Compatibilité de traces aux arêtes et coins d'un polyèdre

Christine BERNARDI ^a, Monique DAUGE ^b, Yvon MADAY ^a

- ^a Analyse Numérique, C.N.R.S. & Université Pierre et Marie Curie, boîte 187, 4 place Jussieu, 75252 Paris Cedex 05, France.
- ^b IRMAR (U.M.R. 6625), Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France.

(Reçu le

Résumé. Des opérateurs de traces d'ordre quelconque peuvent être définis sur les côtés d'un polygone ou les faces d'un polyèdre. Toutefois des conditions de compatibilité aux coins du polygone, aux arêtes et aux coins du polyèdre, doivent être vérifiées par ces traces pour qu'il en existe un relèvement de régularité optimale. Le but de cette note est d'identifier ces conditions. © Académie des Sciences/Elsevier, Paris

> Compatibility of traces on the edges and corners of a polyhedron

Abstract.

Trace operators of any order can be defined on the edges of a polygon or faces of a polyhedron. However compatibility conditions must be enforced on the corners of the polygon, on the edges and corners of the polyhedron, in order that these traces admits a lifting which has optimal regularity. The aim of this note is to identify these conditions. (c) Académie des Sciences/Elsevier, Paris

Abridged English Version

For domains Ω with smooth boundary, the global trace operator of order m defined in (1) is continuous from $W^{s,p}(\Omega)$ onto $\prod_{k=0}^{m-1} W^{s-k-\frac{1}{p},p}(\partial \Omega)$ for all values of m and of $s>m-1+\frac{1}{p}$, 1 . But for domains with a Lipschitz-continuous boundary, only the global operator oforder 1 can be defined. In contrast, when Ω is a polygon with edges Γ_j or a polyhedron with faces Γ_j , $1 \leq j \leq J$, a trace operator γ_j^m can be defined by (2) on each Γ_j (where n_j stands for the unit outward normal to Ω on Γ_j). However the range of $\gamma^{(m)} = (\gamma_1^m, \dots, \gamma_J^m)$ is in general not the whole space $\mathbb{W}^{s,p,m}(\partial\Omega)$ defined in (3). Indeed, as suggested in [2, §1.5.2] in the case of a polygon, the traces are linked by some compatibility conditions on the corners if Ω is a polygon, on the edges and corners if Ω is a polyhedron. The aim of this note is to provide an explicit characterization of these compatibility conditions. The reader is referred to [1] for the proofs.

With any positive real number s, we first associate the integer K(s) defined in (4). Next, in the case of a simply-connected polygon Ω , assuming that the edges are numbered counterclockwise and with the convention $\Gamma_0 = \Gamma_J$, we denote by a_j the common corner to $\overline{\Gamma}_{j-1}$ and $\overline{\Gamma}_j$, and by h_j

C. Bernardi, M. Dauge, Y. Maday

the smallest of the lengths of Γ_{j-1} and Γ_{j} . For $1 \leq j \leq J$, the unit tangential vector to Γ_{j} which is directly orthogonal to \boldsymbol{n}_{j} is denoted by $\boldsymbol{\tau}_{j}$, while $\mathcal{E}_{n,m}^{j}(\Omega)$ stands for the space spanned by the operators $\partial_{n_{j}}^{k} \partial_{\tau_{j}}^{n-k}$, $0 \leq k \leq \min\{n, m-1\}$, and π_{j} is defined on $\mathcal{E}_{n,m}^{j}(\Omega)$ by (5).

Theorem 1. Let p be such that 1 , <math>s be any real number $> \frac{1}{p}$ and m be an integer, $1 \le m \le K(s) + 1$. A J-tuple $G = (G^j)_{1 \le j \le J}$ in $\mathbb{W}^{s,p,m}(\partial\Omega)$ is the image of a function in $W^{s,p}(\Omega)$ by the trace operator $\gamma^{(m)}$ if and only if conditions (6) for all $n, 0 \le n < s - \frac{2}{p}$, and, moreover, conditions (7) for $n = s - \frac{2}{p}$ (when $s - \frac{2}{p}$ is an integer) are satisfied for all $(\mathcal{L}_{j-1}, \mathcal{L}_j)$ in $\mathcal{E}_{n,m}^{j-1}(\Omega) \times \mathcal{E}_{n,m}^{j}(\Omega)$ such that $\mathcal{L}_{j-1} + \mathcal{L}_{j} = 0$. There exists a continous inverse of the operator $\gamma^{(m)}$ from the subspace made of all functions in $\mathbb{W}^{s,p,m}(\partial\Omega)$ satisfying all these conditions into $W^{s,p}(\Omega)$.

The dimension of each intersection $\mathcal{E}_{n,m}^{j-1}(\Omega) \cap \mathcal{E}_{n,m}^{j}(\Omega)$ is given in (8). So the number of compatibility conditions at each corner is bounded as a function of m, it increases from $\frac{m(m+1)}{2}$ for $m-1+\frac{1}{p}< s< m+\frac{1}{p}$ to m^2 for $s\geq 2(m-1+\frac{1}{p})$. Conditions (6) are explicitly written in the table below in the case m=2.

The case of a general polyhedron Ω with a Lipschitz–continuous boundary is much more complex. Indeed, compatibility conditions must be enforced separately:

- on each edge e_{ℓ} which is the intersection of two faces $\Gamma_{j_{-}(\ell)}$ and $\Gamma_{j_{+}(\ell)}$. They are written in (11) and also in (12) (when $s \frac{2}{p}$ is an integer), where $\mathcal{E}_{n,m}^{\ell \pm}(e_{\ell})$ stand for the spaces spanned by the $\partial_{n_{\ell+}}^k \partial_{\tau_{\ell+}}^{n-k}$, $0 \le k \le \min\{n, m-1\}$, with obvious definitions for $\tau_{\ell\pm}$ and $n_{\ell\pm}$.
- on each corner a_i . Let J(i) stand for the set of indices j in $\{1,\ldots,J\}$ such that a_i belongs to $\overline{\Gamma}_j$. The compatibility conditions are written in (13) and also in (14) (when $s-\frac{3}{p}$ is an integer). They involve the common tangential directions $\sigma_{jj'}$ to any pair of faces Γ_j and $\Gamma_{j'}$, $(j,j') \in J(i)^2$, the set Σ_i defined in (9) and, for any face Γ_j , the spaces $\mathcal{E}^j_{r,m}(\sigma)$ spanned by the operators $\partial^k_{n_j}\partial^{r-k}_{\tau_j}$, $0 \le k \le \min\{r, m-1\}$, where τ_j is tangential to Γ_j and orthogonal to σ .

However, for simple geometries such as a tetrahedron or a parallelepiped or a regular dodecahedron, the conditions on edges imply the conditions on corners.

1. Introduction

Pour des domaines Ω de frontière très régulière, l'opérateur de traces d'ordre m:

$$\gamma^m: \quad v \quad \mapsto \quad \left(v|_{\partial\Omega}, (\partial_n v)|_{\partial\Omega}, \dots, (\partial_n^{m-1} v)|_{\partial\Omega}\right)$$
(1)

est continu de $W^{s,p}(\Omega)$ dans $\prod_{k=0}^{m-1} W^{s-k-\frac{1}{p},p}(\partial\Omega)$ pour toutes valeurs de m et de $s>m-1+\frac{1}{p},$ $1< p<+\infty.$ Mais, pour des ouverts à frontière lipschitzienne, seul l'opérateur de traces global d'ordre 1 peut être défini. Par contre, sur un polygone Ω de côtés Γ_j ou un polyèdre Ω de faces Γ_j , $1\leq j\leq J$, un opérateur de traces d'ordre m quelconque peut être défini sur chaque Γ_j (n_j désignant le vecteur unitaire normal à Γ_j extérieur à Ω)

$$\gamma_j^m: \quad v \quad \mapsto \quad \left(v|_{\Gamma_j}, (\partial_{n_j}v)|_{\Gamma_j}, \dots, (\partial_{n_j}^{m-1}v)|_{\Gamma_j}\right).$$
 (2)

Il faut toutefois noter que l'image de $W^{s,p}(\Omega)$ par l'opérateur $\gamma^{(m)}=(\gamma_1^m,\ldots,\gamma_J^m)$ est un sous-espace en général strict de

$$\mathbb{W}^{s,p,m}(\partial\Omega) = \prod_{j=1}^{J} \prod_{k=0}^{m-1} W^{s-k-\frac{1}{p},p}(\Gamma_j). \tag{3}$$

En effet, différentes conditions de compatibilité relient les traces aux coins de Ω si Ω est un polygone, aux arêtes et aux coins de Ω si Ω est un polyèdre. Ces conditions sont suggérées dans [2, §1.5.2] dans le cas d'un polygone.

Le but de cette note est d'identifier ces conditions de compatibilité, c'est-à-dire de donner une caractérisation explicite du sous-espace de $\mathbb{W}^{s,p,m}(\partial\Omega)$ qui coïncide avec l'image de $W^{s,p}(\Omega)$ par $\gamma^{(m)}$. Les démonstrations de ces résultats figurent dans l'ouvrage [1], elles reposent sur une décomposition de chaque trace sur un côté ou une face en une partie "plate", s'annulant aux coins et sur les arêtes, et un polynôme de degré fixé en fonction de s et de m pour lequel on peut écrire les conditions de compatibilité.

2. Cas d'un polygone

L'énoncé requiert quelques notations. À tout réel positif s, on associe l'entier K(s) défini par

$$K(s) = \begin{cases} s - \frac{1}{p} - 1 & \text{if } s - \frac{1}{p} \text{ est un entier,} \\ [s - \frac{1}{p}] & \text{sinon.} \end{cases}$$
 (4)

Sans restriction sur le résultat final, on suppose que le domaine Ω est un polygone simplement connexe, on numérote ses arêtes Γ_j , $1 \leq j \leq J$, en tournant dans le sens trigonométrique et, avec la convention $\Gamma_0 = \Gamma_J$, on note \boldsymbol{a}_j le coin commun à $\overline{\Gamma}_{j-1}$ et à $\overline{\Gamma}_j$ et h_j la plus petite des longueurs de Γ_{j-1} et Γ_j . On désigne par τ_j , $1 \leq j \leq J$, le vecteur unitaire tangent à Γ_j et directement orthogonal à \boldsymbol{n}_j . Finalement, pour $1 \leq j \leq J$ et pour tout entier $n \geq 0$, on désigne par $\mathcal{E}_{n,m}^j(\Omega)$ l'espace d'opérateurs engendré par les $\partial_{n_j}^k \partial_{\tau_j}^{n-k}$, $0 \leq k \leq \min\{n, m-1\}$, et par π_j l'opérateur défini sur $\mathcal{E}_{n,m}^j(\Omega)$ par

$$\pi_j: \sum_{k=0}^{m-1} c_k \, \partial_{n_j}^k \partial_{\tau_j}^{n-k} \quad \mapsto \quad (c_k \, \partial_{\tau_j}^{n-k})_{0 \le k \le m-1}. \tag{5}$$

Théorème 1. Soit p tel que 1 , <math>s un nombre réel $> \frac{1}{p}$ et m un entier, $1 \le m \le K(s) + 1$. Un élément $G = (G^j)_{1 \le j \le J}$ de $\mathbb{W}^{s,p,m}(\partial\Omega)$ est l'image d'un élément de $W^{s,p}(\Omega)$ par l'opérateur de traces $\gamma^{(m)}$ si et seulement si les conditions suivantes sont vérifiées pour tout n, $0 \le n < s - \frac{2}{p}$, et tout $(\mathcal{L}_{j-1}, \mathcal{L}_j)$ de $\mathcal{E}_{n,m}^{j-1}(\Omega) \times \mathcal{E}_{n,m}^j(\Omega)$ tel que $\mathcal{L}_{j-1} + \mathcal{L}_j = 0$:

$$\pi_{i-1}\mathcal{L}_{i-1}(G^{j-1})(\boldsymbol{a}_i) + \pi_i\mathcal{L}_i(G^j)(\boldsymbol{a}_i) = 0, \tag{6}$$

et si, en outre, lorsque $s-\frac{2}{p}$ est un entier, les conditions suivantes sont vérifiées pour $n=s-\frac{2}{p}$ et tout $(\mathcal{L}_{j-1},\mathcal{L}_j)$ de $\mathcal{E}_{n,m}^{j-1}(\Omega) \times \mathcal{E}_{n,m}^{j}(\Omega)$ tel que $\mathcal{L}_{j-1}+\mathcal{L}_j=0$:

$$\int_0^{h_j} \left| \pi_{j-1} \mathcal{L}_{j-1}(G^{j-1})(\boldsymbol{a}_j - \lambda \, \boldsymbol{\tau}_{j-1}) + \pi_j \mathcal{L}_j(G^j)(\boldsymbol{a}_j + \lambda \, \boldsymbol{\tau}_j) \right|^p \frac{d\lambda}{\lambda} < +\infty. \tag{7}$$

Soit $\widetilde{\mathbb{W}}^{s,p,m}(\partial\Omega)$ le sous-espace constitué des fonctions de $\mathbb{W}^{s,p,m}(\partial\Omega)$ vérifiant toutes ces conditions. Ce sous-espace est fermé dans $\mathbb{W}^{s,p,m}(\partial\Omega)$ si et seulement si $s-\frac{2}{p}$ n'est pas un entier. On munit $\widetilde{\mathbb{W}}^{s,p,m}(\partial\Omega)$ de la norme de $\mathbb{W}^{s,p,m}(\partial\Omega)$ si $s-\frac{2}{p}$ n'est pas un entier, de cette norme à laquelle on adjoint le membre de gauche des conditions (7) si $s-\frac{2}{p}$ est un entier. Il existe alors un inverse continu de l'opérateur $\gamma^{(m)}$ de $\widetilde{\mathbb{W}}^{s,p,m}(\partial\Omega)$ dans $W^{s,p}(\Omega)$.

Pour s=m, on retrouve les résultats de [2, §1.5.2]. Par ailleurs on vérifie que la dimension de l'intersection de $\mathcal{E}_{n,m}^{j-1}(\Omega)$ et de $\mathcal{E}_{n,m}^{j}(\Omega)$ est égale à

$$\begin{cases}
n+1 & \text{si } n \leq m-1, \\
2m-1-n & \text{si } m \leq n \leq 2(m-1), \\
0 & \text{si } n \geq 2m-1.
\end{cases}$$
(8)

C. Bernardi, M. Dauge, Y. Maday

Le nombre de conditions de compatibilité par coin est donc borné en fonction de m, il varie de

 $\frac{m(m+1)}{2}$ pour $m-1+\frac{1}{p} < s < m+\frac{1}{p}$ à m^2 pour $s \ge 2(m-1+\frac{1}{p})$. De plus, ces conditions peuvent s'écrire de façon explicite. Pour m=1 la seule condition est celle de raccord continu $g_0^j(\boldsymbol{a}_j)=g_0^{j-1}(\boldsymbol{a}_j)$. Les conditions pour m=2 sont indiquées dans la table ci-dessous. Ici, c_j et s_j désignent respectivement les cosinus et sinus de l'angle entre Γ_j et Γ_{j-1} , chaque G_j est égal à (g_0^j, g_1^j) et on note $g_k^{j\prime}, g_k^{j\prime\prime}, \ldots$, les dérivées successives de la fonction g_k^j par rapport à la coordonnée tangentielle dans la direction de τ_i .

Remarque. Considérons un polygone dont la frontière n'est pas lipschitzienne en a_j , c'est-à-dire tel que l'angle entre Γ_j et Γ_{j-1} soit égal à 2π (cas d'une fissure). Le Théorème 1 est toujours vrai, mais le nombre de conditions en a_j reste maximal car les espaces $\mathcal{E}_{n,m}^{j-1}(\Omega)$ et $\mathcal{E}_{n,m}^j(\Omega)$ coïncident.

3. Cas d'un polyèdre

Soit maintenant Ω un polyèdre à frontière lipschitzienne, de faces Γ_j , $1 \leq j \leq J$, d'arêtes e_{ℓ} , $1 \le \ell \le L$, et de coins a_i , $1 \le i \le I$. On suppose que les faces partageant un même sommet sont deux à deux non coplanaires. On introduit quelques notations, successivement pour les arêtes et les coins.

• Pour $1 \le \ell \le L$, soit σ_{ℓ} un vecteur unitaire tangent à l'arête e_{ℓ} . Chaque e_{ℓ} intersecte deux faces de Ω , que l'on note $\Gamma_{j_{-}(\ell)}$ et $\Gamma_{j_{+}(\ell)}$. À ces faces on associe les bases orthogonales $\{n_{\ell}, \sigma_{\ell}, \tau_{\ell-}\}$ et $\{n_{\ell+}, \sigma_{\ell}, \tau_{\ell+}\}$, où $n_{\ell\pm}$ désigne le vecteur unitaire normal à $\Gamma_{j\pm(\ell)}$ extérieur à Ω et $\tau_{\ell\pm}$ le vecteur unitaire tangent à $\Gamma_{j_{\pm}(\ell)}$ directement orthogonal à σ_{ℓ} . Finalement, on désigne par $\mathcal{E}_{n,m}^{\ell\pm}(e_{\ell})$ les espaces engendrés par les $\partial_{n_{\ell+}}^k \partial_{\tau_{\ell+}}^{n-k}$, $0 \le k \le \min\{n, m-1\}$, et par $\pi_{\ell\pm}$ les opérateurs

$$\pi_{\ell\pm}: \sum_{k=0}^{\min\{n,m-1\}} c_k \, \partial_{n_{\ell\pm}}^k \partial_{\tau_{\ell\pm}}^{n-k} \quad \mapsto \quad (c_k \, \partial_{\tau_{\ell\pm}}^{n-k})_{0 \le k \le m-1}.$$

• Pour $1 \leq i \leq I$, on note J(i) l'ensemble des indices j de $\{1,\ldots,J\}$ tels que les faces $\overline{\Gamma}_i$ contiennent le coin a_i . Les plans contenant Γ_j et $\Gamma_{j'}$, pour j et j' dans J(i), j < j', s'intersectent en une droite: on note $\sigma_{jj'}$ un vecteur unitaire porté par cette droite. On observe que $\sigma_{jj'}$ peut être colinéaire à l'un des σ_{ℓ} ou non: dans le premier cas, $\sigma_{jj'}$ est la direction d'une arête réelle; dans le second, $\sigma_{jj'}$ sera appelé "direction d'arête virtuelle". On définit alors l'ensemble

$$\Sigma_i = \{ \sigma_{ij'}, \ (j, j') \in J(i)^2, \ j < j' \}. \tag{9}$$

Puis, pour tout σ dans Σ_i , on désigne par $J(\sigma)$ l'ensemble des indices j de J(i) tels que σ soit tangent à Γ_j , par $\mathcal{E}_{n,m}^j(\boldsymbol{\sigma})$ l'espace engendré par les opérateurs $\partial_{n_j}^k \partial_{\tau_j}^{n-k}$, $0 \le k \le \min\{n,m-1\}$, où au_j est maintenant le vecteur unitaire tangential à Γ_j et directement orthogonal à σ . L'opérateur π_i correspondant est défini par

$$\pi_j: \sum_{k=0}^{\min\{n,m-1\}} c_k \, \partial_{n_j}^k \partial_{\tau_j}^{n-k} \quad \mapsto \quad (c_k \, \partial_{\tau_j}^{n-k})_{0 \le k \le m-1}. \tag{10}$$

On a encore besoin de notations supplémentaires pour traiter les cas limites.

• Pour toute arête \boldsymbol{e}_ℓ et tout point \boldsymbol{x} de \boldsymbol{e}_ℓ , on introduit l'ensemble

$$\mathcal{V}_{\ell}(\boldsymbol{x}) = \left\{ \lambda \in \mathbb{R}; \ \boldsymbol{x} - \lambda \, \boldsymbol{\tau}_{\ell-} \in \Gamma_{i-(\ell)} \text{ et } \boldsymbol{x} + \lambda \, \boldsymbol{\tau}_{\ell+} \in \Gamma_{i+(\ell)} \right\}.$$

• Pour tout coin a_i , il existe un secteur plan W_i ayant son sommet en $\mathbf{0}$, d'angle et de rayon assez petits pour que, pour tout j dans J(i), il existe une aplication F_j composée d'une translation et d'une rotation telle que le secteur $F_j(W_i)$ ait son sommet en a_i et soit contenu dans Γ_j (le secteur W_i n'intervient que dans la condition (14) et on vérifie aisément que cette condition est indépendante du choix de W_i).

Théorème 2. Soit p tel que 1 , <math>s un nombre réel $> \frac{1}{p}$ et m un entier, $1 \le m \le K(s) + 1$. Un élément $G = (G^j)_{1 \le j \le J}$ de $\mathbb{W}^{s,p,m}(\partial\Omega)$ est l'image d'un élément de $W^{s,p}(\Omega)$ par l'opérateur de traces $\gamma^{(m)}$ si et seulement si

(i) pour tout ℓ , $1 \le \ell \le L$: les conditions suivantes sont vérifiées pour tout n, $0 \le n < s - \frac{2}{p}$, et tout $(\mathcal{L}_{\ell-}, \mathcal{L}_{\ell+})$ de $\mathcal{E}_{n,m}^{\ell-}(\mathbf{e}_{\ell}) \times \mathcal{E}_{n,m}^{\ell+}(\mathbf{e}_{\ell})$ tel que $\mathcal{L}_{\ell-} + \mathcal{L}_{\ell+} = 0$:

$$\pi_{\ell-}\mathcal{L}_{\ell-}(G^{j_-(\ell)}) + \pi_{\ell+}\mathcal{L}_{\ell+}(G^{j_+(\ell)}) = 0 \quad \text{p.p. sur } \mathbf{e}_{\ell},$$
 (11)

et, en outre, lorsque $s-\frac{2}{p}$ est un entier, les conditions suivantes sont vérifiées pour $n=s-\frac{2}{p}$ et tout $(\mathcal{L}_{\ell-},\mathcal{L}_{\ell+})$ de $\mathcal{E}_{n,m}^{\ell-}(\mathbf{e}_{\ell})\times\mathcal{E}_{n,m}^{\ell+}(\mathbf{e}_{\ell})$ tel que $\mathcal{L}_{\ell-}+\mathcal{L}_{\ell+}=0$:

$$\int_{\mathcal{V}_{\ell}(\boldsymbol{x})} \left| \pi_{\ell-} \mathcal{L}_{\ell-}(G^{j-(\ell)})(\boldsymbol{x} - \lambda \, \boldsymbol{\tau}_{\ell-}) + \pi_{\ell+} \mathcal{L}_{\ell+}(G^{j+(\ell)})(\boldsymbol{x} + \lambda \, \boldsymbol{\tau}_{\ell+}) \right|^{p} \frac{d\lambda}{\lambda} < +\infty$$
(12)

pour presque tout x de e_{ℓ} ,

(ii) pour tout $i, 1 \le i \le I$: les conditions suivantes sont vérifiées pour tout $n, 0 \le n < s - \frac{3}{p}$, pour tout élément σ de Σ_i et pour tout $(\mathcal{L}_j)_{j \in J(\sigma)}$ de $\prod_{j \in J(\sigma)} \mathcal{E}_{n,m}^j(\sigma)$ tel que $\sum_{j \in J(\sigma)} \mathcal{L}_j = 0$ et pour tout $r, 0 \le r < s - \frac{3}{p} - n$:

$$\partial_{\sigma}^{r} \sum_{j \in J(\sigma)} \pi_{j} \mathcal{L}_{j}(G^{j})(\boldsymbol{a}_{i}) = 0, \tag{13}$$

et, en outre, lorsque $s-\frac{3}{p}$ est un entier, les conditions suivantes sont vérifiées pour tout $n, 0 \le n < s-\frac{3}{p}$, pour tout élément σ de Σ_i et pour tout $(\mathcal{L}_j)_{j\in J(\sigma)}$ de $\prod_{j\in J(\sigma)}\mathcal{E}_{n,m}^j(\sigma)$ tel que $\sum_{j\in J(\sigma)}\mathcal{L}_j=0$ et pour $r=s-\frac{3}{p}-n$:

$$\int_{\mathcal{W}_i} \left| \partial_{\sigma}^r \sum_{j \in J(\sigma)} \pi_j \mathcal{L}_j(G^j)(F_j(\lambda)) \right|^p \frac{d\lambda}{|\lambda|^2} < +\infty.$$
 (14)

Il existe un inverse continu de l'opérateur $\gamma^{(m)}$ du sous-espace constitué des fonctions de $\mathbb{W}^{s,p,m}(\partial\Omega)$ vérifiant toutes ces conditions dans $W^{s,p}(\Omega)$.

La complexité du Théorème 2 est due à la généralité de la géométrie que l'on traite. Toutefois les conditions (11) sur les arêtes sont l'analogue tridimensionnel des conditions (6) aux coins d'un polygone figurant dans le Théorème 1. De plus, on peut écrire explicitement pour une trace (g^1, \ldots, g^J) les conditions (13) au coin a_i lorsque $s - \frac{2}{p}$ n'est pas un entier et dans le cas m = 1. (i) Pour n = 0, ces conditions se résument à

$$\forall (j,j') \in J(i)^2, \quad g^j(\boldsymbol{a}_i) = g^{j'}(\boldsymbol{a}_i), \tag{15}$$

et se déduisent des conditions (11) sur les arêtes.

(ii) Pour n=1 et pour tous j et j' de J(i), la condition précédente est dérivée dans la direction $\sigma_{jj'}$ commune à Γ_j et $\Gamma_{j'}$, ce qui donne

$$\forall (j, j') \in J(i)^2, \quad \partial_{\sigma_{ij'}} g^j(\mathbf{a}_i) = \partial_{\sigma_{ij'}} g^{j'}(\mathbf{a}_i). \tag{16}$$

D'autre part, s'il existe un σ dans Σ_i tel que le cardinal de $J(\sigma)$ soit ≥ 3 , pour tous les σ vérifiant cette propriété et pour tout triplet (j, j', j'') de $J(\sigma)$, j < j' < j'', on constate que $\tau_{j''}$ est une combinaison linéaire de τ_j de $\tau_{j'}$, ce qui donne lieu à la condition supplémentaire

$$\forall (j, j', j'') \in J(\boldsymbol{\sigma})^3, \quad \partial_{\tau_{i''}} g^{j''}(\boldsymbol{a}_i) = \alpha_j \, \partial_{\tau_i} g^j(\boldsymbol{a}_i) + \alpha_{j'} \, \partial_{\tau_{i'}} g^{j'}(\boldsymbol{a}_i). \tag{17}$$

(iii) Pour n=2, les conditions (16) doivent être dérivées dans la direction $\sigma_{jj'}$ et les conditions (17) doivent être dérivées dans la direction σ . De plus, s'il existe un σ dans Σ_i tel que le cardinal de $J(\sigma)$ soit ≥ 4 , une nouvelle condition apparaît pour tous les σ vérifiant cette propriété et pour tout quadruplet (j, j', j'', j''') de $J(\sigma)$, j < j' < j'' < j'''.

Et ainsi de suite... Le nombre maximal de conditions en a_i n'est donc borné qu'en fonction de s. Toutefois ces conditions se simplifient dans un certain nombre de géométries.

• Quand tous les $J(\sigma)$, $\sigma \in \Sigma_i$, ont un cardinal égal à 2, toutes les conditions de compatibilité (13) se déduisent de (15) par dérivation tangentielle, elles s'écrivent pour $0 \le r < s - \frac{3}{n}$

$$\forall (j,j') \in J(i)^2, \quad \partial^r_{\sigma_{jj'}} g^j(\boldsymbol{a}_i) = \partial^r_{\sigma_{jj'}} g^{j'}(\boldsymbol{a}_i). \tag{18}$$

- Quand l'intersection de $\overline{\Gamma}_j$ and $\overline{\Gamma}_{j'}$ est une arête e_ℓ , celle-ci est parallèle au vecteur $\sigma_{jj'}$ et les conditions (18) sont induites par les conditions (11) le long de e_ℓ par dérivation tangentielle.
- Et finalement quand le cardinal de J(i) est égal à 3, toutes les intersections deux à deux des plans contenant Γ_j contiennent une arête e_ℓ (autrement dit, toutes les arêtes sont réelles et non virtuelles) et toutes les conditions de compatibilité (13) sont induites par (11).

Remarque. Lorsque tous les J(i), $1 \le i \le I$, ont un cardinal égal à 3 (c'est le cas par exemple pour un tétraèdre ou un parallélépipède ou un dodécaèdre régulier), seules les conditions d'arêtes (11) et (12) subsistent. Le cas où $s - \frac{3}{p}$ est un entier n'est donc plus un cas limite.

Remarque. Les Théorèmes 1 et 2 dans le cas m=1 fournissent une caractérisation complète de l'espace $W^{s-\frac{1}{p},p}(\partial\Omega)$ qui apparaît dans le théorème de traces global.

L'extension au cas m quelconque est plus compliquée. Toutefois, là encore, en tout coin \mathbf{a}_i appartenant à au plus trois faces, les conditions (13) sont impliquées par des conditions d'arêtes (11).

Remarque. Dans le cas où des faces $\overline{\Gamma}_j$ contenant le même coin a_i sont coplanaires, le formalisme des conditions aux arêtes (11) est toujours le même. Par contre en ce qui concerne les coins, le formalisme des conditions (13) ne s'applique plus car l'intersection des faces coplanaires n'est plus une droite. On doit ajouter les conditions selon lesquelles toutes les dérivées tangentielles sur les faces coplanaires doivent coïncider au coin a_i , et reformuler (13) sur l'union des plans distincts définis par l'ensemble des faces contenant ce coin.

Références bibliographiques

- [1] Bernardi C., Dauge M., Maday Y., Polynomials in Sobolev spaces and applications, livre en préparation.
- [2] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman (1985).