TD2

H₂, a good training

Paul Fleurat-Lessard Mikael Kepenekian mikael.kepenekian@ens-lyon.fr

1 H₂ described by a minimal basis set

 H_2 is described by a minimal basis set built on the atomic orbitals 1s of each hydrogen (noted a and b).

- 1. Give the molecular orbitals σ_g and σ_u of H₂ within this basis set.
- 2. Write all the 2-electron determinants that can be built with these orbitals. The following notation is assumed:

$$g \equiv \sigma_g(r)\alpha(\omega) \qquad \qquad \bar{g} \equiv \sigma_g(r)\beta(\omega)$$
$$u \equiv \sigma_u(r)\alpha(\omega) \qquad \qquad \bar{u} \equiv \sigma_u(r)\beta(\omega)$$

- 3. Show that these determinants are eigenvectors of the operator \hat{S}_z , projection on the *z*-axis of the spin-operator \hat{S} .
- 4. We aim at the eigenvectors of \hat{S}^2 .
 - (a) Giving the definition of $\hat{S}^2 = \hat{S}^+ \hat{S}^- + \hat{S}_z^2 \hat{S}_z$, show that some determinants are eigenvectors of \hat{S}^2 .
 - (b) Combine judiciously the other determinants to find eigenvectors of \hat{S}^2 .
- 5. Calculate the energies of the eigenvectors of \hat{S}^2 .
- 6. Give the spectroscopic states associated to these functions. Order its on a energetic diagram.
- 7. The previous functions can be developed in the product "space function \times spin function". Check that the space function of the triplet state is antisymmetrical whereas the one of the singlet is symmetrical.

2 Dissociation of H_2

- 1. Give the molecular orbitals of H_2 described in the minimal basis set (orbitals 1s of each hydrogen) using the previous notations.
- 2. Write the wave-function Ψ_0 of the ground state of H₂ described with the RHF method. Expand Ψ_0 on the basis of molecular orbitals, of atomic orbitals.
- 3. Discuss the behaviour of Ψ_0 along the dissociation of H₂. Conclude.

3 Unrestricted calculation

We have seen that the restricted Hartree-Fock solution doesn't describe properly thee dissociated state of H_2 : 2H[•]. This exercise aims at understanding the behaviour of the unrestricted solution.

- 1. Write the restricted solutions (namely g and u).
- 2. Unrestricted orbitals are defined as follow:

$$g^{\alpha} = \cos \theta g + \sin \theta u \qquad \qquad u^{\alpha} = -\sin \theta g + \cos \theta u$$
$$g^{\beta} = \cos \theta g - \sin \theta u \qquad \qquad u^{\beta} = \sin \theta g + \cos \theta u$$

- (a) What is the difference between restricted and unrestricted methods ?
- (b) Show that $\theta = 0^{\circ}$ match the restricted solution.
- (c) Let's consider the case of two non-interacting atoms *i.e.* S = 0. Show that $\theta = 45^{\circ}$ describe a state of two hydrogen atoms.
- 3. We now consider the unrestricted determinant $|\Psi_0\rangle = |g^{\alpha}g^{\overline{\beta}}\rangle$
 - (a) It can easily be shown that the energy is written:

$$E_0(\theta) = 2\cos^2\theta h_{gg} + 2\sin^2\theta h_{uu} + \cos^4\theta J_{gg} + \sin^4\theta J_{uu} + 2\sin^2\theta \cos^2\theta (J_{au} - K_{au})$$

and that the differential can be written:

$$E'_{0}(\theta) = \underbrace{4\cos\theta\sin\theta}_{A} \times \underbrace{\left(h_{uu} - h_{gg} + \sin^{2}\theta J_{uu} - \cos^{2}\theta J_{gg} + (\cos^{2}\theta - \sin^{2}\theta)(J_{gu} - 2K_{gu})\right)}_{B}$$

Deduce that the restricted solution is still solution of the problem.

- (b) We impose now $\theta \neq 0$. When both atoms are widely separated, show that $J_{gg} = J_{uu} = J_{gu} = K_{gu}$ et $h_{gg} = h_{uu}$ and, consequently that $\theta = 45^{\circ}$.
- (c) What becomes then the wave-function written within the atomic orbitals basis set ? Is it the wave-function of an open-shell singlet ?
- (d) Show that the resulting wave-function can be written as an average of a triplet function and a singlet function:

$$\lim_{R \to \infty} |\Psi_0\rangle = \frac{1}{2} \left[|g\bar{g}\rangle - |u\bar{u}\rangle - \sqrt{2}|^3 \Psi \rangle \right]$$

This wave-function is 50% contaminated by the triplet function.

4 H₂: Configuration Interaction

We consider one more time the case of H₂ described with the minimal basis set $\{a, b\}$, combined into molecular orbitals g and u.

- 1. Write the ground state (Hartree-Fock) $|\Psi_0\rangle$, and all the excitations.
- 2. Which excited determinants are able to couple with $|\Psi_0\rangle$.
- 3. Write the configuration interaction matrix. Use the notation $2\Delta = \langle u\bar{u}|\hat{H}|u\bar{u}\rangle \langle g\bar{g}|\hat{H}|g\bar{g}\rangle$.
- 4. Calculate the correlation energy E_{corr} and the wave-function $|\Psi\rangle$.
- 5. Discuss the behaviour of the wave-function for in the different cases.

5 Correlation and quantum chemistry methods

We give the potential energy of H_2 calculated with the Restricted Hartree-Fock (RHF) method, a DFT method and Full Configuration Interaction (Full-CI).

Figure 1: Potential curve of H₂ calculated with Restricted Hartree-Fock (SCF), MP2, DFT (BP86 functionnal) and Full-CI.

- 1. Give the concept of each method.
- 2. Which method is suppose to give the best result
 - (a) at the equilibrium distance ?
 - (b) at the dissociated state ?

- 3. Let's focus on the RHF curve.
 - (a) Why is it always higher than the other ?
 - (b) Why the dissociation limit is that wrong ?
- 4. Explain the form of the MP2 curve.
- 5. Comment on the form of the DFT curve.