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ABSTRACT. A waveguide in integrated optics is defined by its refractive index. The guide is

assumed to be invariant in the propagation direction while in the transverse direction it is supposed

to be a compact perturbation of an unbounded stratified medium. We are interested in the high

frequency modes guided by this device.

We consider the problem under the assumptions of weak guidance, so that it reduces to a

two dimensional eigenvalue problem for a scalar field. While a general study has been done in

a previous paper [1], our goal here is to present an asymptotic study at high frequencies, which

illustrates the dispersive character of the stratified guide. We will give the limit as the frequency

tends to ∞ of the guided modes and characterize this limit as the solution of an eigenproblem.

The technical difficulty lies in the stratified character of the unbounded reference medium.

1 Introduction

A waveguide in integrated optics is defined by its refractive index. In our paper we

shall consider guides invariant in the propagation direction x3 , which are composed of a

stratified medium with a compact perturbation in the transverse section, called the core of

the guide, see Figure 1.
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Figure 1: Stratified optical guide.

The stratified medium is the reference medium and is intended to guide electromag-

netic waves in one layer. The unboundedness of the reference medium will put obstacles



in the theoretical and numerical studies as well as carry particular phenomena at high fre-

quency. The compact perturbation of the reference medium is designed to confine waves

inside a layer in a neighborhood of the perturbation.

We will work under the assumption of weak guidance, so our problem reduces to

a two dimensional eigenvalue problem for a scalar field. A careful study of the scalar

model has to be carried out before starting with the vectorial model, since it allows to

solve in a much simpler situation a lot of mathematical difficulties due to the stratification

of the unbounded medium. The vectorial model will be studied in a forthcoming work. In

[1], we have presented a general study of electromagnetic waves guided by such devices,

which are waves of the form φ(x1, x2)e
i(kc0t−βx3) where x1, x2 denote the transverse

coordinates, x3 the longitudinal coordinate, c0 the speed of light in the vacuum, k the

wave number, and β the propagation constant of the mode. The guided modes correspond

to waves of finite transverse energy which propagate without attenuation, i.e. with k
and β real. We have determined existence conditions of guided modes and bounds for

the number of guided modes. Here we will pursue by a high frequency analysis. The

wave number k will be considered as a parameter and taken large, then we will look for

dispersion relations k → β(k) .

The paper is organized as follows. In the next section we introduce the notations

and present our main results : when the frequency tends to infinity, (i.e. k → ∞ ), the

guided modes tend to the solutions of the Dirichlet eigenproblem on the set B+ where the

refractive index n achieves its maximum, or disappear in the lower bound of its essential

spectrum. In particular we have at least as many guided modes at high frequency as

solutions of the Dirichlet eigenproblem on B+ .

In Section 3 we study the eigenvalue problem on the perturbed strip B+ . We give

necessary conditions to have eigenpairs of this problem and discuss thoroughly with nu-

merical computations the range of validity of two different criteria. The convergence of

the guided modes to the eigenpairs of the perturbed strip is then proved in Section 4. Fi-

nally Section 5 is devoted to get underestimates for the number of guided modes at high

frequencies. In particular we prove that we can have guided modes which disappear in the

lower bound of the essential spectrum of the Dirichlet eigenproblem on B+ . This result

is also illustrated by an example.

Let us introduce the standard notations we shall use all over the paper. R
+ denotes

the non negative real numbers and R
+
∗ the positive real numbers. For m ∈ N and

Ω ⊂ R
d ( d ∈ N ), Hm(Ω) is the classical Sobolev space of functions with derivatives up

to the order m in L2(Ω) endowed with the scalar product (·, ·)m,Ω , the norm ‖ · ‖m,Ω ,

and seminorm | · |m,Ω . We denote by
◦
Hm(Ω) the closure of D(Ω) , the space of C∞

functions with compact support in Ω , with respect to the norm ‖ ·‖m,Ω , and by H−m(Ω)
its dual space. We shall also use the standard differential operators div , ∇ , ∆ .
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2 Framework and results

We assume that the guide is invariant in one direction (say Ox3 ) which will be the

propagation direction, and that it is a perturbation of a stratified medium. If the function n
denotes the refractive index, then n is a function of x1, x2 only, n = n(x1, x2) . Outside

the perturbation, the function n is depending only on x2 . A guide is represented in

Figure 1. Since we shall study electromagnetic waves harmonic in x3 , so later on we will

only represent the transverse section of the guide.

The index function n defines a planar waveguide associated to the guide under con-

sideration; it represents the stratified medium without perturbation, see Figure 2.
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Figure 2: Planar waveguide associated.

Theoretical studies of the one dimensional problem (with respect to x2 ) of the planar

waveguide are considered in GUILLOT [3], SCHECHTER [9], or in WILCOX [10]. We

assume that n is a piecewise continuous function defined in R and that, if n+ denotes

the supremum of n , {
n(ξ) = n+ if |ξ| < η
n(ξ) < n+ if |ξ| > η,

(2.1)

for some positive number η . This assumption corresponds to guides with one layer of

maximal index to vertically confine waves. To that category belongs the canonical rib

guide often used in the applications. In fact under this assumption (2.1) we have proved

in [1] that the number of guided modes remains bounded as k tends to ∞ . Then it is

natural to determine theirs limits.

The refractive index n is a piecewise continuous function defined in R
2 ; moreover

there exists a compact set K = (−a, a) × (−b, b) ⊂ R
2 , b ≥ η , such that

for all x ≡ (x1, x2) 6∈ K n(x) = n(x2). (2.2)

Let n+ denote the supremum of n . We assume

n+ = n+, (2.3)
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which is the case under consideration here. The case n+ > n+ is known from optical

fibers, see [2].

In the asymptotical study of guided modes we often refer to the Dirichlet eigenprob-

lem on the set where n achieves its maximum. We set

B+ = Interior{x ∈ R
2;n(x) = n+}. (2.4)

To carry out our analysis we add an assumption on n . For real positive δ , let ωδ be the

set

ωδ = {x ∈ R
2; dist(x,B+) > δ}

and ζ(δ) = n2
+ − supx∈ωδ

n2(x) . Then our hypothesis reads

B+ is a Lipschitz domain and for all δ > 0 , ζ(δ) > 0 . (2.5)

Remark 2.a The assumption (2.5) is technical. It expresses what is needed to describe

the behavior of guided modes at high frequencies and can be loosened by considering it

in a neighborhood of ∂B+ . The classical example of the three layers rib guide satisfies

this assumption. In fact the two generic cases, either n has a jump at ∂B+ or n is a

regular function (C1 ) fulfil the loosened assumption.

Looking for harmonic guided modes under the assumption of weak guidance consists

in determining the real numbers β , k , the functions u ∈ H1(R2) such that

−∆u− k2n2u = −β2u in R
2; (2.6)

k is the wave number and β is the propagation constant of the mode. A classical way

to study these modes is to fix k and to look for (−β2, u) . We will keep the same point

of view here, that is k will be considered as a parameter, while the unknowns will be the

eigenpair (−β2 ≡ λ, u) . By varying k we then get the dispersion relations k 7→ λ(k) .

Thus we define the unbounded operator Ak : D(Ak) ⊂ L2(R2) → L2(R2) by

D(Ak) = {v ∈ H1(R2); ∆v ∈ L2(R2)} and Akv = −∆v − k2n2v for v ∈ D(Ak).

We consider now the problem: find λ ∈ R and u ∈ D(Ak) , u 6≡ 0 , such that

Aku = λu. (2.7)

The operator Ak has been extensively studied in [1]. It is a bounded from below selfad-

joint operator and its spectrum satisfies σ(Ak) ⊂ [−k2n2
+,∞) . The spectrum consists

of a continuum, the essential spectrum σess(Ak) , and of a discrete set, the discrete spec-

trum σd(Ak) , which is the set of isolated eigenvalues of finite multiplicity. The essential

spectrum is given by

σess(Ak) = [γ(k),∞) (2.8)
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where

γ(k) = inf
ϕ∈H1(R)

ϕ 6=0

∫
R
(ϕ′2 − k2n2ϕ2) dy∫

R
ϕ2 dy

, (2.9)

is the smallest eigenvalue of the Sturm-Liouville operator of the associated planar waveg-

uide.

The point spectrum σp(Ak) consists of the discrete spectrum σd(Ak) which is the

set of eigenvalues below γ(k) and of eigenvalues embedded in the essential spectrum.

We can characterize the discrete spectrum with the Min–Max principle, see [8]. Corre-

sponding to the problem (2.7), we define the Min–Max quantities λm(k), m ≥ 1 , by

λm(k) = inf
Hm∈Hm(H1(R2))

sup
v∈Hm
v 6=0

ak(v, v)

(v, v)0,R2

, (2.10)

where Hm(H1(R2)) is the set of m -dimensional subspaces of H1(R2) and ak(·, ·) :
H1(R2) ×H1(R2) → R is given for u, v ∈ H1(R2) by

ak(u, v) =

∫

R2

(∇u∇v − k2n2uv) dx.

Then

−k2n2
+ ≤ λ1(k) ≤ λ2(k) ≤ . . . ≤ λm(k) ≤ . . . ≤ γ(k)

and if λj(k) = γ(k) for some j ≥ 1 then Ak has at most (j − 1) eigenvalues be-

low γ(k) . If λj(k) < γ(k) , then λ1(k), . . . , λj(k) are the first j eigenvalues of Ak ,

repeated with their multiplicity.

For a given k we have only a finite number of eigenvalues below γ(k) , see [1] for

instance. If N(k) is the number of eigenvalues strictly below γ(k) , in other words

N(k) = sup{m ∈ N;λm(k) < γ(k)},

then N(k) represents the number of guided modes. Using comparison principles we have

got in [1] upper and lower bounds of N(k) for some indices n satisfying to (2.1)–(2.3),

from which existence results are derived. The relevant point here is to study the limit of

λm(k) + k2n2
+ as k tends to ∞ .

Similarly to the set B+ defined in (2.4), we associate the Min–Max quantities for

m ≥ 1

µm = inf
Hm⊂Hm(

◦
H1(B+))

sup
ϕ∈Hm
ϕ 6=0

∫
B+

|∇ϕ|2 dx
∫

B+
ϕ2 dx

, (2.11)

where Hm(
◦
H1(B+)) is the set of all vector subspaces of

◦
H1(B+) of dimension m . The

quantities µm characterize the discrete spectrum of the operator A : D(A) ⊂ L2(B+) →
L2(B+) defined by

D(A) = {ϕ ∈
◦
H1(B+); ∆ϕ ∈ L2(B+)} and Aϕ = −∆ϕ ∀ϕ ∈ D(A). (2.12)
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In the next section we will present a study of the Dirichlet eigenproblem on the perturbed

strip B+ and give sufficient conditions to have eigenvalues.

In section 4 we will prove the major result of the paper, which is the following.

Theorem 2.1 We assume that n and B+ satisfy to the assumptions (2.1)–(2.3) and (2.5).

Then for all m
lim
k→∞

λm(k) + k2n2
+ = µm, ր . (2.13)

In particular if µm is an eigenvalue of A , then for k large enough λm(k) is an eigen-

value of Ak .

3 The Dirichlet eigenproblem on a perturbed strip

Here we present results on the spectrum of A . Results on the perturbed strip can be

found in the literature, see for instance the pioneering work [4] or [11] close to the present

case. Our techniques are adapted from [1] in the case of B+ .

Proposition 3.1 The operator A defined in (2.12) is selfadjoint positive and

σ(A) ⊂

[
π2

e2+
,∞

)
and σess(A) =

[
π2

4η2
,∞

)
.

where η is defined in (2.1) and e+ = supx1∈R e(x1) with

e(x1) = sup{|x2 − y2|; (x1, x2) ∈ B+, (x1, y2) ∈ B+}.

PROOF. Clearly the operator A is selfadjoint positive. Let us check that its spectrum

is above π2

e2
+

. We notice that for a given x1 with e(x1) > 0 , the first eigenvalue of the

operator − d2

dy2 : H2(I ) ∩
◦
H1(I ) → L2(I ) , I being the smallest interval containing

B+∩{(x1, x2); x2 ∈ R} , is π2

e(x1)2
. So for any ϕ ∈ D(A) , we denote by ϕ̃ its extension

by 0 over R
2 and we have

∫

I

(
∂ϕ̃

∂x2
(x1, x2)

)2

dx2 ≥
π2

e(x1)2

∫

I

ϕ̃2(x1, x2) dx2. (3.1)

Then we integrate over x1 to get

∫

B+

|∇ϕ|2 dx ≥
π2

e2+

∫

B+

ϕ2 dx;

with the Min–Max principle, we conclude.

To determine the essential spectrum of A we proceed with standard arguments of singular

sequences, see [1].
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Proposition 3.2 (i) The number NB+
of eigenvalues of A below π2

4η2 is finite.

(ii) If B+ contains the rectangle (−d, d) × (−h, h) with h > η , then the following

lower bound holds

M(d, h) ≤ NB+
,

where

M(d, h) =

∣∣∣∣∣

{
(p, q) ∈ N

∗ × N
∗;
p2

d2
+
q2

h2
<

1

η2

}∣∣∣∣∣ . (3.2)

(iii) If e(x1) ≤ 2η for all x1 , then

σ(A) = σess(A) and NB+
= 0.

PROOF.

(i) The key point here is to introduce a Neumann boundary condition to get a lower bound

for the eigenvalues in a comparison principle. Let Ba be the set {x ∈ B+;−a < x1 <
a} , see (2.2). The eigenproblem

−∆ϕ = αϕ in Ba,
ϕ = 0 on ∂Ba\{(−+a, x2) ∈ B+},
∂ϕ
∂ν = 0 on {(−+a, x2) ∈ B+},

admits a sequence {αm}m≥1 of eigenvalues tending to infinity. The eigenvalues αm are

characterized by the Rayleigh quotient

αm = sup
ϕ1,...,ϕm−1∈L2(Ba)

inf
ϕ∈H, ϕ 6=0

ϕ∈[ϕ1,...,ϕm−1]⊥

∫
Ba

|∇ϕ|2 dx∫
Ba
ϕ2 dx

(3.3)

where H = {ϕ ∈ H1(Ba);ϕ = 0 on ∂Ba\{(−+ a, x2) ∈ B+}} .

Given ϕ ∈
◦
H1(B+) , for almost all x1 , |x1| > a , we have

∫ η

−η

|
∂ϕ

∂x2
(x1, x2)|

2 dx2 ≥
π2

4η2

∫ η

−η

ϕ2(x1, x2) dx2 (3.4)

and integrating over (−∞,−a) ∪ (a,∞) gives

∫

Ca

|∇ϕ|2 dx ≥
π2

4η2

∫

Ca

ϕ2 dx

with Ca = {(x1, x2) ∈ B+; |x1| > a} . The Max–Min characterization of µm is

µm = sup
ϕ1,...,ϕm−1∈L2(B+)

inf
ϕ∈

◦
H1(B+), ϕ 6=0

ϕ∈[ϕ1,...,ϕm−1]⊥

∫
B+

|∇ϕ|2 dx
∫

B+
ϕ2 dx
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and therefore with (3.4) we have

µm ≥ sup
ϕ1,...,ϕm−1∈L2(B+)

inf
ϕ∈

◦
H1(B+), ϕ 6=0

ϕ∈[ϕ1,...,ϕm−1]⊥

∫
Ba

|∇ϕ|2 dx+ π2

4η2

∫
Ca
ϕ2 dx

∫
Ba
ϕ2 dx+

∫
Ca
ϕ2 dx

.

We deduce then from the relation for a1, a2, a3, a4 ∈ R , a3 > 0 , a4 > 0 ,

a1 + a2

a3 + a4
≥ min

(
a1

a3
,
a2

a4

)
,

that

µm ≥ sup
ϕ1,...,ϕm−1∈L2(Ba)

inf
ϕ∈H, ϕ 6=0

ϕ∈[ϕ1,...,ϕm−1]⊥

α(ϕ),

where

α(ϕ) = min

(∫
Ba

|∇ϕ|2 dx∫
Ba
ϕ2 dx

,
π2

4η2

)
.

Finally we conclude that

µm ≥ min

(
αm,

π2

4η2

)
.

(ii) We consider the Dirichlet eigenvalue problem in the set R = (−d, d) × (−h, h) ,

−∆ϕ = αϕ in R,
ϕ = 0 on ∂R.

The eigenvalues are

αm =
p2π2

4d2
+
q2π2

4h2
, (p, q) ∈ N

∗ × N
∗.

With a comparison principle for Dirichlet problems, we conclude that the following bound

holds M(d, h) ≤ NB+
.

(iii) It is an immediate consequence of Proposition 3.1.

When the perturbed strip B+ does not contain a rectangle large enough, i.e. M(d, h) =
0 , then Proposition 3.2 is of no help to prove the existence of at least one eigenvalue below

the essential spectrum. With a different method we can derive the following result.

Proposition 3.3 We assume that the strip B+ contains the set

B̃+ = {x ∈ R
2;−g(x1) < x2 < g(x1) ∀x1 ∈ R},

where the function g : R → R is positive continuous piecewise C1 and satisfies




g(x1) = η for |x1| > a,∫ a

−a

(η2 − g2) + κη2g′2

g
dx1 < 0,

(3.5)
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with κ = 1/3+2/π2 . Then the operator A has at least one eigenvalue below its essential

spectrum [ π2

4η2 ,∞) .

PROOF. By comparison principle it is sufficient to prove the existence of the first eigen-

value for the Laplacian operator Ã defined in the strip B̃+ . In fact we will construct a

function ϕ ∈
◦
H1(B̃+) such that

∫

B̃+

|∇ϕ|2 dx <
π2

4η2

∫

B̃+

ϕ2 dx; (3.6)

then with the Min–Max principle we can conclude. We choose ϕ to be the function

ϕ(x) = cos

(
πx2

2g(x1)

)
ζ(x1)

with

ζ(x1) =

{
1 if −a < x1 < a,
e−α(|x1|−a) elsewhere.

It is not difficult to check that by choosing α small enough, the inequality (3.6) is satisfied

if ∫ a

−a

∫ g(x1)

−g(x1)

[
|∇ϕ|2 −

π2

4η2
ϕ2

]
dx2dx1 < 0.

Then using the definition of ϕ , we can develop the above integral to get the inequality in

(3.5).

Remark 3.a The criterion (3.5), although technical, can be interpreted in the following

way. We introduce the relative perturbation function f by g = ηf . Then the criterion

reads ∫ a

−a

[
1 − f 2

f
+ κη2f

′2

f

]
dx1 < 0; (3.7)

for η small the dominant term is the difference term
∫ a

−a
[1/f − f ] dx .

Due to the term with a derivative of f , the criterion (3.7) can be bad when the boundary

of B+ has a step profile.

Remark 3.b We can have a variant of Proposition 3.3 if we consider the set B̃+ to be

B̃+ = {x ∈ R
2; 0 < x2 + η < g(x1) ∀x1 ∈ R},

where g is a continuous function piecewise C1 larger than η . Then the conclusion of

Proposition 3.3 still holds under the assumption





g(x1) = 2η for |x1| > a,∫ a

−a

(4η2 − g2) + κ̃ 4 η2g′2

g
dx1 < 0,

(3.8)
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with κ̃ = 1/3 + 1/2π2 . We choose ϕ to be the function

ϕ(x) = sin

(
π(x2 + η)

g(x1)

)
ζ(x1),

with ζ(·) the function introduced in the proof of Proposition 3.3.

Corollary 3.4 We assume that the strip B+ contains the set

B̃+ = {x ∈ R
2;−η < x2 < ℓ(x1) ∀x1 ∈ R},

where the piecewise continuous function ℓ satisfies
{
ℓ(x1) ≥ η ∀x1 ∈ R,

measure of {x ∈ B̃+; ℓ(x1) > η} > 0.
(3.9)

Then the operator A has at least one eigenvalue below the essential spectrum.

PROOF. Without loss of generality we can assume that there exists an ε > 0 such that

(−ε, ε) × (η, η +
ε2

η2
) ⊂ {x ∈ B̃+; ℓ(x1) > η}.

We set

g(y) =

{
η if |y| ≥ ε,
α(|y| − ε)2 + η elsewhere.

It is a simple matter to check that α > 0 can be chosen such that (3.8) holds.

So far we have presented two different criteria, the rectangle criterion of Proposi-

tion 3.2 and the integral criterion (3.5) (or (3.8)). One does not imply the other.

With the rectangle criterion, it would be impossible to get Corollary 3.4. Indeed we

can choose a strip B+ such that the best choice of d and h > η will lead to M(d, h) =
0 , while the operator A has at least one eigenvalue below the essential spectrum.

The end of the section is devoted to numerical examples which illustrate precisely the

range of both criteria.

Example 3.c We consider the two different strips Bi
+ , i = 1, 2 , represented in Figure 3.

More precisely here the functions gi , f i are given by

gi = ηf i, f i = 1 + εf̃ i,

with

f̃ 1(x1) =

{
− cos(x1) − 3π

2
< x1 <

3π
2
,

0 elsewhere,

f̃ 2(x1) =






−1 |x1| ≤
π
2
,

1 π
2
< |x1| ≤

3π
2
,

0 elsewhere,
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Figure 3: The two perturbed strips B1
+ and B2

+ with η = 2 , ε = 1 .

the real numbers η and ε are considered as parameters, 0 < η and 0 ≤ ε < 1 .

For different values of the parameters (η, ε) , that is for different sets B1
+ and B2

+ , we

want to know whether the problem has at least one eigenvalue or no eigenvalue, whether

the criteria presented above are valid or not.

In Figure 4 we have collected all our results. We distinguish subregions with their filling.

In the squared subdomain both criteria are valid while in the vertically marked subdomain

only the integral criterion is valid and in the horizontally marked subdomain the rectangle

criterion only is valid. In the two obliquely marked subdomains the eigenproblem has at

least one eigenvalue (sparse filling) or two eigenvalues (dense filling) . Finally the white

subdomain represents the case when there is no eigenvalue below the essential spectrum.
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Figure 4: Results in Oηε -plane for B1
+ and B2

+ .

In fact we have computed the boundaries of the subdomains by dichotomy procedure. The

integral criterion reduces to numerical integrations, with affine regularization in the case

2, and the rectangle criterion needs an optimization process in the case 1 and is explicit in

the case 2. The computation of the existence limit curves (for 1 or 2 eigenvalues) is much
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more involved. For a given pair (ε, η) we mesh the truncated strip Bi = Bi
+∩(]0, 6[×R)

(half of the grey region in Figure 3), we solve an equivalent eigenvalue problem on Bi

by introducing transparent boundary condition on the boundary {(6, x2);−η < x2 < η}
and Neumann condition on the boundary {(0, x2);−gi(0) < x2 < gi(0)} . We refer to

[5] for the method and to [6] for its implementation in our waveguide case, based on the

finite element code MÉLINA, see [7].

Since we are using a finite element approximation it is not difficult to check with com-

parison principle that we overestimate the non existence region. Anyhow we are working

with several thousands of triangles in Bi and piecewise polynomial of degree 1 approx-

imation to have less than 1 percent of error. Due to the symmetry when we impose a

zero boundary condition on {(0, x2);−gi(0) < x2 < gi(0)} , we can get the second

eigenvalue.

Notice also that the rectangle criterion gives the second eigenvalue for symmetry reason.

Both results in Figure 4 are essentially similar. Nevertheless we can figure out the effects

of the regularity of B+ on the existence region and on the validity of the integral criterion.

Remark 3.d To the light of the above example, we can look at the rectangle criterion of

Proposition 3.2 and the integral criterion (3.5), when the strip B+ is determined by the

the functions

g = ηf, f = 1 + εf̃

and ε , η are getting smaller and smaller. If
∫ a

−a
f̃ dx > 0 , then for ε small enough the

integral criterion (3.5) is satisfied. If ε is fixed and η small enough, then the rectangle

criterion implies the existence of at least one eigenvalue, as soon as f̃ is strictly positive

somewhere.

4 Convergence proofs

The goal of the section is to prove Theorem 2.1. In the case of the planar waveguide

characterized by n , we have studied in [1], Appendix A, the high frequency limit of the

eigenvalues γm(k) characterized by

γm(k) = inf
Hm∈Hm(H1(R))

sup
ϕ∈Hm
ϕ 6=0

∫
R
(ϕ′2 − k2n2ϕ2) dy∫

R
ϕ2 dy

, (4.1)

where Hm(H1(R)) is the set of all m -dimensional subspaces of H1(R) . Recall that

the quantity γ(k) in (2.9) is γ1(k) . The following result holds.

Proposition 4.1 We assume that n satisfies to (2.1). Then for each m ≥ 1 , γm(k) +
k2n2

+ , as a function of k > 0 , is increasing and

lim
k→∞

γm(k) + k2n2
+ =

m2π2

4η2
.

12



Proposition 4.2 Let λm(k) and µm , m ≥ 1 , be the Min–Max quantities defined in

(2.10) and (2.11). Then λm(k) + k2n2
+ , as a function of k > 0 , is increasing and

bounded by µm .

PROOF. For all v ∈ H1(R2) , v 6= 0 , and for 0 < k1 < k2 , we clearly have

∫

R2

(
|∇v|2 + k2

1(n
2
+ − n2)v2

)
dx ≤

∫

R2

(
|∇v|2 + k2

2(n
2
+ − n2)v2

)
dx.

We divide both terms by
∫

R2 v
2 dx and take the inf sup to get

λm(k1) + k2
1n

2
+ ≤ λm(k2) + k2

2n
2
+.

Let us get now the bound µm . If µm = π2/4η2 , the result is immediate since we have

the estimates

λm(k) + k2n2
+ ≤ γ(k) + k2n2

+ ≤
π2

4η2
,

where the second estimate is given in Proposition 4.1. We assume now that µm <
π2/4η2 , that is µm is an eigenvalue of the corresponding eigenproblem on the perturbed

strip. Let w(i) be a normalized eigenvector associated to µi , i = 1, . . . , m . To each

w(i) ∈
◦
H1(B+) , we associate the function w̃(i) ∈ H1(R2) defined in R

2 by zero exten-

sion and we set Hm = span{w̃(1), . . . , w̃(m)} . Then we have

λm(k) + k2n2
+ ≤ sup

v∈Hm
v 6=0

∫
R2 |∇v|

2 dx∫
R2 v2 dx

,

since n2
+−n

2 = 0 inside the support of ϕ ∈ Hm . Then clearly for any v ∈ Hm , v 6= 0 ,

∫
R2 |∇v|

2 dx∫
R2 v2 dx

≤ µm,

and the proof is complete.

We deduce from the above result that the limit, limk→∞ λm(k) + k2n2
+ , exists and is

bounded by µm . We will prove now that this limit is actually µm ; to do it we first prove

an estimate on corresponding eigenfunctions outside B+ .

Lemma 4.3 We assume that n and B+ satisfy to the assumptions (2.1)–(2.3) and (2.5).

If {λm(k), ϕm(k)}k≥k0
is a sequence of eigenpairs of Ak , normalized to ‖ϕm(k)‖0,R2 =

1 , then for all δ > 0 , the following holds

lim
k→∞

‖ϕm(k)‖1,ωδ
= 0.

PROOF. We start from the expression

−∆ϕm(k) + k2(n2
+ − n2)ϕm(k) = (λm(k) + k2n2

+)ϕm(k).
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Let δ > 0 be given and χ be a regular function such that 0 ≤ χ ≤ 1 , χ(x) = 1 for

x ∈ ωδ , χ(x) = 0 for x ∈ ωC
δ/2 . Then we multiply the above equation by χϕm(k) and

get
∫

R2

∇ϕm(k)∇ (χϕm(k)) dx+ k2

∫

R2

χ(n2
+ − n2)ϕ2

m(k) dx

=
(
λm(k) + k2n2

+

)∫

R2

χϕ2
m(k) dx.

So we deduce
∫

R2

χ|∇ϕm(k)|2 dx+

∫

R2

∇ϕm(k)ϕm(k)∇χ dx+ k2

∫

R2

χ(n2
+ − n2)ϕ2

m(k) dx

=
(
λm(k) + k2n2

+

)∫

R2

χϕ2
m(k) dx. (4.2)

On the other hand since
∫

R2

|∇ϕm(k)|2 dx+ k2

∫

R2

(n2
+ − n2)ϕ2

m(k) dx =
(
λm(k) + k2n2

+

)∫

R2

ϕ2
m(x) dx,

we deduce
∫

R2

|∇ϕm(k)|2 dx ≤ µm,

k2

∫

R2

(n2
+ − n2)ϕ2

m(k) dx ≤ µm.

Furthermore from the assumption (2.5) we know that in ωδ/2 , n2
+−n

2 is strictly positive,

bounded from below by ζ(δ/2) > 0 . Therefore

k2ζ(δ/2)

∫

ωδ/2

ϕ2
m(k) dx ≤ k2

∫

ωδ/2

(n2
+ − n2)ϕ2

m(k) dx ≤ µm

and then ∫

ωδ/2

ϕ2
m(k) dx ≤

µm

ζ(δ/2)
k−2.

Going back to (4.2), we deduce
∫

R2

χ|∇ϕm(k)|2 dx ≤ µm‖ϕm(k)‖2
0,ωδ/2

+ |χ|1,∞,R2‖∇ϕm(k)‖0,ωδ/2
‖ϕm(k)‖0,ωδ/2

and then (∫

ω

|∇ϕm(k)|2 dx

)1/2

≤ C(δ)k−1/2.
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PROOF OF THEOREM 2.1. Let L = NB+
be the number of eigenvalues of A below its

essential spectrum. We distinguish the cases m ≤ L and m > L .

Step 1 m ≤ L . From Proposition 4.1, we deduce that for k large enough

γ(k) + k2n2
+ > µL.

In Proposition 4.2, we have proved that λm(k) + k2n2
+ ≤ µm , for m = 1, 2, . . . ; so for

k large enough and m = 1, . . . , L , λm(k) is an eigenvalue of Ak below its essential

spectrum.

Our goal now is to get for m = 1, . . . , L and k large enough, an inequality of the form

µm ≤ λm(k) + k2n2
+ + ε(k),

with limk→∞ ε(k) = 0 . Under the assumptions (2.1)–(2.3) and (2.5), we can construct a

sequence of domains {Bj}j≥1 such that

B+ ⊂ Bj ⊂ Bj ⊂ Bj−1 for all j,

Bj is regular,

∩∞
j=1Bj = B+;

Bj can be a regularization of the set ωC
1/j . Let now µj

m be the Min–Max relations

associated to the domain Bj . By continuity the sequence {µj
m}m≥1 converges to µm .

Let 1 ≤ m ≤ L and ϕm(k) ∈ H1(R2) (for k large enough) be eigenvectors associated

to λm(k) , ‖ϕm(k)‖0,R2 = 1 .

We define the function

ψm(k) = ϕm(k) − Rjγjϕm(k) ∈
◦
H1(Bj)

with γj ∈ L (H1(R2);H1/2(∂Bj)) the trace operator on ∂Bj , Rj : H1/2(∂Bj) →
H1(Bj) a lifting operator which can be chosen such that

‖Rjv‖1,Bj
≤ C‖v‖1/2,∂Bj

for all v ∈ H1/2(∂Bj) and with C independent of j . The function ψm(k) is extended

by 0 all over R
2 . Then from Lemma 4.3 we immediately deduce that

‖ψm(k) − ϕm(k)‖1,R2 → 0 as k → 0 . (4.3)

So the subspace

Hm = span{ψ1(k), . . . , ψm(k)}

is of dimension m . We start with the estimate of the Rayleigh quotient
∫

Bj
|∇ψi(k)|

2 dx
∫

Bj
|ψi(k)|2 dx

≤

∫
R2 |∇ϕi(k)|

2 dx∫
R2 |ϕi(k)|2 dx

+ ρj(k),
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where the term ρj(k) tends to 0 as k tends to ∞ by (4.3); then we take the Min–Max

to deduce

µj
m ≤ λm(k) + k2n2

+ + ρj(k).

Letting k tend to ∞ we conclude.

Step 2 m > L . If λm(k) = γ(k) for all k , then we can conclude since from Proposi-

tion 4.1 we know that γ(k)+k2n2
+ → π2/(4η2) as k tends to ∞ . Let now {λm(kj), ϕm(kj)}j≥1

be a sequence of eigenpairs of Ak with λm(kj) < γ(kj) . Then if limj→∞ λm(kj) +
k2

jn
2
+ < π2/(4η2) , it is not difficult to argue like in Step 1 to get a contradiction with the

fact that µm = π2/(4η2) .

Proposition 4.4 In the framework of Theorem 2.1 let m ≤ NB+
and {ϕm(k)}k≥1 be a

sequence of normalized eigenfunctions associated to {λm(k)}k≥1 , ‖ϕm(k)‖0,R2 = 1 .

Then there exists a function ϕm ∈
◦
H1(B+) , ϕm 6= 0 , such that, only to consider a

subsequence, ϕm(k) ⇀ ϕ̃m in H1(R2) , where ϕ̃m is the extension by zero of ϕm over

R
2 , and (µm, ϕm) is an eigenpair of A .

PROOF. We prove first that the sequence {ϕm(k)}k≥1 is bounded in H1(R2) . From the

variational formulation we get

∫

R2

|∇ϕm(k)|2 dx+ k2

∫

R2

(n2
+ − n2)ϕ2

m(k) dx ≤
π2

4η2

∫

R2

ϕ2
m(k) dx =

π2

4η2
.

Therefore only to consider a subsequence it converges weakly to some ϕm in H1(R2)
and strongly in L2(K) .

From the variational formulation for (λm(k), ϕm(k)) with the test function ψ̃ ∈ H1(R2)

the extension by zero of ψ ∈
◦
H1(B+) we deduce

∫

B+

∇ϕm(k)∇ψ dx = (λm(k) + k2n2
+)

∫

B+

ϕm(k)ψ dx;

taking the limit as k → ∞ we get
∫

B+

∇ϕm∇ψ dx = µm

∫

B+

ϕmψ dx.

With the assumptions on n , we easily obtain that ϕm(k) → 0 in D ′(BC
+) . Now since

ϕm(k) ⇀ ϕm in L2(R2) , with the uniqueness of the limit we get ϕm = 0 in BC
+ .

Therefore the restriction of ϕm to B+ is clearly in
◦
H1(B+) .

Finally we need to prove that ϕm 6≡ 0 in B+ . We decompose R
2 in the following

way: R
2 = Ω−

a ∪ Ωa ∪ Ω+
a where Ω−

a = {(x1, x2) ∈ R
2; x1 < −a} , Ωa = {(x1, x2) ∈

R
2;−a < x1 < a} , Ω+

a = {(x1, x2) ∈ R
2; x1 > a} . Then for ψ ∈ H1(R2) we have

∫

Ωa

∇ϕm(k)∇ψ dx+ k2

∫

Ωa

(n2
+ − n2)ϕm(k)ψ dx+R+

a (ϕm(k), ψ)
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+R−
a (ϕm(k), ψ) = (λm(k) + k2n2

+)

∫

Ωa

ϕm(k)ψ dx

with

R −
+

a (ϕm(k), ψ) =

∫

Ω −
+

a

∇ϕm(k)∇ψ dx−

∫

Ω −
+

a

(λm(k) + k2n2)ϕm(k)ψ dx.

Since λm(k)+ k2n2
+ → µm < π2/(4η2) , we can check by a simple calculation that there

exists a real α > 0 such that for k ≥ k0

R −
+

a (ϕm(k), ϕm(k)) ≥ (γ(k) − λm(k))

∫

Ω+
a

|ϕm(k)|2 dx ≥ α‖ϕm(k)‖2

1,Ω −
+

a

.

Then with this last estimate, we check that there exists β > 0 such that for k ≥ k0

R −
+

a (ϕm(k), ϕm(k)) ≥ β‖ϕm(k)‖2

1,Ω −
+

a

.

So we have C > 0 independent of k such that

‖ϕm(k)‖2
1,R2 ≤ C

∫

Ωa

|ϕm(k)|2 dx.

Now we can use the normalization equation ‖ϕm(k)‖0,R2 = 1 , the inclusion Ωa ∩B+ ⊂
K , and Lemma 4.3 to deduce that necessarily

∫

Ωa∩B+

|ϕm|
2 dx > 0.

5 Further estimates at high frequencies

From the analysis in Sections 3 and 4, we can deduce bounds on the number of guided

modes at high frequencies. Under the assumptions of Theorem 2.1, we have

lim
k→∞

inf N(k) ≥ NB+
, (5.1)

where N(k) and NB+
are the numbers of eigenvalues of Ak and A below their essential

spectrum. In Propositions 3.2 and 3.3 we have underestimates of NB+
. To get an upper

bound on the number of guided modes under the assumptions (2.1)–(2.3), we can use a

comparison principle see [1] for instance to check that the number of guided modes for

the guide of index

ñ(x) =

{
n+ if x ∈ K,

n(x2) elsewhere,
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is bounded for large k by the number

∣∣∣∣∣

{
(p, q) ∈ N

∗ × N ;
p2

b2
+
q2

a2
<

1

η2

}∣∣∣∣∣ .

The inequality (5.1) is not an equality in general. This means that we can have guided

modes with limk→∞ λm(k)+k2n2
+ → π2/(4η2) . It is this phenomenon we want to tackle

here. In fact we will study a case with strict inequality and an other one with equality. In

the case where the set B+ is the non perturbed strip, that is

B+ = R × (−η, η), (5.2)

we prove that NB+
= 0 and limk→∞N(k) = 1 . Indeed at high frequencies only one

mode may exist which is less and less laterally confined, as shown in the example 5.a.

Finally at the end of the section we present an example with no mode at high frequencies;

in that case the inequality (5.1) is in fact an equality.

To the open set Ω = (−a, a) × R , we associate the unbounded operator AN
k :

D(AN
k ) ⊂ L2(Ω) → L2(Ω) where

D(AN
k ) = {u ∈ H2(Ω);

∂u

∂ν
= 0 on ∂Ω } and AN

k u = −∆u− k2n2u.

We first derive a technical result.

Lemma 5.1 We assume that B+ = R × (−η, η) and there exists a sequence {kp}p≥1

tending to ∞ such that the operator AN
kp

has at least one eigenvalue below γ(kp) .

Let λp denote such an eigenvalue and ϕp a corresponding eigenfunction normalized to

‖ϕp‖0,Ω = 1 . Then we can extract from {ϕp}p≥1 a subsequence still denoted {ϕp}p≥1

satisfying to

ϕp ⇀ ϕ weakly in H1(Ω) for p→ ∞, (5.3)

ϕp → ϕ in L2(Ω) for p→ ∞, (5.4)

with

ϕ(x) =

{
−+

1√
2aη

cos
(
π x2

2η

)
if −η < x2 < η,

0 else.
(5.5)

In particular

λp + k2
pn

2
+ →

π2

4η2
as p→ ∞ . (5.6)

PROOF. We present a proof in 4 steps. First we bound the sequence {ϕp}p≥1 in the norm

‖.‖1,Ω . Then we extract a subsequence converging in L2(Ω) . To prove that the limit ϕ
is given by (5.5) we check that ϕ is a function of x2 only and finally we prove (5.6).
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Step 1 . By definition the function ϕp satisfies

λp =

∫

Ω

(
|∇ϕp|

2 − k2
pn

2ϕ2
p

)
dx (5.7)

and then ∫

Ω

|∇ϕp|
2 dx ≤ λp + k2

pn
2
+. (5.8)

So with Proposition 4.1 we deduce the bound

∫

Ω

|∇ϕp|
2 dx ≤

π2

4η2
.

Step 2 . The sequence {ϕp}p≥1 is bounded in H1(Ω) , so it is bounded in the space

H1(K) . By compact embedding H1(K) ⊂ L2(K) , we can extract a subsequence still

denoted {ϕp}p≥1 such that

ϕp ⇀ ϕ in H1(Ω) and ϕp → ϕ in L2(K) for p→ ∞ .

If we prove that ϕp → 0 in L2(Ω\K) , we will have ϕ = 0 in Ω\K and

ϕp → ϕ in L2(Ω) . (5.9)

From the equality (5.7) we deduce
∫

Ω

(
|∇ϕp|

2 + k2
p(n

2
+ − n2)ϕ2

p

)
dx < γ(kp) + k2

pn
2
+

and with Proposition 4.1 ∫

Ω

(n2
+ − n2)ϕ2

p dx <
π2

k2
p4η

2
. (5.10)

Therefore in Ω\K necessarily ϕp → 0 as p→ ∞ .

Step 3 . We prove now that ϕ is a function of x2 only. In fact we will check that
∂ϕ
∂x1

≡ 0 . Let γ(kp, x1) be the first eigenvalue of the operator associated to the planar

waveguide of index n(x1, .) , x1 ∈ R given. From the Min–Max principle we get for all

ψ ∈ H1(Ω)
∫

Ω




∣∣∣∣∣
∂ψ

∂x2

∣∣∣∣∣

2

− k2
pn

2ψ2



 dx ≥

∫

Ω

γ(kp, x1)ψ
2 dx (5.11)

and with (5.7) and ψ = ϕp

∫

Ω

∣∣∣∣∣
∂ϕp

∂x1

∣∣∣∣∣

2

dx ≤

∫

Ω

[γ(kp) − γ(kp, x1)]ϕ
2
p dx

=

∫

Ω\K
[γ(kp) − γ(kp, x1)]ϕ

2
p dx+

∫

K

[γ(kp) − γ(kp, x1)]ϕ
2
p dx. (5.12)
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Let us check that both quantities in the right-hand side of (5.12) tend to 0. Since γ(kp) ≥
−k2

pn
2
+ and −γ(kp, x1) ≤ k2

pn
2
+ we deduce from Proposition 4.1 that |γ(kp)−γ(kp, x1)|

is bounded in k ; therefore since ϕp → 0 in L2(Ω\K)
∫

Ω\K
|γ(kp) − γ(kp, x1)|ϕ

2
p dx→ 0 for p→ ∞ .

We consider now the second term in the right-hand side of (5.12). The Cauchy-Schwartz

inequality gives

∫

K

|γ(kp) − γ(kp, x1)|ϕ
2
p dx ≤

(
2b

∫ a

−a

|γ(kp) − γ(kp, x1)|
2 dx1

)1/2

‖ϕp‖
2
0,4,K .

Since the sequence {ϕp}p≥1 is bounded in H1(K) , it is also bounded in L4(K) . From

Proposition 4.1 we know that for almost all x1 ∈ (−a, a)

γ(kp) − γ(kp, x1) → 0 as p→ ∞ .

Consequently with the Lebesgue theorem of dominated convergence we get
∫

K

|γ(kp) − γ(kp, x1)|ϕ
2
p dx→ 0 as p→ ∞ .

Finally the estimate (5.12) leads to

∂ϕ

∂x1
= 0 in Ω . (5.13)

Step 4 . We still need to check (5.5), (5.6). If ψ ∈ H1(Ω) is chosen with a support inside

B+ ∩ Ω then the variational formulation leads to
∫

Ω

∇ϕp∇ψ dx = (k2
pn

2
+ + λp)

∫

Ω

ϕpψ dx. (5.14)

The sequence {k2
pn

2
+ + λp}p≥1 admits a limit, say µ ; then taking the limit in (5.14) and

using (5.13) we get ∫

Ω

∂ϕ

∂x2

∂ψ

∂x2
dx = µ

∫

Ω

ϕψ dx

for all ψ with support inside B+ ∩ Ω . This means that (µ, ϕ) is an eigenpair of the

eigenproblem 



−d
2ϕ
dy2 = µϕ in (−η, η),

ϕ(−η) = ϕ(η) = 0.

Since λp + k2
pn

2
+ ≤ π2

4η2 , necessarily µ = π2

4η2 and ϕ is given by (5.5).
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Proposition 5.2 A guide with an index satisfying to (5.2) has at most one guided mode at

high frequencies.

PROOF. Let NN (k) be the number of eigenvalues of the operator AN
k introduced

before. From classical comparison principles, see Proposition 3.2 or [1] for instance, we

know that N(k) ≤ NN (k) . So it is sufficient to verify that

lim
k→∞

supNN (k) ≤ 1.

Ab absurdo we assume that there is a sequence {kp}p≥1 tending to infinity for which

the operator AN
kp

has at least two eigenvalues, λN
1 (p) and λN

2 (p) , below γ(kp) . Corre-

sponding normalized eigenvectors are denoted ϕ1(p) and ϕ2(p) and satisfy

∫

Ω

ϕ1(p)ϕ2(p) dx = 0 for all p . (5.15)

Applying Lemma 5.1 to both sequences {ϕ1(p)}p≥1 , {ϕ2(p)}p≥1 , we deduce for i =
1, 2 , that ϕi(p) → −+ϕ in L2(Ω) as p → ∞ . Finally we have a contradiction with

(5.15).

Corollary 5.3 We assume that n satisfies to

n(ξ) = nb if ξ < −c, n(ξ) = nt if ξ > c, (5.16)

where the numbers nb , nt are such that n+ > nb > nt , to (2.2)–(2.4) and (5.2). If

furthermore

∀x ∈ R
2 n(x) ≥ n(x2), measure

(
{x ∈ R

2;n(x) > n(x2)}
)
> 0, (5.17)

and if the associated planar waveguide has a guided wave, then there exists k0 > 0 such

that for k ≥ k0

N(k) = 1.

PROOF. Under the assumptions (5.16), (2.2)–(2.4) and (5.2), we know that N(k) ≤ 1 .

Now from Proposition 3.2 in [1] we deduce under our assumptions that N(k) ≥ 1 for k
large enough.

Example 5.a We illustrate our results in the case where B+ = R × (−0.5, 0.5) and n
is given by, for x = (x1, x2) ∈ R

2 ,

n(x) =





3.44 for x ∈ B+,
3.38 for x ∈ (−1, 1) × (0.5, 1),
3.17 for x2 < −0.5,
1 elsewhere.
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Figure 5: Mesh of the guide used in the computations.

The assumptions of Corollary 5.3 are satisfied. Therefore for k large this guide has only

one guided mode.

We have computed for different values of k approximations of the fundamental mode

(λ1h(k), ϕh(k)) and given in Figure 6 its dispersion curve. In the next figures 7, 8, and

9, the corresponding normalized eigenvector ϕh(k) ; here h represents the discretization

parameter. The asymptotic behavior of the first mode can be described. Its energy is more

and more confined in the set B+ as k increases. Since B+ is invariant by translation in

x1 , the mode is not well horizontally confined for large k .

We have done the computations on the mesh presented in Figure 5, made up of 917 tri-

angles and 517 degrees of freedom with a piecewise P1 approximation on the mesh.

For symmetry reason we have restricted the computations in the half plane x1 > 0 .

As k increases the mode is better vertically confined in the strip B+ . That is why we

have computed in an horizontal strip with boundary conditions u = 0 . To compute the

mode less and less laterally confined, that is for k large, the method is much more in-

volved. Here we have used a localized finite element method which consists in using an

exact representation of the solution on the vertical boundaries limiting the computation

domain. We refer to [5] for a presentation of localized finite element methods and to [6]

for its application to optical guides.

Remark 5.b In fact we can describe precisely what is happening for the eigenvector in

the example above. With the same arguments developed in the proof of Lemma 5.1 we

can prove the following result.

We assume that the index satisfies to (5.2) and a mode exists for large k . We denote by
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Figure 6: The dispersion curve for the fundamental mode.

ϕ(k) an eigenfunction associated to the eigenvalue λ(k) , normalized to ‖ϕ(k)‖0,(−a,a)×R =
1 . Then the following properties hold

λ(k) + k2n2
+ →

π2

4η2
for k tending to ∞, (5.18)

∫

(−a,a)×R

(n2
+ − n2)ϕ(k)2 dx <

π2

k24η2
, (5.19)

∫

R2

∣∣∣∣∣
∂ϕ(k)

∂x1

∣∣∣∣∣

2

dx→ 0 for k tending to ∞, (5.20)

ϕ(k) → ϕ in L2((−a, a) × R) for k tending to ∞, (5.21)

where ϕ has been defined in (5.5).

Finally we are interested in describing a guide with no mode at high frequencies.

The idea is to choose a guide for which the set B+ is strictly included inside the strip

R × (−η, η) . With our previous developments we can present a less restrictive situation

than the one in [1].

Proposition 5.4 We assume that there exist two non empty open intervals I , J such that





I × J ⊂ R × (−η, η),
n(x) ≤ n∗ < n+ if x ∈ I × J,
B+ ⊂ R × (−η, η)\(I × J),
∀ δ > 0 ζ(δ) ≥ ζ0 > 0.

(5.22)

Then there exists k∗ > 0 such that

for k > k∗ N(k) = 0. (5.23)
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Figure 7: Fundamental mode with k = 3 ; λ1,h(3) + 9n2
+ = 4.343 .

PROOF. With the comparison principle relative to the index n , it suffices to check (5.23)

for the guide with index n̂ defined by

n̂(x) =






supz∈I n(z, x2) if x ∈ I × (R\(−η, η)),
n+ if x ∈ (R × (−η, η))\I × J,

n(x) elsewhere.
(5.24)

Ab absurdo we assume there exist two sequences {kp}p≥1 , kp > 0 , and {ϕp}p≥1 , ϕp ∈
H1(R2) , such that

∫

(−a,a)×R

ϕ2
p dx = 1, (5.25)

∫

R2

(
|∇ϕp|

2 − k2n̂2ϕ2
p

)
dx < γ(kp)

∫

R

ϕ2
p dx. (5.26)

Following the proof of Lemma 5.1, we can prove that

‖ϕp‖1,(−a,a)×R ≤

(
1 +

π2

4η2

)1/2

, (5.27)

∫

R2

(
∂ϕp

∂x1

)2

dx ≤

∫

(−a,a)×R

[γ(kp) − γ(kp, x1)]ϕ
2
p dx, (5.28)

where γ(kp, x1) is the first eigenvalue of the operator associated to the planar waveguide

of index n̂(x1, .) .
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Figure 8: Fundamental mode with k = 10 ; λ1,h(10) + 100n2
+ = 7.372 .

As in the proof of Lemma 5.1, we can prove that
∫

((−a,a)\I)×R

[γ(kp) − γ(kp, x1)]ϕ
2
p dx→ 0 for p tending to ∞ . (5.29)

Using the estimate (5.27) we can extract a subsequence still denoted {ϕp}p≥1 such that

ϕp ⇀ ϕ weakly in H1((−a, a) × R) for p→ ∞,

ϕp → ϕ in L2(K) for p→ ∞.

Since ϕp → 0 in ((−a, a) × R)\K , (similarly to (5.10)), we deduce that

ϕp → ϕ in L2((−a, a) × R) for p→ ∞ . (5.30)

For x1 ∈ I , γ(kp, x1) = γ̃(kp) , with

γ̃(kp) + k2n2
+ →

π2

4η2
∗
, η∗ < η. (5.31)

Then with (5.29), (5.30), (5.31), we deduce

∫

(−a,a)×R

[γ(kp) − γ(kp, x1)]ϕ
2
p dx→

(
π2

4η2
−

π2

4η2
∗

) ∫

I×R

ϕ2 dx

and with (5.28)

ϕ = 0 in I × R and
∂ϕ

∂x1
= 0 in R

2 .
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Figure 9: Fundamental mode with k = 40 ; λ1,h(40) + 1600n2
+ = 9.369 .

So with (5.30) we get ϕ = 0 in L2((−a, a)×R) and we get a contradiction with (5.25).

Remark 5.c Let n be the index defined in Figure 10.

x2

b

nb n∗

η

I × J

n+ −a −c c a x1

nb −η

Figure 10: Guide with no mode at high frequencies

We assume that n+ > n∗ > nb and for simplicity that b− η = 2a . The first eigenvalue

µ for −∆ in the square (−a, a) × (η, η + 2a) with homogeneous Dirichlet boundary

conditions is µ = π2

2a2 . If ϕ 6≡ 0 is a corresponding eigenvector, we extend it by 0 and
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get ϕ̃ ∈ H1(R2) satisfying

∫
R2 (|∇ϕ̃|2 − k2n2ϕ̃2) dx∫

R2 ϕ̃2 dx
=

π2

2a2
− k2n2

∗.

For all k , −k2n2
+ < γ(k) < −k2n2

b . For a given k , we could choose n∗ and a big

enough to have

−k2n2
∗ +

π2

2a2
< γ(k),

with n+ > n∗ > nb . From the comparison principle we deduce λ1(k) < γ(k) . So for

that particular value of k we have a guided mode at least. For large k , we will have no

guided modes.
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