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Abstract: The aim of this paper is the interpolation between nullspaces of a fixed
partial differential operator in different Sobolev spaces, for example the subspaces of
divergence-free functions. We present several methods of proofs, which allow for han-
dling various operators in different geometries, with or without boundary conditions.
Our application is the optimal approximation of divergence-free functions in a cube
by high degree polynomials, which is useful for the numerical analysis of the spectral
discretization of the Stokes problem.

1 INTRODUCTION

In this paper, we intend to interpolate the nullspaces of a fixed partial differential
operator in different Sobolev spaces. Let us make precise the framework: if X and Y
are Hilbert spaces such that X is dense in Y , for any θ, 0 < θ < 1, the interpolate space
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[X, Y ]θ is well-defined, independently of the Hilbertian interpolation method which
can be chosen among: the K–method (with p = 2), the interpolation by domains of
operators, the complex interpolation and the trace method. Next, let A be a linear
operator defined on Y . We have the natural associated nullspaces of A:

N
X

A = {u ∈ X | Au = 0} and N
Y

A = {u ∈ Y | Au = 0}.

On the other hand, the interpolate space [N X
A ,N Y

A ]θ is well-defined too. We are
interested in conditions insuring that:

[N X
A ,N Y

A ]θ = {u ∈ [X, Y ]θ | Au = 0}. (1.1)

When the operator A has a finite-dimensional range, (1.1) holds (cf [14, Chap. 1,
Th. 13.3] for instance). However, this result cannot be extended to operators with
infinite-dimensional range in general.

We are going to investigate the situation where:
(i) the operator A is a partial differential operator acting on scalar or vectorial functions
(our main purpose is the application to the Laplace and divergence operators),
(ii) the spaces X and Y are standard Sobolev spaces on a domain Ω ⊂ R

d or weighted
Sobolev spaces in an hypercube, with or without boundary conditions (these spaces
appear naturally in the numerical analysis of spectral methods).

In a first step, the result is proven in Sobolev spaces without boundary conditions.
We present two methods:
(i) for homogeneous operators with constant coefficients in star-shaped domains: the
idea is to use the interpolation by the trace method, and the main tool of the proof of
the interpolation result is the construction of a “stable” lifting operator which maps
functions ϕ defined on Ω and satisfying Aϕ = 0 into functions Φ(·, t) satisfying for
each t, AΦ(·, t) = 0;
(ii) for strongly elliptic operators in Lipschitz–continuous domains: the proof relies on a
result of interpolation of subspaces [14, Chap. 1, Th. 14.3] and requires the construction
of a right-inverse for A. We also apply this method for the divergence operator.

In Section 2, we construct a lifting of trace and in Section 3 we present the two
interpolation methods.

In a second step, we introduce the Dirichlet boundary conditions: we interpolate
subspaces of functions ϕ satisfying Aϕ = 0 in Ω and ϕ = 0 on the boundary ∂Ω of Ω.
In view of our application, we limit ourselves to the case of the divergence. Once again,
we present two different methods (each of them can be extended to other situations).
Both of them rely on [14, Chap. 1, Th. 14.3] already quoted:
(i) starting from an interpolation result for functions with a null trace on ∂Ω, we
construct a right-inverse for the divergence operator in spaces of functions satisfying
the Dirichlet condition;
(ii) starting from our interpolation result for divergence-free functions, we construct a
right-inverse for the first trace on ∂Ω in spaces of divergence-free functions.

In contrast to the situation without boundary conditions, the presence of singular
points on the boundary of Ω introduces technical difficulties due to the limited smooth-
ness of solutions of an elliptic boundary value problem. That is why, in Section 4, we
study successively the cases of a smooth domain, of an orthogonal cylinder, and of a
cube.

An application to spectral methods is described in Section 5: the numerical anal-
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ysis of the spectral discretization of the Stokes problem relies on optimal results of
approximation of divergence-free functions by divergence-free polynomials on a cube.
These results are proven in [17] only for functions such that all their third order deriva-
tives are square integrable. However the solutions of the Stokes problem do not satisfy
this regularity property in general (see [7] for instance), even for smooth data. The
interpolation property which is proven in this paper allows for extending the results
of [17] to less smooth functions on a cube. As a consequence, the convergence of the
spectral method is established for any variational solution of the Stokes problem. This
result is useful for the numerical analysis of the spectral discretization of the nonlinear
Navier–Stokes equations.

2 CONSTRUCTION OF A LIFTING OPERATOR

2.1 Sobolev spaces

Let Ω be an open set in R
d, where d is an integer ≥ 1; the generic point in Ω is denoted

by x. On this domain, we shall use the space L2(Ω) of square-integrable functions
for the Lebesgue measure dx, the standard Sobolev spaces Hs(Ω) for any real number
s ≥ 0, together with the spaces Hs

0(Ω) defined as the closure in Hs(Ω) of the subspace
of infinitely differentiable functions with a compact support. A separable Banach space
X being given, we also consider the scale of Sobolev spaces Hs(Ω;X) of functions with
values in X .

We introduce the cylinder Ω̃ = Ω×]0, 1
2 [. The generic point in this cylinder is

denoted by (x, t). Then, the Lebesgue measure in the cylinder is the tensor product
dx dt. We are going to define weighted Sobolev spaces on the cylinder.

On the interval I =]0, 1
2 [ and for a real parameter β > −1, we define successively:

(i) the space L2
β(I) of measurable functions ϕ on I such that

∫ 1
2

0
ϕ2(t) tβ dt < +∞,

(ii) for any positive integer m, the space Hm
β (I) of functions in L2

β(I) such that their

derivatives up to the order m also belong to L2
β(I),

(iii) for any real number s ≥ 0 which is not an integer, the space Hs
β(I) as the inter-

polation space of index s− [s] between H
[s]+1
β (I) and H

[s]
β (I) (where [s] stands for the

integral part of s).

Finally, for any real number s ≥ 0, we define the space Hs
β(Ω̃) by the formula

Hs
β(Ω̃) = L2

(
Ω;Hs

β(I)
)
∩Hs

(
Ω;L2

β(I)
)
.

Next, we take the domain Ω equal to the hypercube ]−1, 1[d, which is the elemen-
tary domain for spectral methods. Let us recall that spectral methods are of two types:
Legendre and Chebyshev. The Legendre type techniques involve tensorized bases of
Legendre polynomials and they rely on a variational formulation of the problem in
standard Sobolev spaces. In Chebyshev type techniques, Chebyshev polynomials are
involved, which are orthogonal in the interval ] − 1, 1[ for the measure (1 − ζ2)−

1
2 dζ.

Weighted Sobolev spaces are therefore useful. To have a unified presentation, we deal
with the general case of the Jacobi weight where the power −1

2 is replaced by a general
parameter α.
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Let α be a real number > −1. We firstly define the weight

̟α(x) =

d∏

j=1

(1 − x2
j )

α, (2.1)

where x with coordinates x1, . . . , xd, is the generic point. Next, we introduce the
space L2

α(Ω) of measurable functions ϕ on Ω such that
∫

Ω

ϕ2(x)̟α(x) dx < +∞.

Then, for any positive integer m, Hm
α (Ω) stands for the space of functions in L2

α(Ω)
such that all their partial derivatives of total order ≤ m also belong to L2

α(Ω). For
any real number s ≥ 0 which is not an integer, the space Hs

α(Ω) is the interpolation

space of index s− [s] between H
[s]+1
α (Ω) and H

[s]
α (Ω). We refer to [3] and [4, Chap. 4]

for the main properties of these spaces. These definitions are extended to the spaces
Hs

α(Ω;X) for any separable Banach space X in a natural way.

We also need the corresponding spaces on the cylinder Ω̃ = Ω× I: for any param-
eter β > −1 and for any real number s ≥ 0, we define the space

Hs
αβ(Ω̃) = L2

α

(
Ω;Hs

β(I)
)
∩Hs

α

(
Ω;L2

β(I)
)
.

2.2 Definition of the lifting operator

In this section, we assume that Ω is star-shaped with respect to a ball, i.e., there exists
a ball B such that, for all x in Ω and y in B, the segment [x,y] is contained in Ω.

Note that, even if Ω has a Lipschitz–continuous boundary, it can be star-shaped
with respect to a point without being star-shaped with respect to a ball (see the
following figure where the domain on the left is star-shaped with respect to only one
point and the domain on the right is star-shaped with respect to a ball without being
convex). A convex domain is star-shaped with respect to any ball contained in it.

The standard way to construct a lifting operator is the convolution by a regular-
izing family. But such a method will never produce an operator acting from functions
defined on Ω into functions defined on the whole cylinder Ω̃. However, the composition
of such a convolution with a change of variables (transforming a cone into the cylinder)
allows for the definition of a correct lifting. Such a strategy is linked with an idea due
to Gagliardo [8] and Lions [13] (which has already been used by Babuška and Suri [1]
for the p –version of the finite element method and developed in [3]).

Let χ be a fixed integrable function on R
d with its integral equal to 1. With any
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function ϕ in L2(Rd), we associate the function

Fχ(ϕ)(x, t) =

∫

Rd

ϕ
(
(1 − t)x+ ty

)
χ(y) dy. (2.2)

It is readily checked that, for any continuous function ϕ on R
d, the function Fχ(ϕ) is

continuous on R
d × I and satisfies

∀x ∈ R
d, Fχ(ϕ)(x, 0) = ϕ(x). (2.3)

Hence, the operator Fχ is a trace lifting operator and, when the function χ has a
compact support in a ball B, it is a lifting operator of traces on any star-shaped
domain Ω with respect to B, with values in the corresponding cylinder Ω̃. A special
(and standard) case is obtained when the domain Ω is convex and χ is its characteristic
function χΩ. We are going to prove some stability properties of the operator Fχ.

REMARK 2.1 If the function ϕ is a polynomial on R
d, so is Fχ(ϕ). Moreover, the

operator Fχ preserves the total degree of the polynomials and also the degree with
respect to each of the first d variables.

2.3 Stability of the lifting operator

We use the Fourier transform on R
d and denote it by a hat. The first theorem states

the basic result.

THEOREM 2.2 Let s be a real number ≥ 0 and β a real number > −1. Assume that
the function χ is integrable and satisfies:

sup
ω∈Sd−1

‖χ̂(·ω)‖Hs
β
(R+) < +∞. (2.4)

Then the operator Fχ defined in (2.2) is continuous from Hs− 1+β

2 (Rd) into Hs
β(Rd×I).

Proof: The proof relies on several arguments: change of variable, use of the Fourier
transform, homogeneity properties.
1) The change of variables: (x, t) 7→ (X = (1− t)x, t) maps the cylinder Ω̃ onto a part
of a cone and the band R

d × I onto itself. It can also be checked that, for any s ≥ 0,
it induces an isomorphism of Hs

β(Rd × I) onto itself. Thus, let us set:

Gχ(ϕ)(X, t) =

∫

Rd

ϕ
(
X + ty

)
χ(y) dy = (−t)−d

∫

Rd

ϕ
(
X − v

)
χ(−

v

t
) dv.

Taking: χt(v) = (−t)−d χ(−v
t ), we observe that G(ϕ)(·, t) is the convolution product

with respect to the X variable of the functions ϕ and χt. So, denoting by a hat the
Fourier transform with respect to the X variable and by ξ the corresponding Fourier
variable, we derive the formula

Ĝχ(ϕ)(ξ, t) = ϕ̂(ξ) χ̂t(ξ) = ϕ̂(ξ) χ̂(−tξ).
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Next, we note that the statement of the theorem reduces to the estimate
∫

Rd

(
‖Ĝ(ξ, .)‖2

Hs
β
(I) + (1 + |ξ|2)s ‖Ĝ(ξ, .)‖2

L2
β
(I)

)
dξ ≤ c

∫

Rd

(1 + |ξ|2)s− 1+β

2 |ϕ̂(ξ)|2 dξ,

or equivalently to
∫

Rd

(
‖χ̂(· ξ)‖2

Hs
β
(I) + (1 + |ξ|2)s ‖χ̂(· ξ)‖2

L2
β
(I)

)
|ϕ̂(ξ)|2 dξ

≤ c

∫

Rd

(1 + |ξ|2)s− 1+β

2 |ϕ̂(ξ)|2 dξ.

(2.5)

2) We deduce (2.5) from the properties (2.4) of χ̂ and from the homogeneity relations
(cf [3, (2.a.5)])

∀λ ∈ R+, ‖u(·λ)‖2
Hs

β
(R+) + (1 + λ2)s ‖u(·λ)‖2

L2
β
(R+) ≤ c (1 + λ2)s− 1+β

2 ‖u‖2
Hs

β
(R+)

that we use for each fixed ω in S
d−1, λ = |ξ| and u(t) = χ̂(tω).

Let us conclude with the case of the star-shaped domain: it is readily checked that
any C∞ function χ with support in B satisfies (2.4).

THEOREM 2.3 Let Ω be a Lipschitz-continuous domain, which is star-shaped with
respect to a ball B. Let χ denote a C ∞ function with support in B. Then, for any
real number s ≥ 0 and for any real number β > −1, the operator Fχ defined in (2.2)

is continuous from Hs− 1+β

2 (Ω) into Hs
β(Ω̃).

REMARK 2.4 When the domain Ω is convex, its characteristic function χΩ satisfies
(2.4) for any s ≥ 0 and for −1 < β < 1. So, when χ is equal to χΩ, Theorem 2.3 holds
for these values of s and β.

In the case of weighted Sobolev spaces in the hypercube, the analogue of Theorem
2.3 is the following.

THEOREM 2.5 Let Ω be the hypercube ] − 1, 1[d. Let χ denote a C ∞ function with
support in Ω. For any real numbers s ≥ 0, α > −1 and β > −1, the operator Fχ is

continuous from H
s− 1+β

2
α (Ω) into Hs

αβ(Ω̃).

The proof of that statement relies on Theorem 2.2 combined with a “dyadic”
partition of unity on Ω as used in [3, Thm 3.d.4].

3 INTERPOLATION OF NULLSPACES WITHOUT BOUNDARY

CONDITIONS

Here, we present two approaches which allow for proving the interpolation result (1.1)
in different frameworks: the differences concern both the geometry of the domain Ω
and the properties of the operator A. The first approach allows for treating standard
and weighted spaces and also spaces of polynomials, the second one is simpler and
provides results in a more general geometry.
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3.1 The trace method

Let X and Y be separable Hilbert spaces such that X is dense in Y with a continuous
embedding. The following property can be found in [14, Chap. 1, §3.2] for instance:
for any θ, 0 < θ < 1, the interpolate space [X, Y ]θ is the space of the traces u(0) in
t = 0 of the functions

t 7→ u(t) in L2
2kθ−1(I;X)∩Hk

2kθ−1(I;Y ). (3.1)

Let Ω be a bounded domain with a Lipschitz–continuous boundary. Let r and s
be real numbers, 0 ≤ r ≤ s. Then for 0 < θ < 1, we have

[Hs(Ω), Hr(Ω)]θ = H(1−θ)s+θr(Ω). (3.2)

Now, let A be an homogeneous partial differential operator with constant coefficients,
acting on D ′(Ω)ℓ. For any real number s, let us denote by N s

A (Ω) the space

N
s

A (Ω) = {u ∈ Hs(Ω)ℓ | Au = 0}. (3.3)

THEOREM 3.1 Let Ω be a Lipschitz-continuous bounded domain, which is star-shaped
with respect to a ball B. The following interpolation result holds for any real numbers
r and s such that 0 ≤ r ≤ s and for any θ, 0 < θ < 1:

[N s
A (Ω),N r

A (Ω)]θ = N
(1−θ)s+θr

A (Ω). (3.4)

Proof: Using the reiteration theorem [14, Chap. 1, Th. 6.1], we are reduced to prove
the theorem in the case when r is equal to 0 and s is an integer k. We have the obvious
inclusion

[N k
A (Ω),N 0

A (Ω)]θ ⊂ [Hk(Ω)ℓ, L2(Ω)ℓ]θ ∩ N
0

A (Ω) ⊂ N
(1−θ)k

A (Ω).

To prove the converse inclusion, let ϕ be any function in N
(1−θ)k

A (Ω). Let us consider

Φ defined on the cylinder Ω̃ by Φ = Fχ(ϕ) where χ is as in Theorem 2.3. We check
that

∀t ∈ [0,
1

2
], AΦ(t) = (1 − t)m Fχ(Aϕ)(t),

where m is the degree of the homogeneous operator A. Therefore AΦ(t) is equal to 0.

On the other hand, choosing β = 2kθ − 1, we obtain that ϕ belongs to Hk− 1+β

2 (Ω)ℓ,

hence Φ belongs to Hk
β (Ω̃)ℓ. But, using the embedding

Hk
β(Ω̃) ⊂ L2

2kθ−1(I;H
k(Ω)) ∩Hk

2kθ−1(I;L
2(Ω)),

we finally derive that

Φ ∈ L2
2θ−1(I; N

k
A (Ω)) ∩Hk

2θ−1(I; N
0

A (Ω)).

Hence we deduce from (3.1) that ϕ, as the trace of Φ, belongs to the interpolate space
[N k

A (Ω),N 0
A (Ω)]θ.

Of course, by the same method, we can extend this result to weighted Sobolev
spaces in the case of the hypercube Ω =] − 1, 1[d. Here, we set for any s ≥ 0 and
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α > −1:
N

s
A,α(Ω) = {u ∈ Hs

α(Ω)ℓ | Au = 0}. (3.5)

The same proof with Theorem 2.3 replaced by Theorem 2.5 leads to the following
result.

THEOREM 3.2 Let α be a real number > −1. In the hypercube Ω =] − 1, 1[d, the
following interpolation result holds for any real numbers r and s such that 0 ≤ r ≤ s
and for any θ, 0 < θ < 1:

[N s
A,α(Ω),N r

A,α(Ω)]θ = N
(1−θ)s+θr

A,α (Ω). (3.6)

REMARK 3.3 As noted in Remark 2.1, the operator Fχ preserves the polynomials.
As a consequence, if N is a fixed integer, the same arguments imply that, on the
hypercube Ω =] − 1, 1[d for α > −1 or in any star-shaped domain for α = 0, the
interpolate of index θ, 0 < θ < 1, between the space of polynomials ϕ with total degree
(resp. partial degree with respect to each variable) ≤ N satisfying Aϕ = 0 provided
with the norm of Hs

α(Ω) and this same space provided with the norm of Hr
α(Ω) is the

space of polynomials ϕ with total degree (resp. partial degree with respect to each

variable) ≤ N satisfying Aϕ = 0 provided with the norm of H
(1−θ)s+θr
α (Ω).

3.2 The method of the right-inverse

We recall the result [14, Chap. 1, Th. 14.3] in a simplified framework:

LEMMA 3.4 Let X and Y be separable Hilbert spaces such that X is dense in Y with
a continuous embedding, and let A be a linear operator continuous from X into X̃ and
from Y into Ỹ . If there exists a right-inverse operator R continuous from X̃ into X
and from Ỹ into Y such that

∀g ∈ Ỹ , A(Rg) = g, (3.7)

then the interpolation formula (1.1) holds for any θ, 0 < θ < 1.

Let Ω be a bounded Lipschitz-continuous domain and let A be a partial differential

operator of degree m with smooth coefficients on Ω, acting on D ′(Ω)ℓ into D ′(Ω)ℓ̃.
For fixed real numbers r and s, r < s, we choose X = Hs(Ω)ℓ, Y = Hr(Ω)ℓ and

X̃ = Hs−m(Ω)ℓ̃, Ỹ = Hr−m(Ω)ℓ̃. If A has a right-inverse R continuous fromHσ−m(Ω)ℓ̃

into Hσ(Ω)ℓ for all σ > σ0 for instance, then property (1.1) holds for any r and s such
that σ0 < r < s.

Such a right-inverse can be constructed in a number of situations. For instance, one
can rely on the existence, for a fixed σ0, of an extension operator E which is continuous
from Hσ(Ω) into Hσ(Rd) for any σ, 0 ≤ σ ≤ σ0, and such that Eu coincides with
u in Ω (see [18, §4.2.3] or also [10, §1.4.3]). Using this extension allows for working
on the whole space R

d, with the help of the Fourier transform for example when A is
elliptic with constant coefficients (but not necessarily homogeneous). The extension E
also allows for working in a smooth bounded domain Ω0 which contains Ω. If A can
be extended into an elliptic operator with analytic coefficients on Ω0, the Fredholm
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alternative applied to the Dirichlet problem for A on Ω0 together with the unique
extension of functions in the kernel, allows for modifying the operator E in order to
build a right inverse for the operator A.

We can also use this method in the case where the operator A is the divergence
operator. From now on, we denote the corresponding nullspace in Hs(Ω)d by N s

div(Ω).

THEOREM 3.5 Let Ω be a Lipschitz-continuous bounded domain. The following in-
terpolation result holds for any real numbers r and s such that 1 ≤ r ≤ s and for any
θ, 0 < θ < 1:

[N s
div(Ω),N r

div(Ω)]θ = N
(1−θ)s+θr

div (Ω). (3.8)

Proof: In view of the previously quoted result, it suffices to construct a lifting op-
erator R which is continuous from Hs(Ω) into Hs+1(Ω)d, s ≥ 0, such that div (Rg) is
equal to g for any g in Hs(Ω). Let Ω0 be an open ball which contains Ω. We use the
extension operator E and modify it so that for any g in Hs(Ω), Eg satisfies

∫
Ω0

Eg = 0;
next we solve the Stokes problem in Ω0:





−∆v + grad q = 0 in Ω0,

div v = Eg in Ω0,

v = 0 on ∂Ω0.

(3.9)

This problem has a unique solution (v, q) in H1
0 (Ω0)

d × L2(Ω0)/R, and the mapping:
Eg 7→ v|Ω0

is continuous from Hs(Ω) into Hs+1(Ω)d. So, we take Rg equal to v|Ω, and
apply Lemma 3.4 to conclude.

4 INTERPOLATION OF NULLSPACES WITH BOUNDARY

CONDITIONS

In view of our application in §5, we only deal in this section with the divergence
operator. But similar methods allow for treating various other situations. Our aim is
to interpolate the subspaces N s

div(Ω) ∩H1
0 (Ω)d of divergence-free functions in Hs(Ω)d

which vanish on the boundary of Ω and to investigate whether the following equality
holds

[N s
div(Ω) ∩H1

0 (Ω)d, N
r

div(Ω) ∩H1
0 (Ω)d]θ = N

(1−θ)s+θr
div (Ω) ∩H1

0 (Ω)d. (4.1)

Denoting by γ0 the first trace operator on ∂Ω, we are going to use Lemma 3.4 as
above in three different ways:
(i) with X = Hs(Ω)d, Y = Hr(Ω)d and A = (div, γ0);
(ii) with X = Hs(Ω)d ∩H1

0 (Ω)d, Y = Hr(Ω)d ∩H1
0 (Ω)d and A = div;

(iii) with X = N s
div(Ω), Y = N r

div(Ω) and A = γ0.

4.1 In a smooth domain

The idea here is to start from the interpolation result between Sobolev spaces (3.2) and
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to construct a right-inverse for the pair (div, γ0) with the help of the Dirichlet problem
for the Stokes operator.

THEOREM 4.1 Let m be a fixed positive integer, and let Ω be a bounded domain with
a C m−1,1 boundary. The interpolation result (4.1) holds for any real numbers r and s
such that 1 ≤ r ≤ s ≤ m and for any θ, 0 < θ < 1.

Proof: We take X = Hs(Ω)d and

X̃ =
{
(g,h) ∈ Hs−1(Ω)×Hs−1/2(∂Ω)d ;

∫

Ω

g(x) dx−

∫

∂Ω

(h ·n)(σ) dσ = 0
}

(4.2)

and we define R(g,h) as v, where the pair (v, q) is the only solution of the Stokes
problem: 





−∆v + grad q = 0 in Ω,

div v = g in Ω,

v = h on ∂Ω.

(4.3)

Due to the regularity property of the domain, the operator R is continuous from X̃
into X , for any real number s, 1 ≤ s ≤ m. Of course we take Y = Hr(Ω)d and the

corresponding space for Ỹ , so that R has the required properties.

REMARK 4.2 It is readily checked that the orthogonal projection operator P from
H1(Ω)d onto N 1

div(Ω) ∩H1
0 (Ω)d with the gradient norm, associates with any function

u in H1(Ω)d the function v, where (v, q) is the solution of the Stokes problem





−∆v + grad q = −∆u in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω,

hence it has the same stability properties as the operator R in the previous proof.
As a consequence, relying on Theorem 3.1 or 3.5, we have an alternative proof of

Theorem 4.1 since, for 1 ≤ s ≤ m, this operator P is continuous from N
(1−θ)s+θr

div (Ω)
into [N s

div(Ω) ∩H1
0 (Ω)d, N r

div(Ω) ∩H1
0 (Ω)d]θ and its restriction to N 1

div(Ω) ∩H1
0 (Ω)d

coincides with the identity operator.

4.2 In a cylinder

For domains Ω with edges on the boundary like a cylinder for example, we can use a
similar method as above, but we have to handle the singularities of solutions along the
edges. The geometrical hypotheses are that, for each point x0 on the boundary ∂Ω,
there exists a neighbourhood of x0 whose intersection with Ω is diffeomorphic:
(i) to a half-space (x0 is a regular point);
(ii) to a dihedron (x0 is an edge point).
We denote by ∂eΩ the set of edge points of Ω. For each x0 in ∂eΩ, we shall use the
following ingredients:
• the plane sector Γx0

which is tangent at x0 to the intersection of Ω with the normal
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plane to the edge,
• the polar coordinates (r, θ) in Γx0

, centered in x0.

In order to improve the behaviour of solutions along the edges, we are going to
consider more general operators than the Stokes operator, namely operators L of the
form: (

v

q

)
7−→

(
f

g

)
=

(
Mv + grad q

div v

)
, (4.4)

where M is a d× d strongly elliptic matrix of operators of degree 2. We introduce, for
any s ≥ 1, the following space of “regular” solutions (v, q) of L on Ω:

D
s(Ω) = Hs(Ω)d ×Hs−1(Ω)/R. (4.5)

For 1 ≤ s < 2, the operator (L, γ0) is continuous from Ds(Ω) into the corresponding
space of “regular” right-hand sides

E
s(Ω) =

{
(f , g,h) ∈ Hs−2(Ω)d ×Hs−1(Ω) ×Hs−1/2(∂Ω)d ;

∫

Ω

g(x) dx−

∫

∂Ω

(h · n)(σ) dσ = 0
}
.

(4.6)

We remark that for any s > 2, the gradient of v on ∂eΩ is completely determined by
the trace h of v on ∂Ω. Hence div h|∂eΩ makes sense and, for s > 2, the operator
(L, γ0) is continuous from Ds(Ω) into:

E
s(Ω) =

{
(f , g,h) ∈ Hs−2(Ω)d ×Hs−1(Ω) ×Hs−1/2(∂Ω)d ;

∫

Ω

g(x) dx−

∫

∂Ω

(h · n)(σ) dσ = 0

(g − div h)|∂eΩ = 0
}
.

(4.7)

The same result holds with s = 2, the condition (g− div h)|∂eΩ = 0 being replaced by
an integral condition.

Let us denote by τ = (τ1, . . . , τd−2) the tangential coordinates along the edge at
x0 and by ν = (ν1, ν2) the normal coordinates to the edge. In a first stage we recall the
regularity result [6], [7]: it is linked with the spectral properties of the principal part

L̆(x0; 0, ∂ν) of the operator L(x0; 0, ∂ν) in each point x0 of ∂eΩ, where L(x0; 0, ∂ν)
stands for the operator L written in coordinates (τ , ν), with its coefficients frozen in
x0 and the tangential operator ∂τ replaced by 0.

THEOREM 4.3 Let s be a real number ≥ 1 and let (v, q) be any pair in D1(Ω) such
that (L(v, q), v|∂Ω) belongs to E s(Ω). If for any x0 in ∂eΩ and any complex number λ
with 0 < Reλ ≤ s− 1, the boundary value problem

{
L̆(x0; 0, ∂ν)

(
rλu(θ), rλ−1p(θ)

)
= 0 in Γx0

,

rλu(θ) = 0 on ∂Γx0
,

(4.8)

has only the trivial solution, then the pair (v, q) belongs to Ds(Ω).

The strong ellipticity of the matrixM yields the unique solvability of the Dirichlet
problem for L, which provides a right-inverse to the operator (div, γ0). Hence

11



COROLLARY 4.4 Let s be a real number ≥ 1. If there exists an operator L of the
form (4.4) satisfying the regularity condition of Theorem 4.3, then the interpolation
result (4.1) holds for any real number r such that 1 ≤ r ≤ s and for any θ, 0 < θ < 1.

EXAMPLE 4.5 Let us consider the case of the cylinder Ω = D×] − 1, 1[, with D the
unit disk in R

2. If we use cylindrical coordinates (ρ, ϑ, z), we can take as tangential
coordinates along the edges τ = ϑ and normal coordinates (ρ, z). If we take the Stokes
system as operator L, and if we introduce the new unknowns (uρ, uϑ, uz) by

uρ = cosϑu1 + sinϑu2, uϑ = − sinϑu1 + cosϑu2, uz = u3,

the bi-dimensional problem (4.8) is:






−(∂2
ρ + ∂2

z )(rλuρ(θ)) + ∂ρ(r
λ−1p(θ)) = 0 in Γx0

,

−(∂2
ρ + ∂2

z )(rλuz(θ)) + ∂z(r
λ−1p(θ)) = 0 in Γx0

,

−(∂2
ρ + ∂2

z )(rλuϑ(θ)) = 0 in Γx0
,

∂ρ(r
λuρ(θ)) + ∂z(r

λuz(θ)) = 0 in Γx0
,

rλu(θ) = 0 on ∂Γx0

(4.9)

and Γx0
is a quadrant. Problem (4.9) is uncoupled into a bi-dimensional Stokes problem

and a Laplacian. The “first” non trivial solution of (4.9) is

λ = 2, uϑ(θ) = sin 2θ, uρ = 0, uz = 0.

This allows to prove the interpolation identity (4.1) for 1 ≤ r ≤ s < 3, which is not
very satisfactory. We obtain a better result with the following operator M , where we
fix a parameter ω in ]0, π/2[:

Mv =




(−∆ − 2z sinϑ cosω r∂r∂z)v1
(−∆ + 2z cosϑ cosω r∂r∂z)v2

−∆v3




(the idea to build this operator is to fold the dihedron in x0 in order to reduce its angle
to ω, to consider the standard Laplace operator in the dihedron with angle ω and to
use a change of variables which maps it back onto the original dihedron).

Then problem (4.8) is uncoupled into a bi-dimensional Stokes problem and the
following Dirichlet problem

{
−

(
∂2

ρ + ∂2
z − 2z cosω ∂r∂z

)
(rλuϑ(θ)) = 0 in Γx0

,

rλuϑ(θ) = 0 on ∂Γx0
.

(4.10)

The “first” non trivial solution of (4.10) is rπ/ω sin(θπ/ω). The least positive real part
of a λ for which the Stokes part has a non-trivial solution, is ξ0 ≃ 2.739. We choose
ω = π/3 for example and derive the interpolation identity (4.1).

Of course, the same argument can be applied in a more general type of cylinder.

COROLLARY 4.6 Let Ω be the cylinder Σ×]− 1, 1[, where Σ is a bounded domain in
R

d−1 with a C 3,1 boundary. The interpolation result (4.1) holds for any real numbers
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r and s such that 1 ≤ r ≤ s ≤ 3.739 and for any θ, 0 < θ < 1.

4.3 In a cube

In the cube Ω =] − 1, 1[3, it is less difficult to treat separately the divergence operator
and the trace operator. We present two different proofs of the following theorem: the
first argument leads to a slightly higher limit for the order of the spaces while the
second one is more constructive and can easily be adapted to treat spaces of functions
with a null normal trace on the boundary.

THEOREM 4.7 On the cube Ω, the interpolation result (4.1) holds for any real num-
bers r and s such that 1 ≤ r ≤ s ≤ 3.739 and for any θ, 0 < θ < 1.

First proof – We firstly recall the interpolation result for the spaces with null traces:

[Hs(Ω) ∩H1
0 (Ω), Hr(Ω) ∩H1

0 (Ω)]θ = H(1−θ)s+θr(Ω) ∩H1
0 (Ω), (4.11)

which can be established by using a lifting of traces, we refer to [3] for this proof in a
more general framework.

Relying on (4.11), we need a right-inverse for the divergence operator with values
in Hs(Ω) ∩ H1

0 (Ω). The method is similar as above. If we use the Stokes operator,
we are hampered with singularities along the edge, which are not in H3(Ω). As this
is just the interesting regularity for our application, we avoid the edge singularities by
the choice of another operator M . We choose, with ω = π/3 for example:

Mv =




(−∆ + 2x2 x3 cosω ∂2∂3) v1

(−∆ + 2x3 x1 cosω ∂3∂1) v2

(−∆ + 2x1 x2 cosω ∂1∂2) v3


 .

Like for the cylinder above, the corresponding operator L in (4.4) preserves the reg-
ularity along the edges for s ≤ 3.739. But now, the corners of Ω may also produce
singularities. As opposed to the edge singularities, the space of corner singularities
associated with a fixed s is only finite-dimensional. Until now, we constructed our
right-inverse Rg as the solution v of the problem L(v, q) = (0, g), cf (4.3). The idea
now is to introduce an operator F with suitable continuity properties so that the
solution v in H1

0 (Ω)3 of L(v, q) = (F (g), g) has no singular part at the corners of Ω.

Here follows the decomposition result into regular and singular parts. We denote
a1 = (−1,−1,−1), . . ., a8 = (1, 1, 1) the corners of Ω. Let ΛL be the (discrete) set of
complex numbers λ with a real part > −1/2 such that the boundary value problem on
the octant Γ1 =] − 1,+∞[3

{
L(a1; ∂x)

(
rλu(θ), rλ−1p(θ)

)
= 0 in Γ1,

rλu(θ) = 0 on ∂Γ1

(4.12)

has non-trivial solutions, (r, θ) denoting the spherical coordinates centered in a1 (the
corresponding problems for the other corners are equivalent). Relying on [6] (for the
asymptotic expansion at corners in the absence of edge singularities) and [5] or [16]
(for expressions of the coefficients occuring in these expansions) one can prove:
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THEOREM 4.8 Let s be a real number, 1 ≤ s ≤ 3.739, and let (v, q) be any pair in
D1(Ω) such that v vanishes on ∂Ω and L(v, q) = (f , g) belongs to E s(Ω). If any λ in
ΛL satisfies Reλ 6= s− 3/2, then the following decomposition holds

(v, q) = (v0, q0) +

8∑

j=1

(vj , qj) (4.13)

where (v0, q0) belongs to Ds(Ω) and each (vj , qj), 1 ≤ j ≤ 8, belongs to a finite-

dimensional space of singular solutions. There exist functions (V j
k , Q

j
k) and (V ∗j

k , Q∗j
k ),

1 ≤ k ≤ K, 1 ≤ j ≤ 8, which depend only on the operator M such that

(vj , qj) =

K∑

k=1

(∫

Ω

V
∗j

k · f +Q∗j
k g dx

)
· (V j

k , Q
j
k).

These functions (V j
k , Q

j
k) and (V ∗j

k , Q∗j
k ) are associated with a λk in ΛL and have the

radial behaviour:

V
j

k ∼ rλk , Qj
k ∼ rλk−1, V

∗j
k ∼ r−λk−1, Q∗j

k ∼ r−λk−2.

This statement and a closer look at the structure of the dual singular functions
(V ∗j

k , Q∗j
k ) allow for proving the

LEMMA 4.9 Let s be a real number, 1 ≤ s ≤ 3.739. There exists an operator F ,
continuous from Hs−1(Ω) into Hs−2(Ω)3 and from L2(Ω) into H−1(Ω)3, such that for
any g in Hs−1(Ω), vanishing on ∂Ω if s > 2, the unique solution (v, q) in D1(Ω) of
L(v, q) = (F (g), g) belongs to Ds(Ω).

Setting Rg = v, the interpolation equality (4.11) and Lemma 3.4 give the result.

REMARK 4.10 The limitation s ≤ 3.739 comes from the method. A better choice
of the operator M and/or the direct handling of edge singularities would allow for a
weaker limitation.

Second proof – The idea is to construct “by hand” a trace lifting operator from N s
div(Ω)

into N s
div(Ω) ∩H1

0 (Ω)3.

THEOREM 4.11 Let Ω be the cube ] − 1, 1[3. There exists a projection operator Q
from N 1

div(Ω) onto N 1
div(Ω)∩H1

0 (Ω)3 which is continuous from N s
div(Ω) into itself for

any real number s, 1 ≤ s < 3.5.

Proof: Let u be any function in N s
div(Ω), s ≥ 1. We look for a function ψ in

Hs+1(Ω)3, depending only on γ0u, such that u − curl ψ belongs to H1
0 (Ω)3. This

function is built in two steps. We denote by Γj (resp. by Γj+3), j = 1, 2, 3, the face
with equation xj = 1 (resp. xj = −1).
1) In order to cancel the normal trace of u on the faces, we firstly remark that, since
the integral of u · n on ∂Ω is equal to 0, there exists a polynomial χ with degree 2,
depending linearly on the quantities

∫
Γj

(u ·n)(σ) dσ, such that the modified function
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v = u− curl χ satisfies
∫

Γj

(v · n)(σ) dσ = 0, 1 ≤ j ≤ 6.

Then, ∆j denoting the bidimensional Laplace operator on the square Γj and nj the
unit outward normal on Γj , the problem −∆jϕj = v · nj provided with homogeneous
Neumann boundary conditions, has a unique solution ϕj in H1(Γj) with

∫
Γj
ϕj = 0.

Moreover, it can be checked (see [6] and [10]) that the following regularity result holds
if the function u, hence v, belongs to Hs(Ω)3, 0 ≤ s < 7

2
:

‖ϕj‖
Hs+ 3

2 (Γj)
≤ c ‖v‖Hs(Ω)3 ≤ c′ ‖u‖Hs(Ω)3 . (4.14)

Next, we use the trace lifting theorem to construct on Ω three functions ̟1, ̟2 and
̟3 which satisfy

̟1 = −∂2ϕi on Γi, i = 3, 6, and ̟1 = ∂3ϕi on Γi, i = 2, 5,

̟2 = −∂3ϕi on Γi, i = 1, 4, and ̟2 = ∂1ϕi on Γi, i = 3, 6,

̟3 = −∂1ϕi on Γi, i = 2, 5, and ̟3 = ∂2ϕi on Γi, i = 1, 4,

together with the stability property

3∑

i=1

‖̟i‖Hs+1(Ω) ≤ c
6∑

j=1

‖ϕj‖
Hs+ 3

2 (Γj)
. (4.15)

The function w = v − curl (̟1, ̟2, ̟3) has its normal traces equal to 0 on each face
Γj for 1 ≤ j ≤ 6.
2) In a second step, we want to cancel the tangential value of w on each face without
modifying the normal value: this is achieved by subtracting the curl of a function with
null tangential traces on the boundary. We begin with introducing a function ψ0 in
Hs+1(Ω) such that

ψ0 = 0 on Γj ∪ Γj+3, j = 1, 3, and ∂3ψ0 = −w1 on Γ3 ∪ Γ6,

which defines a new function w0 = w − curl (0, ψ0, 0). Next, the standard results
about the lifting of traces allow for defining successively three functions ψ1, ψ2 and ψ3

such that

ψ1 = 0 on Γj ∪ Γj+3, j = 2, 3, and ψ2 = ψ3 = 0 on Γj , 1 ≤ j ≤ 6,

and that

∂2ψ1 = −w0
3 on Γ2 ∪ Γ5 and ∂3ψ1 = w0

2 on Γ3 ∪ Γ6,

∂3ψ2 = 0 on Γ3 ∪ Γ6 and ∂1ψ2 = w1
3 on Γ1 ∪ Γ4,

∂1ψ3 = −w2
2 on Γ1 ∪ Γ4 and ∂2ψ3 = w2

1 on Γ2 ∪ Γ5,

with w1 = w − curl (ψ1, ψ0, 0), w2 = w − curl (ψ1, ψ0 + ψ2, 0). Then, it can be
checked that the traces of the function z = w − curl (ψ1, ψ0 + ψ2, ψ3) are equal to
0 on ∂Ω. Moreover, the divergence-free property implies that the right compatibility
conditions on the edges are satisfied, so that the function z belongs to the same space
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Hs(Ω)3 as w and satisfies

‖z‖Hs(Ω)3 ≤ c ‖w‖Hs(Ω)3 . (4.16)

As a conclusion, the function z is divergence-free and belongs to H1
0 (Ω)3. Also, com-

bining the previous estimates implies that, if u belongs to Hs(Ω)3, 1 ≤ s < 7
2 ,

‖z‖Hs(Ω)3 ≤ c ‖u‖Hs(Ω)3 . (4.17)

Taking Qu = z proves the theorem.

Combining Theorem 4.11 with Lemma 3.4 yields Theorem 4.7 with a slightly more
restrictive limit (3.5 instead of 3.739) on the order s of the smaller space. However a
better choice of the operator on the faces should improve the limit.

The previous proofs can be extended to the case of the weighted spaces. Here, we
denote by N s

div,α(Ω) the space N s
A,α(Ω) when A is the divergence operator.

COROLLARY 4.12 Let α be a real number, −1 < α < 1. In the cube Ω =] − 1, 1[3,
the following interpolation result holds for any real numbers r and s such that 1 ≤ r ≤
s ≤ 3.739 + α and for any θ, 0 < θ < 1:

[N s
div,α(Ω) ∩H1

α,0(Ω)3,N r
div,α(Ω) ∩H1

α,0(Ω)3]θ = N
(1−θ)s+θr

div,α (Ω) ∩H1
α,0(Ω)3. (4.18)

REMARK 4.13 Exactly the same arguments as in the first step of the second proof
can be applied for the kernels

N
s

div 0(Ω) = {v ∈ N
s

div(Ω) | v · n = 0 on Ω}.

Hence, in the cube Ω =] − 1, 1[3, the following interpolation result holds for any real
numbers r and s, 0 ≤ r ≤ s < 3.5, and for any θ, 0 < θ < 1:

[N s
div 0(Ω), N

r
div 0(Ω)]θ = N

(1−θ)s+θr
div 0 (Ω).

5 SPECTRAL METHODS FOR THE STOKES PROBLEM

In the cube Ω =]−1, 1[3, we consider the Stokes problem with homogeneous boundary
conditions:





−ν∆u+ grad p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

(5.1)

Here, the unknowns are the velocity u and the pressure p, ν is a positive parameter
standing for the kinematic viscosity and f is a density of body forces. As is well-known,
for any data f in H−1(Ω)3, this problem admits the equivalent variational formulation:
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find a pair (u, p) in H1
0 (Ω)3 × L2

0(Ω) such that

∀v ∈ H1
0 (Ω)3, a(u, v) + b(v, p) = < f , v >,

∀q ∈ L2(Ω), b(u, q) = 0,
(5.2)

where L2
0(Ω) denotes the space of functions in L2(Ω) with a null integral on Ω while

the forms a(·, ·) and b(·, ·) are defined by

a(u, v) = ν

∫

Ω

grad u(x) . grad v(x) dx,

b(v, q) = −

∫

Ω

div v(x) q(x) dx.

This problem admits a unique solution (u, p) in H1
0 (Ω)3 × L2

0(Ω).

5.1 Spectral discretization

Several spectral discretizations of problem (5.2) exist, we only present the simplest one
(see [15]). For any integer n ≥ 0, we denote by Pn(Ω) the space of polynomials with
three variables and degree ≤ n with respect to each variable and by P

0
n(Ω) the subspace

Pn(Ω) ∩H1
0 (Ω). Next, we fix an integer N ≥ 2. Using the Galerkin method leads to

the following discrete problem: find a pair (uN , pN ) in P
0
N (Ω)3 × (PN−2 ∩L

2
0)(Ω) such

that
∀vN ∈ P

0
N (Ω)3, a(uN , vN ) + b(vN , pN ) = (f , vN),

∀qN ∈ PN−2(Ω), b(uN , qN ) = 0.
(5.3)

REMARK 5.1 In practical situations, the integrals which appear in the forms a(., .),
b(., .) and (f , .) are replaced by Gauss type formulas, however this does not change the
results that follow. So, for the sake of clarity, we limit ourselves to the Galerkin type
discretization.

Due to the continuity properties of the forms a(·, ·) and b(·, ·) together with the
ellipticity of the form a(·, ·), the numerical analysis of problem (5.3) relies on the
following inf-sup condition which is proven in [15][4, Thm 25.7]:

βN = inf
qN∈(PN−2∩L2

0
)(Ω)

sup
vN∈P0

N
(Ω)3

b(vN , qN )

‖vN‖H1(Ω)3‖qN‖L2(Ω)
≥ cN−1. (5.4)

The constant βN of the inf-sup condition is not independent of N , indeed it is proven
(see [4, (25.26)]) that βN is exactly of order N−1. However, these properties are
sufficient to prove that problem (5.3) has a unique solution in P

0
N (Ω)3×(PN−2∩L

2
0)(Ω).

5.2 Error estimate

Let us denote by VN the space of polynomials of degree ≤ N with null discrete diver-
gence:

VN =
{
vN ∈ P

0
N (Ω)3; ∀qN ∈ PN−2(Ω), b(vN , qN ) = 0

}
.
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Then, standard arguments lead to the following estimate:

‖u− uN‖H1(Ω)3 +N−1 ‖p− pN‖L2(Ω)

≤ c
(

inf
wN∈VN

‖u−wN‖H1(Ω)3 + inf
qN∈(PN−2∩L2

0
)(Ω)

‖p− qN‖L2(Ω)

)
.

(5.5)

Standard polynomial approximation properties yield (see for instance [4, §7]):

inf
vN∈P0

N
(Ω)3

‖u− vN‖H1(Ω)3 + inf
qN∈(PN−2∩L2

0
)(Ω)

‖p− qN‖L2(Ω)

≤ cN1−s
(
‖u‖Hs(Ω)3 + ‖p‖Hs−1(Ω)

)
,

if (u, p) belongs to Hs(Ω)3 × Hs−1(Ω) for a real number s ≥ 1. So, it remains to
estimate the quantity infwN∈VN

‖u−wN‖H1(Ω)3 .

A general result (see [9, Ch. II, (1.16)]) yields

inf
wN∈VN

‖u−wN‖H1(Ω)3 ≤
c

βN
inf

vN∈P0
N

(Ω)3
‖u− vN‖H1(Ω)3 ,

where βN is the inf-sup constant in (5.4). However, since βN is of order N−1, this
cannot lead to an optimal error on the velocity (one power of N is lost). So, a separate
study of the approximation error is necessary.

5.3 Approximation error

The idea is now to build directly an approximation of any function u in N 1
div(Ω) ∩

H1
0 (Ω)3 by a polynomial in N 1

div(Ω)∩P
0
N (Ω)3 (which is strictly contained in VN ). The

first result in this direction is due to [17]: for any function w in N s
div(Ω) ∩ H1

0 (Ω)3,
with s ≥ 3,

inf
wN∈N 1

div
(Ω)∩P0

N
(Ω)3

‖w −wN‖H1(Ω)3 ≤ cN1−s ‖w‖Hs(Ω)3 . (5.6)

However, even if this estimate is optimal as far as the power of N is concerned, the
condition s ≥ 3 is rather restrictive since it needs to take f in H1(Ω)3 and even then,
one does not know whether the velocity u belongs to H3(Ω)3. Our aim is to lift the
restriction s ≥ 3 and to replace it by the minimal condition s ≥ 1.

THEOREM 5.2 Let s be a real number ≥ 1. Estimate (5.6) holds for any function w
in N s

div(Ω) ∩H1
0 (Ω)3.

Proof: Of course, we have

inf
wN∈N 1

div
(Ω)∩P0

N
(Ω)3

‖w −wN‖H1(Ω)3 = ‖w − ΠNw‖H1(Ω)3 ,

where ΠN is the projection operator from N 1
div(Ω) ∩H1

0 (Ω)3 onto N 1
div(Ω) ∩ P

0
N (Ω)3.

Thus the operator Id − ΠN is continuous from N 1
div(Ω) ∩ H1

0 (Ω)3 into H1(Ω)3 with
norm ≤ 1 and from N 3

div(Ω) ∩H1
0 (Ω)3 into H1(Ω)3 with norm ≤ cN−2 by (5.6). So

an interpolation argument relying on Theorem 4.7 leads to the desired result.
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REMARK 5.3 The analogue of estimate (5.6) in the case of weighted Sobolev spaces
and for s ≥ 3 is proven in [17] for α = −1

2
and can easily be extended to any value of α,

−1
2 ≤ α ≤ 1

2 . The same arguments as previously, together with Corollary 4.12, lead to
the following estimate, which holds for any function w in N s

div,α(Ω)∩H1
α,0(Ω)3, s ≥ 1:

inf
wN∈N 1

div,α
(Ω)∩P0

N
(Ω)3

‖w −wN‖H1
α(Ω)3 ≤ cN1−s ‖w‖Hs

α(Ω)3 . (5.7)

As a conclusion, we obtain the following error estimate for problem (5.3), if the
solution (u, p) of problem (5.1) belongs to Hs(Ω)3 ×Hs−1(Ω),

‖u− uN‖H1(Ω)3 +N−1 ‖p− pN‖L2(Ω) ≤ cN1−s
(
‖u‖Hs(Ω)3 + ‖p‖Hs−1(Ω)

)
. (5.8)

5.4 Convergence of the spectral discretization

We are going to link the error estimate (5.8) with the properties of regularity of the
Stokes problem in a cube. Let S denote the Stokes operator in (5.1). We already
indicated that we have the regularity along the edges for s < 3 and that the regularity
at the corners depend on the set ΛS of complex numbers λ with real part > −1/2 such
that the boundary value problem on the octant Γ =]0,+∞[3

{
S

(
rλu(θ), rλ−1p(θ)

)
= 0 in Γ,

rλu(θ) = 0 on ∂Γ
(5.9)

has solutions satisfying u 6= 0. The following result is proven in [7]:

THEOREM 5.4 Let ξ0 be the least real part of the elements of ΛS . Let s be a real
number, 1 ≤ s < min{3, ξ0 + 3

2}. Then, for any f in Hs−2(Ω)3, the solution (u, p) of
problem (5.1) belongs to Hs(Ω)3 ×Hs−1(Ω).

It is proven in [7] that ξ0 is > 1, but, presently, it is not known if ξ0 is > 3
2 . The

set ΛS and the associated singular functions are extensively studied in [11] and [12]
(for instance, it is proven that, in some strip 1 < Re λ < ξ1, the elements of ΛS are
real and that there are no logarithmic singularities).

As a consequence, the value s0 = min{3, ξ0 + 3
2
} is > 5

2
. For any s < s0 and any

f in Hs−2(Ω)3, we have the error estimate for the solution (u, p) of problem (5.1):

‖u− uN‖H1(Ω)3 +N−1 ‖p− pN‖L2(Ω) ≤ cN1−s ‖f‖Hs−2(Ω)3 . (5.10)

Also, the standard Aubin–Nitsche argument, combined with Theorems 5.2 and 5.4,
gives an estimate for the L2 norm of the velocity:

‖u− uN‖L2(Ω)3 ≤ cN−s ‖f‖Hs−2(Ω)3 . (5.11)

Combined with a density argument, estimate (5.10) yields the convergence of the
discrete velocity uN towards u for any f in H−1(Ω)3. The spectral discretization
(5.3) can be extended to the full Navier–Stokes equations in a natural way, and the
convergence property for the Stokes problem is useful for the numerical analysis of the
nonlinear problem.
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rique, Université Pierre et Marie Curie, Paris (1992).

4. C. Bernardi and Y. Maday — Spectral Methods, in the Handbook of Numerical
Analysis, P.G. Ciarlet and J.-L. Lions eds., North-Holland (1994).

5. M. Bourlard, M. Dauge, M.-S. Lubuma and S. Nicaise — Coefficients des sin-
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