ∞, whereas

the perfect conductor b.c. would be the limit of the impedance b.c. as Z → 0.

Moreover, different boundary conditions can be imposed on different parts of ∂Ω.

The computational domain Ω itself is, in a certain sense, artificial. From now on, we

assume that it has the form of a cartesian product or cylinder (not necessarily of circular

base)

1E4 (1.4) Ω = G × (a, b), G ⊂ R
2, a < b.

Then, its boundary can be split into three parts:

∂Ω = G × {a} ∪ ∂G × (a, b) ∪ G × {b}.

We will mainly consider the following combinations of boundary conditions

1E5 (1.5)





H · n = 0 on ∂G × (a, b)
H · n = 0 or H × n = 0 on G × {a}
H · n = 0 or H × n = 0 on G × {b}.
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Note that, except in configuration A., conditions (1.4)-(1.5) are not sufficient for prob-

lem (1.2) to have a tensor product structure that allows the use of separation of variables:

In configuration B. for instance, we have a tensor product form if, moreover,

1E6 (1.6) Ωcd = Gcd × (a, b), Gcd ⊂ G.

1D1 Definition 1.1. Let V be the space of L2(Ω)3 fields H satisfying curlH ∈ L2(Ω)3,

div H ∈ L2(Ω) and the boundary conditions (1.5). Let s be a positive parameter. The

regularized variational formulation of our problem is:

1E7 (1.7) Find H ∈ V , such that ∀H′ ∈ V ,
∫

Ω

1

iεω − σ
curlH · curl H̄

′
dx −

∫

Ω

is div(µH) div(µH̄
′
) dx

+ iµω

∫

Ω

H · H̄′
dx = −iµω

∫

Ω

Hinc · H̄′
dx .

The regularization parameter s has no influence on the solution, since it will be chosen

large enough to avoid spurious modes [10, 6, 7].

1.1. Amplification of response. For any fixed configuration in classes A., B., or C., we

vary ω and observe the behavior of the function

ω 7−→ ‖H(ω)‖
L2(Ω)3

with H(ω) the solution of problem (1.7) for this ω. Our problem is to find and characterize

the values of ω for which an amplification of the norm of H(ω) occurs (resonances): The

issue is to know whether, in the physical application, the presence of conducting parts

leads to the appearance of small resonance values for ω.

In the medical literature, the frequency is usually kept fixed and the length of the wire is

varied instead. This allows simpler experimental dispositions. In our case, the emphasis

is on the precision of the numerical method, so we want to keep the computational domain

and the mesh fixed for a series of parameter variations that display the resonance effects.

The conclusions from both points of view should be equivalent, of course.

In problems of class A. (σ ≡ 0 in Ω), a (theoretically infinite) amplification occurs if

and only if there exists an eigenpair (ω0,H0) of the self-adjoint problem

1E8 (1.8) Find H0 ∈ V , H0 6= 0, and ω0 ∈ R, ω0 > 0 such that ∀H′ ∈ V ,
∫

Ω

curlH0 · curl H̄
′
dx = εµ ω2

0

∫

Ω

H0 · H̄′
dx ,

so that

1E9 (1.9) ω −→ ω0 and

∫

Ω

Hinc · H̄0 dx 6= 0.
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Note that if (1.9) holds, problem (1.7) cannot be solved for ω = ω0.

In configurations B. or C., problem (1.7) is solvable for any real ω. An amplification

occurs if there exists an eigenpair (ω0,H0) of the adjoint problem

1E10 (1.10) Find H0 ∈ V , H0 6= 0, and ω0 ∈ C, ω0 6= 0 such that ∀H′ ∈ V ,
∫

Ω

1

iεω0 + σ
curlH0 · curl H̄

′
dx + iµω0

∫

Ω

H0 · H̄′
dx = 0

where ω0 has a small imaginary part and

1E11 (1.11) ω −→ Re ω0 and

∫

Ω

Hinc · H̄0 dx 6= 0.

1.2. Simplified configurations allowing the analytic determination of the spectrum.

In order to prove analytic formulas for the spectrum of problem (1.8), we will simply

assume that we are in situation A. with Ω of cartesian product form (1.4).

The important point is the following: By the perfect conductor approximation, a con-

figuration of type B. is transformed into a configuration of type A., with the new domain

Ω(A) = Ω(B) \ Ωcd. The latter domain is of cartesian product form if and only if the

conducting part satisfies (1.6), that is, the conductor part Ωcd has the same length as Ω.

1.3. More general configurations and FEM computations. For the applications, the

configurations of interest are of class B. or C.. A not a priori obvious question is whether

the analysis of configurations A. can provide a relevant approximation for configurations

of class B. or even C., where the conductor Ωcd is strictly contained in Ω, i.e., of the form

1E12 (1.12) Ωcd = Gcd × (a0, b0), with Gcd ⊂ G and a < a0 < b0 < b.

To answer this question, we perform computations based on a finite element discretization

in axisymmetric configurations.

1.4. Plan of the paper. In §2 we give a full description of the Maxwell eigenpairs

ω, (E,H) in cylindrical domains Ω of class A. in terms of three families of modes: TE

modes for which the electric part E, and not the magnetic part H, is transverse (the longu-

tidinal component is 0), TM modes for which H (and not E) is transverse, and TEM

modes for which both E and H are transverse. TEM modes have a 1D structure (i.e. their

eigenvalues and eigenfunctions are completely described by those of a one-dimensional

boundary value problem), they exist only if Ω is not simply connected, and they often

contribute the lowest eigenvalues. In §3 we discuss this question in more details, with

a special emphasis on axisymmetric domains for which fully analytic formulas can be

provided using zeros of Bessel functions.

In §4 we specify the numerical model: We describe the incident field produced by the

bird-cage antenna, and give details about the treatment of the metallic part, and about



8 PATRICE BOISSOLES, MARTIN COSTABEL, AND MONIQUE DAUGE

the finite element code. In §5, we provide computations in situations B. very close to

configurations of class A., where the domain Ω = Ω(B) contains a conductor part with

high conductivity and same length as Ω. As a result, we obtain a very good agreement

between computational and theoretical results for Ω(B) and Ω(A), respectively, linked

by the relation Ω(A) = Ω(B) \ Ωcd. In §6 we present computations for more realistic

configurations B., for which the conductor part is strictly shorter than the length of the

computational domain. As a matter of fact, configurations B. for which the radius r0 of

Ωcd tends to 0 while its conductivity σ tends to infinity keeping the ratio r0

√
σ constant,

converge to a limiting configuration of class A.. In §7 we consider configurations C.

where a part Ωswa of the domain consists of a moderately conducting material. In all

considered configurations C. we exhibit a correspondence between the lowest resonances

and those of simplified configurations of class A. with appropriate boundary conditions.

We conclude in §8.

2. THE MAXWELL SPECTRUM IN CYLINDRICAL DOMAINS
S2

Let Ω ⊂ R3 be a cylinder, i.e. the cartesian product of a two-dimensional domain and

an interval:

2E2 (2.1) Ω = G × I, G ⊂ R
2, I = (a, b) interval in R.

We assume that G is a bounded Lipschitz domain. We note that the boundary of Ω is

connected. But, if G is not simply connected, the same holds for Ω.

After defining notations for components and operators adapted to the cylindrical struc-

ture, we study the spectrum of the Maxwell operator with perfectly conducting, insulat-

ing and mixed boundary conditions in Ω. We introduce transverse electric and magnetic

modes, exhibit explicit families of such eigenmodes of the Maxwell system as functions

of scalar Dirichlet and Neumann problems on G and I . Finally we prove that these fami-

lies are complete, thus generate the whole Maxwell spectrum.

2.1. Components and operators. We denote Cartesian coordinates by

x = (x1, x2, x3) = (x⊥, x3).

and, correspondingly, components by

u = (u1, u2, u3) = (u⊥, u3).

Likewise, the exterior unit normal n to ∂Ω is written (n⊥, n3). On G × ∂I , n⊥ = 0 and

n3 = ±1. On ∂G × I , n⊥ is the exterior unit normal to ∂G, n3 = 0, and the tangential

component of u⊥ is u⊥ × n⊥ = u1n2 − u2n1.

The gradient and the Laplacian in the transverse plane are denoted by grad⊥ and ∆⊥:

grad⊥ v =

(
∂1v
∂2v

)
and ∆⊥v = ∂2

1v + ∂2
2v.
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The vector and scalar curls in 2D are given by:

curl⊥ v =

(
∂2v
−∂1v

)
and curl⊥ v = ∂1v2 − ∂2v1.

We have the formula

2E3 (2.2) curl u =




∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1


 =

(
curl⊥ u3

curl⊥ u⊥

)
+ ∂3



−u2

u1

0


 .

The normal and tangential boundary conditions u ·n = 0 and u×n = 0 on ∂Ω become,

respectively

u⊥ · n⊥ = 0 on ∂G × I,

u3 = 0 on G × ∂I,
2E4a (2.3a)

and

u⊥ × n⊥ = 0 and u3 = 0 on ∂G × I,

u⊥ = 0 on G × ∂I.
2E4b (2.3b)

2.2. Definition of transverse modes. After the standard rescaling
√

ε0 E 7→ E and√
µ0 H 7→ H and the introduction of the wave number κ = ω

√
ε0µ0, the Maxwell eigen-

mode problem can be written as0E2

0E2a (2.4a)





curlE − iκH = 0 in Ω,
curlH + iκE = 0 in Ω,
div E = 0 and div H = 0 in Ω.

with perfectly conducting boundary conditions

0E2b (2.4b) E × n = 0 and H · n = 0 on ∂Ω.

We start the investigation of the solutions of (2.4) in a cylindrical domain by introducing

special separation of variables Ansätze for the eigenmodes:

2D1 Definition 2.1. (i) a TE (Transverse Electric) mode is a solution (E,H) of (2.4) of the

form

TE (2.5) E(x) =

(
curl⊥ v(x⊥)

0

)
w(x3) and H =

1

iκ
curlE

with scalar functions v ∈ H1(∆⊥; G) := {u ∈ H1(G); ∆⊥u ∈ L2(G)}, and w ∈ H1(I).
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(ii) a TM (Transverse Magnetic) mode is a solution (E,H) of (2.4) of the form

TM (2.6) H(x) =

(
curl⊥ v(x⊥)

0

)
w(x3) and E = − 1

iκ
curlH

with scalar functions v ∈ H1(∆⊥; G) and w ∈ H1(I).

(iii) a TEM mode is a solution (E,H) of (2.4) of the form

TEM (2.7) H(x) =

(
v⊥(x⊥)

0

)
w(x3) and E(x) =

(
v
′
⊥(x⊥)

0

)
w′(x3)

with vector functions v⊥, v
′
⊥ in L2(G)2 such that curl⊥ v⊥, curl⊥ v

′
⊥, div⊥ v⊥, div⊥ v

′
⊥

are all in L2(G), and scalar functions w, w′ ∈ H1(I).

2R1 Remark 2.2. For a field u of the form

T (2.8) u(x) =

(
curl⊥ v(x⊥)

0

)
w(x3),

the field curl u is

Trot (2.9) curl u(x) =

(
grad⊥ v(x⊥)

0

)
∂3w(x3) −

(
0

∆⊥v(x⊥)

)
w(x3).

2.3. TE modes. Let (E,H) be a couple of the form (2.5). We will exhibit sufficient

conditions for (E,H) to be a TE mode, and an explicit family of such modes. We find that

div E = 0 and that equations (2.4) reduce to

0E3 (2.10)

{
curl curlE = κ2

E in Ω,
E × n = 0 on ∂Ω.

Using formula (2.9) we obtain:

curl curlE = −
(

curl⊥ ∆⊥v(x⊥)

0

)
w(x3) −

(
curl⊥ v(x⊥)

0

)
∂2

3w(x3).

Thus we find that equation curl curlE = κ2
E becomes

2E11 (2.11) −
(

curl⊥ ∆⊥v

0

)
w −

(
curl⊥ v

0

)
∂2

3w = κ2

(
curl⊥ v

0

)
w.

Then we find that (2.11) holds if v and w satisfy

2E12 (2.12) −∆⊥v = λv in G and − ∂2
3w = µw in I with λ + µ = κ2.
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Perfectly conducting boundary conditions on E × n = 0 are satisfied if, cf (2.3b),

2E13 (2.13) ∂nv = 0 on ∂G and w = 0 on ∂I.

The condition E × n = 0 implies the condition H · n = 0. Thus we have found the

following families of TE modes:

2P1 Proposition 2.3. Let

(
λneu

j , vneu
j

)
j≥0

with λneu
0 = 0 and vneu

0 = 1

be an orthonormal Neumann eigenpair sequence of the operator −∆⊥ in G. Let

(
µdir

k , wdir
k

)
k≥1

be an orthonormal Dirichlet eigenpair sequence of the operator −∂2
3 in I . Then, for all

j ≥ 1, k ≥ 1, the field (ETE
jk ,HTE

jk )

E
TE
jk (x) =

(
curl⊥ vneu

j (x⊥)

0

)
wdir

k (x3) and H
TE
jk =

1

iκTE
jk

curlETE
jk

is a TE mode for problem (2.4) associated with the eigenfrequency κTE
jk =

√
λneu

j + µdir
k .

2.4. TM modes. Let (E,H) be a couple of the form (2.6). The derivation is the same

for H as above for E, except concerning boundary conditions were we find now thanks to

(2.3a) that H · n = 0 if

2E13a (2.14) v = 0 on ∂G.

We have also to check the condition E × n = 0 for E = −(iκ)−1 curlH, because this

condition is not a consequence of H · n = 0. We have

ETM (2.15) E =
1

iκ

(
0

∆⊥v(x⊥)

)
w(x3) −

1

iκ

(
grad⊥ v(x⊥)

0

)
∂3w(x3).

Taking the equation ∆⊥v = λv into account, we find that E × n = 0 if (2.14) is satisfied,

together with

2E13b (2.16) ∂nw = 0 on ∂I.

Now we have found the following families of TM modes:
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2P2 Proposition 2.4. Let (
λdir

j , vdir
j

)
j≥1

be an orthonormal Dirichlet eigenpair sequence of the operator −∆⊥ in G. Let

(
µneu

k , wneu
k

)
k≥0

with µneu
0 = 0 and wneu

0 = 1

be an orthonormal Neumann eigenpair sequence of the operator −∂2
3 in I . Then, for all

j ≥ 1 and all k ≥ 0, the field (ETM
jk ,HTM

jk ) with

H
TM
jk (x) =

(
curl⊥ vdir

j (x⊥)

0

)
wneu

k (x3) and E
TM
jk = − 1

iκTM
jk

curlHTM
jk

is a TM mode for problem (2.4) associated with the eigenfrequency κTM
jk =

√
λdir

j + µneu
k .

2.5. TEM modes. Let (E,H) be a couple of the form (2.7). We deduce from the equa-

tions curlH + iκE = 0 and div H = 0 that

2E20 (2.17) curl⊥ v⊥ = 0 and div⊥ v⊥ = 0 in G.

Taking the boundary conditions H · n = 0 into account, we find that v⊥ belongs to the

space KT (G) of no-flux harmonic vector fields:

KT (G) = {u⊥ ∈ L2(G)2 : curl⊥ u⊥ = 0, div⊥ u⊥ = 0, u⊥ · n⊥ = 0 on ∂G}.

We can deduce from [1, Proposition 3.18]:

2L1 Lemma 2.5. (i) If ∂G is connected, then KT (G) = {0}.

(ii) If ∂G has L + 1 connected components (L ≥ 1), dim KT (G) = L: Let ∂0G, . . . , ∂LG
be the connected components of ∂G. Let vtop

l , l = 1, . . . , L be the harmonic potentials

such that vtop

l = δlm on ∂mG, m = 0, . . . , L. Then there holds

2E21 (2.18) KT (G) = span {curl⊥ vtop
1 , . . . , curl⊥ vtop

L }.

Thus for H we are back to the situation of TM modes. We find:

2P3 Proposition 2.6. If ∂G has L + 1 connected components with L ≥ 1, let
(
vtop

l

)
l=1,...,L

be the harmonic potentials defined in Lemma 2.5. Let (µneu
k , wneu

k

)
for k ≥ 0 be an

orthonormal Neumann eigenpair sequence of the operator −∂2
3 in I , like in Proposition

2.4. Then, for all l = 1, . . . , L and all k ≥ 0, the field (ETEM
lk ,HTEM

lk ) with

H
TEM
lk (x) =

(
curl⊥ vtop

l (x⊥)

0

)
wneu

k (x3)



RESONANCES OF WIRE IN MRI 13

and

E
TEM
lk = − 1

iκTEM
k

curlHTEM
lk if k ≥ 1 and E

TEM
lk = 0 if k = 0

is a TEM mode for problem (2.4) associated with the eigenfrequency κTEM
k =

√
µneu

k .

2R2 Remark 2.7. (i) For k ≥ 1 and a suitable choice of the normal eigenvectors wneu
k and wdir

k ,

we have the formula

E
TEM
lk = − 1

iκTEM
k

(
grad⊥ vtop

l (x⊥)

0

)
∂3w

neu
k (x3) = i

(
grad⊥ vtop

l (x⊥)

0

)
wdir

k (x3).

(ii) Let Θ(G) be the space defined as follows, cf [1]: Let G◦ be G \Σ, where Σ = ∪L
l=1Σl

is a minimal set of cuts so that G◦ is simply connected. Then

Θ(G) = {ϕ ∈ H1(G◦);
[
ϕ
]
Σl

= const(l), l = 1, . . . , L}.

For ϕ ∈ Θ(G), its extended curl, denoted c̃url⊥ ϕ, is its curl in G◦, considered as an

element of L2(G). Then there exists potentials ṽtop

l ∈ Θ(G), such that for any l =
1, . . . , L, there holds

2E23 (2.20) c̃url⊥ ṽtop

l = grad⊥ vtop

l .

Therefore for all k ≥ 1, there holds

E
TEM
lk (x) = i

(
c̃url⊥ ṽtop

l (x⊥)

0

)
wdir

k (x3).

2.6. Completeness. With the definitions introduced in Propositions 2.3, 2.4, 2.6, and

Remark 2.7 we prove the following result.

2T1 Theorem 2.8. (i) If ∂G is connected, a complete set of eigenmodes of (2.4) is given by

2E30 (2.21)
(
κTE

jk ;ETE
jk ,HTE

jk

)
j≥1, k≥1

and
(
κTM

jk ;ETM
jk ,HTM

jk

)
j≥1, k≥0

.

Here, for TE the eigenfrequency is κTE
jk =

√
λneu

j + µdir
k for j ≥ 1, k ≥ 1, and

TE1 (2.22) E
TE
jk =

(
curl⊥ vneu

j (x⊥)

0

)
wdir

k (x3), H
TE
jk =

1

iκTE
jk

curlETE
jk .

For TM, the eigenfrequency is κTM
jk =

√
λdir

j + µneu
k for j ≥ 1, k ≥ 0, and

TM1 (2.23) H
TM
jk =

(
curl⊥ vdir

j (x⊥)

0

)
wneu

k (x3), E
TM
jk = − 1

iκTM
jk

curlHTM
jk .
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(ii) If ∂G has L+1 connected components (L ≥ 1) a complete set of eigenmodes of (2.4)

is given by the union of the modes (2.21) and the TEM modes

2E31 (2.24)
(
κTEM

k ;ETEM
lk ,HTEM

lk

)
l=1,...,L, k≥0

.

For TEM, the eigenfrequency is κTEM
k =

√
µneu

k for k ≥ 0, and

TEM1 (2.25) E
TEM
lk = i

(
c̃url⊥ ṽtop

l (x⊥)

0

)
wdir

k (x3), H
TEM
lk =

(
curl⊥ vtop

l (x⊥)

0

)
wneu

k (x3)

where we set by convention wdir
0 = 0.

Proof. In order to show completeness of the given set of eigenmodes, we prove that a

divergence-free electric field which satisfies the boundary conditions and is orthogonal to

the electric components of all modes is identically zero. A symmetric argument can be

given for the magnetic component.

Thus let u ∈ L2(Ω)3 such that curlu ∈ L2(Ω)3, div u = 0 and u × n = 0 on ∂Ω. We

assume that for all integers j ≥ 1 and l ∈ [1, L]

〈u,ETE
jk 〉 = 0 (∀k ≥ 1), 〈u,ETM

jk 〉 = 0 (∀k ≥ 0) and 〈u,ETEM
lk 〉 = 0 (∀k ≥ 1).

Here 〈·, ·〉 is the L2 scalar product on Ω. We have to show u = 0.

We first draw consequences from the orthogonality properties against the TM modes:

We fix j and k, set v = vdir
j , w = wneu

k , use E
TM in the form (2.15) and integrate by parts:

0 =

∫

I

∫

G

u⊥(x⊥, x3) grad⊥ v(x⊥)∂3w(x3) − u3(x⊥, x3) ∆⊥v(x⊥)w(x3) dx⊥dx3

=

∫

I

∫

G

− div⊥ u⊥(x⊥, x3) v(x⊥)∂3w(x3) − u3(x⊥, x3) ∆⊥v(x⊥)w(x3) dx⊥dx3

=

∫

I

∫

G

∂3u3(x⊥, x3) v(x⊥)∂3w(x3) − u3(x⊥, x3) ∆⊥v(x⊥)w(x3) dx⊥dx3

=

∫

I

∫

G

−u3(x⊥, x3) v(x⊥)∂2
3w(x3) − u3(x⊥, x3) ∆⊥v(x⊥)w(x3) dx⊥dx3.

Here we have used that div u = 0, replacing div⊥ u⊥ by −∂3u3. Coming back to the

properties of v = vdir
j and w = wneu

k we find for all j ≥ 1 and k ≥ 0

∫

I

∫

G

u3(x⊥, x3) (λdir
j + µneu

k )vdir
j (x⊥)wneu

k (x3) dx⊥dx3 = 0.

Since λdir
j + µneu

k is never 0, we deduce that for all j ≥ 1 and k ≥ 0

∫

I

∫

G

u3(x⊥, x3) vdir
j (x⊥)wneu

k (x3) dx⊥dx3 = 0.
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The set vdir
j (x⊥)wneu

k (x3) being a complete basis in L2(Ω), we deduce that u3 = 0.

Next, we use the orthogonality against the TE modes: for all j ≥ 1 and k ≥ 1 there

holds: ∫

I

wdir
k (x3)

∫

G

u⊥(x⊥, x3) · curl⊥ vneu
j (x⊥) dx⊥dx3 = 0.

Therefore, for all j ≥ 1:

∫

G

u⊥(x⊥, x3) · curl⊥ vneu
j (x⊥) dx⊥ = 0, ∀x3 ∈ I.

We deduce that curl⊥ u⊥(·, x3) is orthogonal to all vneu
j for j ≥ 1, which means that

curl⊥ u⊥(·, x3) is constant with respect to x⊥. There exists a function z = z(x3) such that

(∗) curl⊥ u⊥(x⊥, x3) = z(x3).

Since div u = 0 and u3 = 0, we have div⊥ u⊥ = 0. Besides, the orthogonality relations

against the TEM modes yields for all k ≥ 1 and l ≤ L

∫

I

wdir
k (x3)

∫

G

u⊥(x⊥, x3) · grad⊥ vtop

l (x⊥) dx⊥dx3 = 0.

We deduce that

∫

G

u⊥(x⊥, x3) · grad⊥ vtop

l (x⊥) dx⊥ = 0, ∀x3 ∈ I,

from which we find that

∫

∂lG

u⊥ · n⊥ dσ = 0, l = 1, . . . , L.

Combined with div⊥ u⊥ = 0, this provides the existence of a potential y ∈ L2(I, H1(G))
satisfying the Neumann boundary condition on ∂G such that

u⊥(x⊥, x3) = curl⊥ y(x⊥, x3).

With (∗) we find

−∆⊥y(x⊥, x3) = z(x3).

Since y satisfies the homogeneous Neumann condition with respect to x⊥, this implies

that z(x3) = 0 for all x3. Finally we have obtained that u⊥ = 0. �
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2.7. Mixed boundary conditions. Our results can be adapted to describe the spectrum

of the Maxwell problem (2.4a), with instead of boundary conditions (2.4b), the mixed

boundary conditions

0E3a (2.26a)





E × n = 0 and H · n = 0 on ∂G × I,
E · n = 0 and H × n = 0 on G × {a},
E · n = 0 and H × n = 0 on G × {b},

or

0E3b (2.26b)





E × n = 0 and H · n = 0 on ∂G × I,
E · n = 0 and H × n = 0 on G × {a},

E × n = 0 and H · n = 0 on G × {b}.

Adapting the proofs above, we find that the results of Propositions 2.3, 2.4 and 2.6

and of Theorem 2.8 can be extended to the situations of boundary conditions (2.26a) and

(2.26b) according to:

2T2 Theorem 2.9. (i) If ∂G is connected, a complete set of eigenmodes of the Maxwell equa-

tions (2.4a) with boundary conditions (2.26a) or (2.26b) is given by

2E40 (2.27)
(
κTE

jk ;ETE
jk ,HTE

jk

)
j≥1, k≥0 or 1

and
(
κTM

jk ;ETM
jk ,HTM

jk

)
j≥1, k≥0 or 1

.

(a) In case of boundary conditions (2.26a):

The TE eigenfrequency is κTE
jk =

√
λneu

j + µneu
k for j ≥ 1, k ≥ 0, and

TE2 (2.28) E
TE
jk =

(
curl⊥ vneu

j (x⊥)

0

)
wneu

k (x3), H
TE
jk =

1

iκTE
jk

curlETE
jk .

The TM eigenfrequency is κTM
jk =

√
λdir

j + µdir
k for j ≥ 1, k ≥ 1, and

TM2 (2.29) H
TM
jk =

(
curl⊥ vdir

j (x⊥)

0

)
wdir

k (x3), E
TM
jk = − 1

iκTM
jk

curlHTM
jk

(b) In case of boundary conditions (2.26b):

The TE eigenfrequency is κTE
jk =

√
λneu

j + µnd
k for j ≥ 1, k ≥ 1, and

TE3 (2.30) E
TE
jk =

(
curl⊥ vneu

j (x⊥)

0

)
wnd

k (x3), H
TE
jk =

1

iκTE
jk

curlETE
jk
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The TM eigenfrequency is κTM
jk =

√
λdir

j + µdn
k for j ≥ 1, k ≥ 1, and

TM3 (2.31) H
TM
jk =

(
curl⊥ vdir

j (x⊥)

0

)
wdn

k (x3), E
TM
jk = − 1

iκTM
jk

curlHTM
jk

Here (µnd
k , wnd

k

)
and (µdn

k , wdn
k

)
for k ≥ 1 is an orthonormal eigenpair sequence of the

operator −∂2
3 in I with boundary conditons w′(a) = w(b) = 0 and w(a) = w′(b) = 0,

respectively.

(ii) If ∂G has L+1 connected components (L ≥ 1) a complete set of eigenmodes of (2.4)

is given by the reunion of the above modes (2.27) and the TEM modes

2E41 (2.32)
(
κTEM

k ;ETEM
lk ,HTEM

lk

)
l=1,...,L, k≥0 or 1

.

(a) In case of boundary conditions (2.26a), κTEM
k =

√
µneu

k and

TEM2 (2.33) E
TEM
lk = i

(
c̃url⊥ ṽtop

l (x⊥)

0

)
wneu

k (x3), H
TEM
lk =

(
curl⊥ vtop

l (x⊥)

0

)
wdir

k (x3)

for k ≥ 0, where by convention, wdir
0 is set to 0.

(b) In case of boundary conditions (2.26b), κTEM
k =

√
µnd

k =
√

µdn
k , k ≥ 1, and:

TEM3 (2.34) E
TEM
lk = i

(
c̃url⊥ ṽtop

l (x⊥)

0

)
wnd

k (x3), H
TEM
lk =

(
curl⊥ vtop

l (x⊥)

0

)
wdn

k (x3).

3. THE SMALLEST EIGENFREQUENCIES IN CYLINDRICAL DOMAINS
S3

3.1. Influence of a conductor part. We still consider the case when Ω = G × I . Let

ℓ be the length of I . We assume that ∂G is connected (or, equivalently, that G is simply

connected). Then the smallest eigenfrequency in the case of boundary conditions (2.4b)

is positive and equal to

3E1 (3.1) min

{√
λneu

1 (G) +
π2

ℓ2
,
√

λdir
1 (G)

}
.

Let us now assume that Ω contains a conductor part Ωcd = Gcd × I , with Gcd ⊂ G. If we

use the perfect conductor approximation, we look for the eigenfrequencies in

3E2 (3.2) Ω′ = G′ × I, G′ = G \ Gcd.
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Then G′ is not simply connected and the first non-zero TEM eigenfrequency of Ω′ is π
ℓ
.

Thus, as soon as

3E3 (3.3)
π

ℓ
<
√

λdir
1 (G) ,

the domain Ω′ has a positive TEM eigenfrequency smaller than all eigenfrequencies of

the domain Ω. In case of boundary conditions (2.26a), inequality (3.3) is replaced with
π
ℓ

<
√

λneu
1 (G). In the case of the mixed boundary conditions (2.26b) the lowest TEM

eigenfrequency of Ω′ is always smaller than the eigenfrequencies of Ω. We consider now

the specific situation of axisymmetric cylindrical domains.

3.2. Case of axisymmetric domains. We assume that G is a disk of radius R, centered

at O, and Gcd is a concentric disk of radius r0 < R. Thus, G′ is an annulus of internal

radius r0 and external radius R. Both domains Ω and Ωcd are circular cylinders.

We use cylindrical coordinates (r, θ, z) ∈ (0, R)×[0, 2π)×I . For a scalar function u =
u(x), let ǔ be its expression in cylindrical coordinates: ǔ(r, θ, z) = u(x). Additionally,

for a vector field u = (u1, u2, u3), we introduce its cylindrical components (ur, uθ, uz)
according to

ur = ǔ1 cos θ + ǔ2 sin θ, uθ = −ǔ1 sin θ + ǔ2 cos θ and uz = ǔ3.

The notion of angular Fourier modes makes sense (see [2] for more details):

5D1 Definition 3.1. Let u be a scalar function in L2(Ω) and let ǔ be the function defined on

(0, R) × [0, 2π) × I by ǔ(r, θ, z) = u(x). For any n ∈ Z, the angular Fourier coefficient

of order n of u is denoted by un and is defined as:

5E3 (3.4) un(r, z) =
1√
2π

∫ 2π

0

ǔ(r, θ, z) e−inθ dθ, 0 < r < R, z ∈ I.

Let u = (u1, u2, u3) be a vector field in L2(Ω)3. For any n ∈ Z, the angular Fourier

coefficient of order n of u, denoted bu u
n, is defined as

5E3b (3.5) u
n = (un

r , un
θ , u

n
z ).

For a scalar function v, the radial and angular components of grad⊥ v are ∂rv and
1
r
∂θv, and those of curl⊥ v are 1

r
∂θv and −∂rv. Likewise, the cylindrical components of

curl u are

3Er (3.6)





(curlu)r = 1
r
∂θuz − ∂zuθ,

(curlu)θ = ∂zur − ∂ruz,

(curlu)z = ∂ruθ + 1
r
uθ − 1

r
∂θur.
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Since the coefficients in (3.6) do not depend on θ, the spectrum of the Maxwell operator

(2.4) on the cylinders Ω or Ω′ commutes with the self-adjoint operator i∂θ. Therefore

there exists a basis of eigenvectors of (2.4) such that each of its elements (E,H) satisfies

3E30 (3.7) ∃n ∈ Z such that (En,Hn) 6≡ 0 and ∀m 6= n, E
m = H

m = 0.

The integer n is called the order of the eigenmode. For any n ∈ Z there exists a countably

infinite family of orthogonal eigenvectors of order n.

Of course, this is compatible with the TE and TM structures. The Dirichlet and Neu-

mann problems for ∆⊥ in G or G′ are axisymmetric problems. Therefore, they also

commute with i∂θ and share with i∂θ a common eigenvector basis. Hence the eigenvec-

tors of the Dirichlet and Neumann problems in G or G′ can be classified according to their

angular Fourier coefficient like in (3.7): For each eigenvector v there exists an integer n
such that

3E31 (3.8) v(x⊥) =
1√
2π

vn(r) einθ in G or G′,

and vn is solution of the Bessel equation3E32

3E32a (3.9a) −
(
r2∂2

r + r∂r − n2
)
vn = λvn in (0, R) or (r0, R).

This provides a natural classification for the TE and TM modes in Ω and Ω′: As a conse-

quence of Theorems 2.8 and 2.9, we find

3C1 Proposition 3.2. Let Ω by a circular cylinder of radius R and Ω′ = Ω \ Ωcd, with Ωcd a

coaxial cylinder of radius r0 and the same length.

(i) Each TE mode in Ω or Ω′ can be classified by its order n: It has the form (2.22), (2.28)

or (2.30) for vneu
j = v satisfying (3.8) with a (non-constant) eigenvector vn of problem

(3.9a) complemented by boundary conditions in 0 or r0

3E32b (3.9b)

{
vn(0) = 0 if n 6= 0,

∂rv
n(0) = 0 if n = 0,

for Ω or ∂rv
n(r0) = 0 for Ω′

and in R

3E32c (3.9c) ∂rv
n(R) = 0.

(ii) Likewise, the TM modes of order n are given by (2.23), (2.29) or (2.31) for vdir
j = v

satisfying (3.8) with an eigenvector vn of (3.9a) with boundary conditions in 0 or r0

3E32d (3.9d)

{
vn(0) = 0 if n 6= 0,

∂rv
n(0) = 0 if n = 0,

for Ω or vn(r0) = 0 for Ω′



20 PATRICE BOISSOLES, MARTIN COSTABEL, AND MONIQUE DAUGE

and in R

3E32e (3.9e) vn(R) = 0.

In Ω′ appear the TEM modes: ∂G′ has two connected components, and the generator

vtop can be defined as the function x 7→ log r. It is axisymmetric (i.e. of order n = 0),

therefore the TEM modes are axisymmetric, too. In connection with Remark 2.7, we note

that the “conjugate” potential ṽtop is the function x 7→ θ. There holds, cf (2.17):

3E38 (3.10) c̃url⊥ ṽtop = grad⊥ vtop =




1
r
0
0


 and curl⊥ vtop = −




0
1
r
0


 .

Hence we obtain for TEM modes:

3C2 Proposition 3.3. Let Ω′ = Ω \ Ωcd, with Ω and Ωcd coaxial cylinders of radii R and

r0 and the same length. The TEM modes in Ω′ are axisymmetric (i.e. their cylindrical

components do not depend on θ) and have the form

5E15 (3.11)





Er = i
κr

∂zw(z),

Eθ = 0,

Ez = 0,

and





Hr = 0,

Hθ = −1
r
w(z),

Hz = 0.

3R1 Remark 3.4. As r0 tends to 0, the Dirichlet and Neumann eigenmodes of the annulus tend

to the Dirichlet and Neumann eigenvalues of the disk of same radius. Hence the TE and

TM modes of the cylinder with hole Ω′ tend to the TE and TM modes of the cylinder

without hole Ω. In contrast, the TEM modes do not depend on r0 as long as r0 6= 0,

but disappear at the limit when r0 = 0. This fact has a practical importance when thin

conductor wires are present.

3.3. Dirichlet and Neumann eigenvalues in a disk. Let G be the disk of radius R. The

Dirichlet and Neumann eigenvectors for −∆⊥ in G have the form (3.8), with vn scaled

from the Bessel function of the first kind Jn(z), solution of the differential equation

x2y′′ + xy′ + (x2 − n2)y = 0,

bounded in x = 0. Moreover, J0(0) = 1 and J ′
0(0) = 0, and Jn(0) = O(xn).

6L1 Lemma 3.5 ([8]). (i) Let (zdir
n,m)m≥1 be the positive zeros of Jn. The eigenpairs of (3.9a)

with boundary conditions (3.9d) in r = 0 and (3.9e) in r = R are (λdir
n,m, vdir

n,m) with

6E1 (3.12) λdir
n,m =

(
zdir

n,m

R

)2

and vdir
n,m(r) = Jn

(
zdir

n,m

r

R

)
, n ≥ 0, m ≥ 1.
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(ii) Let (zneu
n,m)m≥1 be the positive zeros of J ′

n. The eigenpairs of (3.9a) with boundary

conditions (3.9b) in r = 0 and (3.9c) in r = R are (λneu
n,m, vneu

n,m) with

6E2 (3.13) λneu
n,m =

(
zneu

n,m

R

)2

and vneu
n,m(r) = J ′

n

(
zneu

n,m

r

R

)
, n ≥ 0, m ≥ 1.

In Table 1 we give values for the first three zeros zdir
n,m and zneu

n,m for n = 0, 1, 2. We use

the relation Jν−1 − Jν+1 = 2J ′
ν to compute zneu

n,m. Since J−1 = −J1, there holds

zneu
0,m = zdir

1,m, ∀m ≥ 1.

zdir
0,m zdir

1,m zdir
2,m zneu

0,m zneu
1,m zneu

2,m

2.4048 3.8317 5.1356 3.8317 1.8412 3.0542

5.5201 7.0156 8.4172 7.0156 5.3314 6.7061

8.6537 10.173 11.620 10.173 8.5363 9.9695

TABLE 1. The first three zeros of J0, J1, J2, J ′
0, J ′

1, J ′
2.t1s3

We can now give conditions for TEM modes being the lowest modes:

6C1 Corollary 3.6. Let Ω by a circular cylinder of radius R and Ω′ = Ω \ Ωcd, with Ωcd a

coaxial cylinder of radius r0 and the same length ℓ.

(i) In case of boundary conditions (2.4b), for any integer k ≥ 1 such that

min

{
zdir
0,1

R
,

√(zneu
1,1

R

)2

+
(π

ℓ

)2
}

>
kπ

ℓ
i.e. k < min

{
0.766

ℓ

R
,

√(
0.586

ℓ

R

)2

+ 1

}
,

the following TEM mode in Ω′ corresponds to an eigenfrequency lower than those of Ω:

TEMsin1 (3.14)





Er = i
r
sin
(

kπ
ℓ
z
)
,

Eθ = 0,

Ez = 0,

and





Hr = 0,

Hθ = 1
r
cos
(

kπ
ℓ
z
)
,

Hz = 0.

(ii) In case of boundary conditions (2.26a), for any integer k ≥ 1 such that

zneu
1,1

R
>

kπ

ℓ
i.e. k < 0.586

ℓ

R
,
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the following TEM mode in Ω′ corresponds to an eigenfrequency lower than those of Ω:

TEMsin2 (3.15)





Er = − i
r
cos
(

kπ
ℓ
z
)
,

Eθ = 0,

Ez = 0,

and





Hr = 0,

Hθ = 1
r
sin
(

kπ
ℓ
z
)
,

Hz = 0.

(iii) In case of boundary conditions (2.26b), for any integer k ≥ 1 such that

√(zneu
1,1

R

)2

+
( π

2ℓ

)2

>
(
k − 1

2

)π

ℓ
i.e. k <

√(
0.586

ℓ

R

)2

+
1

4
+

1

2
,

the following TEM mode in Ω′ corresponds to an eigenfrequency lower than those of Ω:

TEMsin3 (3.16)





Er = i
r
sin
(
k − 1

2

)(
π
ℓ
z
)
,

Eθ = 0,

Ez = 0,

and





Hr = 0,

Hθ = 1
r
cos
(
k − 1

2

)(
π
ℓ
z
)
,

Hz = 0.

6R1 Remark 3.7. Let f be the frequency associated with ω, i.e. ω = 2πf . Let c denote the

speed of light. We have the relation ω = cκ.

(i) In case of boundary conditions (2.4b) or (2.26a), the frequency ω associated with TEM

modes is

TEMom (3.17) ω =
kπc

ℓ
, k = 1, 2, . . . .

For the first TEM mode, we have 2ℓf = c, which means that ℓ is the half-wave length.

(ii) In case of boundary conditions (2.26b), 4ℓf = c, i.e., ℓ is the quarter-wave length of

the first TEM mode.

6R2 Remark 3.8. (i) In accordance with lateral boundary conditions, all TE or TM eigenfre-

quencies have the form

3E80 (3.18)

√
λ2 +

(kπ

ℓ

)2

or

√

λ2 +
((k − 1

2
)π

ℓ

)2

,

where λ spans the set of positive roots of special functions Fn. The standard case of the

disk of radius R corresponds to λ 7→ Jn(λR) or λ 7→ J ′
n(λR). For the case of G′, annulus

of radii r0 and R, Fn(λ) is a determinant:

3E81 (3.19) Fn(λ) = Jn(λr0) Yn(λR) − Yn(λr0) Jn(λR) (Dirichlet case)

with the Bessel function of the second kind Yn. For the Neumann case, replace Jn and Yn

by their derivatives.
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(ii) As a part of the discussion on artificial boundary conditions for our physical problem,

we may think of imposing H × n = 0 on ∂G × I , instead of H · n = 0. However, on

∂Gcd × I the condition H ·n = 0 will still be imposed (perfect conductor approximation).

For this new mixed problem, TEM modes do not exist. Only TE and TM modes appear,

associated with eigenfrequencies of the form (3.18) for

3E82 (3.20) Fn(λ) = Jn(λr0) Y ′
n(λR) − Yn(λr0) J ′

n(λR),

or with a permutation of derivatives.

4. SPECIFICATIONS FOR THE INCIDENT MAGNETIC FIELD, THE METALLIC

CONDUCTOR AND THE COMPUTATIONAL DOMAIN
S4S4.1

4.1. Bird-cage coil. As mentioned in the first section, the incident magnetic field Hinc

is produced by a bird-cage coil (see an example in Fig. 1). Using an equivalent circuit

analysis one gets the analytic formulas of the resonant frequencies of the coil. Then the

magnetic field associated to each one is given by the Biot-Savart formula. In [3], an effi-

cient algorithm for the computation of these fields has been developed. From numerical

simulations it is seen that the magnetic field associated with the first resonant frequency

of an N-leg coil is the only appropriate one for applications in MRI: This is the field used

for our Hinc. It is given by a discrete Fourier transform:

4E1 (4.1) Hinc(r, θ, z) =
µ0

4π

N∑

k=1

v

(
r, θ − 2πk

N
, z

)
exp

(
2ikπ

N

)
,

where v is a function depending on the dimensions of the coil. We represent in Fig. 2 the

modulus of the magnetic field Hinc in the meridian domain Ωmer. We remark that Hinc is

homogeneous in most of the coil. A theoretical and numerical analysis of this property

and many more details can be found in [3]. In particular, it is verified that div Hinc is zero

and, as a consequence of (4.1), the following property for Hinc is proved: If developped

in angular modes with respect to the axis of the coil, all coefficients are zero, except those

of order n congruent to 1 modulo N .

Our specifications are the following: We use a 16 leg bird-cage coil with a diameter of

8.9 cm and a length of 12.8 cm. The width of the strip is 1 cm for the ring and 0.635 cm

for the legs.

4.2. Metallic wire. The metallic conductor Ωcd = Gcd×Icd is a cylindrical wire of radius

r0 and length ℓ. Its axis is parallel to the bird-cage coil axis. Let ρ be the distance between

the two axes. As mentioned in section 3, if ℓ is large enough, the smallest eigenfrequency

belongs to a TEM mode. This is the reason why, from now on, we concentrate on the

TEM modes. If ρ = 0, i.e. if the conductor and the coil are coaxial, we cannot expect

that TEM modes around the conductor are excited, since TEM modes are axisymmetric

and the angular mode of order 0 of the incident field is zero (see Fig. 4). Therefore in
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FIGURE 2. 3D view of the graph of |Hinc| fighinc

the following we assume that ρ 6= 0, and we fix it to be 1 cm. In most of the numerical

experiments, r0 is equal to 1 cm and ℓ to 25.6 cm, see Fig. 3.

In all geometry graphs, the conductor is shown in red.

ρ

z

Ω
Ωcd

bird-cage coil

x

bird-cage
coil axis

FIGURE 3. Projection on the xz-plane of the domains figomega

We represent in Fig. 4 ‖hn
inc‖ as a function of n for three values of ρ: ρ = 0 cm is

indicated by circles, ρ = 0.5 cm by stars, and ρ = 1 cm by dots.

The conductivity σ of Ωcd is set to 104 in most of our simulations. In a few experiments

σ is set to a larger value, which will be specified.

4.3. Computational domain and FEM discretization. Our computational domain is

Ω = G×I; it is a cylinder coaxial with Ωcd. We assume that I contains Icd, that the radius

R of Ω is larger than r0, but such that the projection G of Ω on the plane Π perpendicular

to the axis is contained inside the projection of the coil on Π, namely R is set to 3 cm.

We mainly consider two different configurations for Ω:

(1) A full cartesian product form for the couple (Ω, Ωcd), i.e., I = Icd. This con-

figuration is intended for validations of the finite element discretization. See in

Fig. 5 the mesh of the meridian domain Ωmer in the case when the radius of the

conductor is 1 cm (the metallic conductor is in red). Each element is 6.4 cm by

1 cm.

(2) A configuration more relevant for the physical application: I has no common end

with Icd. The length of I is set to 44.8 cm. See in Fig. 6 the mesh in the case when
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ρ = 0 cm
ρ = 0.5 cm
ρ = 1 cm

FIGURE 4. ‖hn
inc‖ versus n for three values of ρ figrho

FIGURE 5. Mesh for full cylinder configurations (§5) figmeshtensor

the radius of the conductor is 1 cm. Rectangular elements have the same size as

in Fig. 5.

FIGURE 6. Mesh for “realistic” configurations (§6 & 7) figmesh

4.4. Finite element discretizations. On rectangular meshes in the meridian domain Ωmer

contained in the (r, z) plane, we use the Q10 elements (partial degree 10) available in the

finite element library Melina (see [17]), and use the Galerkin discretization for the angular
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mode 0 of the regularized Maxwell equations. The variational formulation is

4E7 (4.2) Find H̃ = (hr, hθ, hz) ∈ V , such that ∀H̃′

= (h′
r, h

′
θ, h

′
z) ∈ V ,

∫

Ωmer

1

iεω − σ

(
∂zhθ ∂zh

′
θ + 1

r
∂r(rhθ)

1
r
∂r(rh

′
θ) + (∂rhz − ∂zhr) (∂rh

′
z − ∂zh

′
r)
)
rdrdz

−
∫

Ωmer

isµ2
(
(1

r
∂r(rhr) + ∂zhz)(

1
r
∂r(rh

′
r) + ∂zh

′
z)
)
rdrdz

+ iµω

∫

Ωmer

H̃ · H̃′

rdrdz = −iµω

∫

Ωmer

H̃
0
inc · H̃

′

rdrdz .

Here, H0
inc is the angular mode of order 0 of Hinc with respect to the axis of the conductor.

The variational space V incorporates essential boundary conditions, in particular on the

axis r = 0, where hr = hθ = 0.

The computer code used to solve (4.2) is taken from [3], where it was created and

validated. In particular, we can check that the solution is a divergence-free function and

does not depend on the parameter s. With little modifications of this code, we could also

solve the full 3D problem.

5. FEM COMPUTATIONS IN FULL CARTESIAN PRODUCT CONFIGURATIONS
S5

In this section, we consider a cartesian product structure: Ω and Ωcd are two circular

cylinders with the same length of 25.6 cm, meshed according to Fig. 5. Their common

interval on the z axis is I = (a, b). We investigate the influence of boundary conditions,

and their accordance with theoretical results obtained in §2 and §3.
h.n

5.1. Boundary condition H ·n = 0 on ∂G× I . We consider three cases associated with

three combinations of boundary conditions:

• case 1: H · n = 0 in G × {a, b},

• case 2: H × n = 0 in G × {a, b},

• case 3: H × n = 0 in G × {a} and H · n = 0 in G × {b}.

In the perfect conductor case (i.e., the limit as σ → ∞), these three cases correspond

to the framework theoretically investigated in §2 and 3. Extrapolating known results [16],

we can expect a deviation from the limit by O(
√

σ−1), i.e., for σ = 104 by 1%.

We represent on Fig. 7 the variation of the L2(Ωmer; rdr)-norm of the total angular

component htot
θ = hθ +(hθ)inc versus ω in each case: case 1 with circles, case 2 with stars

and case 3 with dots. Integer multiples of 108 are sampled, from 1 to 250.

The expected values for resonant frequencies ω are the multiples of πc
ℓ
≃ 36.81 × 108

in cases 1 and 2, and half-multiples (k − 1
2
) for case 3. Our computations give the closest

integer ×108, for k = 1, . . . , 6. We notice the difference in the amplitudes of even rank

resonances for cases 1 and 2: This is due to quasi-orthogonality properties with adjoint
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FIGURE 7. ‖htot
θ ‖ versus ω for three combinations of lateral boundary conditions fig1s5

Mesh

Case 1, ω = 37e8

Case 2, ω = 37e8

Case 3, ω = 18e8

FIGURE 8. |htot
θ | associated with the first resonant frequency in Fig. 7 fig2as5

modes (the right hand side is supported in elements (1,3) and (1,4) of the mesh and has

little variation in z).

We represent in Fig. 8 the absolute value |htot
θ | as function of (r, z) for the magnetic

field associated with the first resonant frequency in each case.

hxn

5.2. Boundary condition H × n = 0 on ∂G × I . As mentioned in Remark 3.8, we can

also consider the boundary condition H × n = 0 on ∂G × I while keeping the same
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boundary conditions on G×{a} and G×{b}, but there will then be no TEM modes. We

let the radius r0 take three different values:

• case 1: r0 = 1 cm,

• case 2: r0 = 1/4 cm,

• case 3: r0 = 1/16 cm.

The meshes are adapted to the varying inner radius, see below in §6.3.
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FIGURE 9. ‖htot
θ ‖ versus ω for the boundary condition H × n = 0 fig5s5

We represent in Fig. 9 the variation of the L2-norm of htot
θ versus ω in each case: case

1 with circles, case 2 with stars and case 3 with dots. Computing the first root of the

function F0 (3.20), we find 62.560 for r0 = 0.01, 34.957 for r0 = 0.0025 and 26.481 for

r0 = 0.000625. Using formula (3.18), multiplying by 3e8 and rounding to integers ×1e8
we find exactly the same numbers as in Fig. 9.

In Fig. 10, we represent the absolute value of the magnetic field associated with the

first resonant frequency when r0 = 1 cm.

6. CONFIGURATIONS B.
S6

We consider now the configuration depicted in Fig. 3, where the metallic conductor Ωcd

is completely surrounded by air. The domain Ω is not a cartesian product. Thus this case

is not covered by the theory in §2 and §3, but this theory is expected to provide asymptotic

models as the radius r0 of the conductor tends to 0.
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Mesh

r0 = 1 cm, ω = 190e8

FIGURE 10. |htot
θ | associated with the first resonant frequency fig6s5
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FIGURE 11. ‖htot
θ ‖ versus ω for four interpolation degrees fig7s5

6.1. Interpolation degree. We first check the convergence as the interpolation degree of

the finite elements increases. We consider the boundary condition H · n = 0 on ∂Ω and

discretize problem (4.2) with four different degrees: Q4, Q6, Q8 and Q10. We represent

in Fig. 11 the variation of the L2-norm of htot
θ versus ω in each case: Q4 with circles, Q6

with stars, Q8 with points and Q10 with a solid line. The result shows that for the lowest

resonances we already have a good precision with Q6 elements. A special case is the 4th

resonance which we see disappear as the precision increases. As in the case observed

above, this is due to the special geometry and the symmetry of the right hand side which

makes it almost orthogonal to the corresponding eigenfunction of the adjoint problem.

We deliberately chose a geometry with no global mirror symmetry (see Figure 6) in order

to avoid more of such cancellations, but the fact that the bird-cage antenna covers just

one-half of the length of the wire suffices for this cancellation of the 4th resonance.
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6.2. Varying boundary conditions. As in the cartesian product case, the choice of bound-

ary conditions on ∂Ω does have an important influence. We experiment with the following

three combinations:

• case 1: H · n = 0 in ∂Ω,

• case 2: H · n = 0 in ∂G × I and H × n = 0 in G × {a, b},

• case 3: H × n = 0 in ∂Ω.
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case 1
case 2
case 3

FIGURE 12. ‖htot
θ ‖ versus ω for three combinations of boundary conditions fig1s6

As we can see, there is almost no influence of the lateral boundary conditions on G ×
{a, b} (cases 1 and 2): The peaks coincide approximately with those of cases 1-2 in

Fig. 7, and visibly correspond to TEM modes. We observe again the absence of the 4th

resonance. The values of the resonant frequencies are very close to integer multiples of

cπ/ℓcd ≃ 36.81e8. The TEM structure is obvious in the “portraits” of the resonant modes,

see Fig. 13. Beyond the 7th resonances we can glimpse the onset of the non-TEM modes.

Regardless of the lateral boundary conditions G × {a, b}, the first resonant modes are

close to the TEM modes in the domain G × Icd with lateral b.c. H × n = 0 (perfect

insulator b.c.). In contrast, the boundary condition on the circular part ∂G × I has a

strong influence: If set to H × n, it kills the TEM modes, just as in the cartesian product

case, see Fig. 9. Even in this case, the lateral boundary conditions do not play an important

role: The resonant values in Fig. 9 (for r0 = 1 cm) and 12 (case 3) are very close to each

other.
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Rank ω

1 34e8

2 68e8

3 102e8

5 169e8

6 201e8

7 231e8

FIGURE 13. Resonant solutions with b.c. H · n = 0 f1bs6

S6.3

6.3. Varying the radius of the conductor. As in §5.2, we now vary the radius r0 of the

conductor: 1 cm, 1/4 cm and 1/16 cm. For the numerical simulations we use two new

tensor product meshes where the discretization in the z variable is the same as in Fig. 6

and is refined in the r variable: nodes at 0, 1/4, 1, 2 and 3 cm when r0 = 1/4 cm, and at

0, 1/16, 1/4, 1, 2 and 3 cm when r0 = 1/16 cm.

In Figures 14 and 15, we see that the resonant frequencies vary only little, but the

damping of the resonance as r0 decreases is clearly visible. This is a consequence of the

fact that the distance of penetration of the current inside the conductor (skin effect) is

proportionally larger if σ is kept constant and the radius of the conductor decreases. We

study the relation between σ and r0 numerically in the next subsection.
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FIGURE 14. ‖htot
θ ‖ versus ω for three conductor radii fig2s6
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FIGURE 15. Zoom of Fig. 14 around ω =35e8 fig3s6
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6.4. Varying the conductivity as a function of the conductor radius. From the theory

of the skin effect, we know that the distance of penetration is proportional to
√

σ−1. In

Fig. 16, r0 and σ are connected as follows:

• case 1: r0 = 1 cm and σ =1e4,

• case 2: r0 = 1/4 cm and σ =16e4,

• case 3: r0 = 1/16 cm and σ =256e4,

so that r0

√
σ remains constant.
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FIGURE 16. ‖htot
θ ‖ versus ω for three conductor radii, with related σ fig5s6

We see that there is no more damping as r0 decreases. We have evaluated the first

resonance frequency ω1 with four digit accuracy, for more values of r0, see Table 2.

We observe convergence to the perfect conductor situation in the case with connected

σ, whereas there is no such convergence if σ is kept constant.

6.5. Varying the length of the metallic conductor. We have computed resonance fre-

quencies for configurations like B., with different values for the length ℓ of the metallic

conductor. We keep the same 6.4 and 12.8 cm layers of air around the conductor. The

conductor radius is 1 cm and the conductivity σ is 1e4. The results still agree with the law

cπ/ℓ, as can be seen from Table 3.

7. CONFIGURATIONS C.
S7

Finally, we study configurations where the medium around the conductor may contain

a part of dielectric or moderately conducting material (such as salted water).
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r0 in cm 1.0000 0.5000 0.2500 0.1250 0.0625

ω1 with connected σ 34.01e8 34.50e8 34.98e8 35.37e8 35.67e8

Rel. deviation to cπ/ℓ 0.076 0.063 0.050 0.039 0.031

Convergence rate - 0.27 0.34 0.35 0.33 -

ω1 with constant σ =1e4 34.01e8 34.39e8 34.75e8 34.96e8 34.94e8

Rel. deviation to cπ/ℓ 0.076 0.066 0.056 0.050 0.051

Convergence rate - 0.20 0.23 0.15 * -

TABLE 2. Variation of the first resonance frequency with r0 and σt2s6

Length ℓ in cm 25.6 32.0 38.4 44.8

Computed ω1 34.0e8 27.6e8 23.2e8 20.0e8

cπ/ℓ 36.8e8 29.5e8 24.5e8 21.0e8

Rel. deviation to cπ/ℓ 0.076 0.063 0.055 0.050

TABLE 3. The first resonant frequencies for different conductor lengthst3s6

7.1. Metallic conductor surrounded by a moderately conducting material. We first

consider a homogeneous surrounding medium, namely the same configuration as in Fig.

3 with, instead of the air, ε = 80ε0 in the medium surrounding the metallic conductor. We

vary the electric conductivity in this medium: σ = 0, σ = 0.01, σ = 0.1, and σ = 1 and

represent the response versus ω in Fig. 17.

We observe the opposite effect as when the conductivity of Ωcd is increased. Note

also that the corresponding TEM modes are associated with the eigenfrequencies kπc′/ℓ,

where c′ is the speed of light inside the medium with relative permittivity 80. Thus

c′ = c/
√

80, and the TEM eigenfrequencies are the integer multiples of 4.116e8. The

computed eigenfrequencies are 3.8e8, 7.6e8 and 11.3e8, instead of 4.1e8, 8.2e8 and

12.3e8.

7.2. Metallic conductor surrounded by air and salt water. In configuration in Fig. 3,

we replace air with salted water in one, two or three columns of elements. On the mesh

graphs, the region Ωswa is in cyan (or light gray). We take ε = 80ε0 and σ = 4 in the salt

water.

In each of the three configurations, we show the first three resonant solutions in Fig.

19, 20 and 21.
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Rank ω

1 17e8

2 42e8

3 70e8

FIGURE 19. Resonant solutions with 1 salt water layer fig1as7

For the first two frequencies in Fig. 19, the resonance is so weak that one can clearly

see the incident field in the plot (near the middle of the upper boundary). In all other

field-strength plots with strong resonances, the incident field is hardly discernible.

Notice the similarities and differences of the rank 3 solution in Fig. 19 with the second

resonant solution in Fig. 13. The approximate value of the second TEM eigenfrequency

with perfectly insulating lateral b.c. is 73.6e8.

Rank ω

1 17e8

2 53e8

3 88e8

FIGURE 20. Resonant solutions with 2 salt water layers fig4as7

With two swa layers (Fig. 20), the metallic conductor has one of its ends in contact

with water. The asymptotic model is then clearly the cartesian product configuration with
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perfectly insulating b.c. in the right end and perfectly conducting b.c. in the left end. The

TEM eigenfrequencies of this limit model are c(k− 1
2
)π/ℓ, namely approximately 18.4e8,

55.2e8, 92.0e8 for the first three ones.

Rank ω

1 23e8

2 69e8

3 116e8

FIGURE 21. Resonant solutions with 3 salt water layers fig7as7

With three swa layers (Fig. 21), one quarter of the metallic conductor lies in water.

The asymptotic model is then the cartesian product configuration of length ℓ′ = 3ℓ/4
with perfectly insulating b.c. in the right end and perfectly conducting b.c. in the left end.

The TEM eigenfrequencies of this limit model are c(k − 1
2
)π/ℓ′, namely approximately

24.5e8, 73.6e8, 122.7e8 for the first three ones.

8. CONCLUSIONS
S8

In the numerical experiments in the previous sections, we studied the phenomenon that

a conducting wire in an MRI device can act as a radiating antenna at certain resonance

frequencies. Several general observations emerge quite clearly from the numerical results:

1. The strong variations of the field strength, in particular at the wire tips due to the

singular geometry, but also at the surface of the wire and at the surface of the conducting

liquid due to the skin effect, require a high-resolution discretization method. High order

finite elements (of degree 8 or 10) on a rather simple structured grid are working well and

give precise results.

2. The radiating-antenna modes can be described qualitatively, and in many cases also

quantitatively with good accuracy, by the TEM modes of a greatly simplified mathemati-

cal model. The simplified mathematical model, a homogeneous material filling a circular

cylinder with a coaxial cylindrical hole, has a small number of parameters that have to be

chosen appropriately in order to get this agreement: Apart from the permittivity, mainly

the length of the cylinder and the boundary conditions.
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The length of the cylinder corresponds to the “effective” length of the wire. In the case

of a wire surrounded by air, the effective length is a few percent longer than the physical

length, due to the way how the field emerges from the wire tips. There is some minor

influence from the form of the wire tips, although we have not presented this here. The

maximal heat production corresponds to maximal strength of the electrical field which is

attained also close to the wire tips, in general. Details of the behavior of the electric field

could be obtained with high accuracy from a postprocessing of the computed magnetic

field data which were presented here.

The diameter of the wire and its finite conductivity have an influence on the agreement

between the numerical model and the simplified mathematical model, too: We observe

convergence of the resonance frequencies of the former to the eigenfrequencies of the

latter if the radius r0 tends to 0 while the conductivity tends to infinity like r−2
0 .

In the case of a heterogeneous material consisting of air and a weakly conducting ma-

terial (salt water), the effective length of the wire corresponds roughly to the length of

the non-immersed part, if the wire is partially immersed. If the wire is entirely outside of

the water, the situation is rather different. There can be cases where the space between

the end of the wire and the surface of the water can contribute to the resonance and thus

augment the effective length, by 50% in the case depicted in the third plot of Figure 19.

The first resonances can be strongly damped in this case, too.

In the simplified mathematical model we always consider perfect conductor boundary

conditions (H ·n = 0 and E×n = 0) on the cylindrical surface corresponding to the wire,

whereas the lateral boundary conditions are adapted to the different physical situations:

In the case of a wire surrounded by air, the lateral boundary conditions to choose are

perfect insulator conditions (H × n = 0 and E · n = 0). In the presence of salt water, the

appropriate conditions corresponding to the surface of the liquid are the perfect conductor

conditions.

3. The computational domain was chosen to be a circular cylinder coaxial to and

radially centered around the wire with a radius smaller than the distance of the wire to the

MRI bird-cage antenna. We showed results for different choices of boundary conditions

on the artificial boundary of this domain. It turns out that if the computational domain

is substantially longer than the wire, then the boundary conditions on the lateral parts of

the boundary (bases of the cylinder) play almost no role. The boundary condition on the

outer part of the boundary, which is also closest to the bird-cage antenna, are important,

however. The radiating-antenna modes appear when perfect conductor conditions are

chosen, and they are absent when perfect insulator conditions are chosen. This is also in

agreement with the discussion of TEM modes for the simplified mathematical model.

4. The finite element library on which the numerical code was based allows easy adap-

tation of the model to other geometries and the treatment of various possible extensions:

Testing of impedance conditions, for example, or full three–dimensional computations.
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In the case of a hexahedral computational domain, one could again compare the numeri-

cal results with analytic separation-of-variables expressions for the eigenfrequencies and

eigensolutions.
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nucléaire. Doctoral thesis, Université de Rennes 1, 2005.
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