TD1

Useful Tools for Quantum Chemistry

Paul Fleurat-Lessard Mikael Kepenekian mikael.kepenekian@ens-lyon.fr

1 Hartree Products and Slater Determinants

Let's consider a system of N electrons in N spinorbitals χ_i ($i \in 1, ..., N$). ϕ_i and s_i are defined as the spatial part and the spin part of the spinorbital χ_i respectively *i.e.* $\chi_i(x) = \phi_i(\mathbf{r})s_i(\omega)$.

We aim at the probability $P_{12}(\mathbf{r_1}, \mathbf{r_2})$ of finding the electron 1 in the volume $d\mathbf{r_1}$ centred on $\mathbf{r_1}$ and the electron 2 in the volume $d\mathbf{r_2}$ centred on $\mathbf{r_2}$.

- 1. Give an expression of $P_{12}(\mathbf{r_1}, \mathbf{r_2})$ depending on Ψ the electronic wavefunction of the system.
- 2. On a first approach, let's consider that the electronic wave-function can be written as a Hartree product:

$$\Psi^H = \chi_1(x_1)...\chi_N(x_N)$$

Conclude on $P_{12}(\mathbf{r_1}, \mathbf{r_2})$.

3. Ψ is now written as a Slater determinant constructed on the χ_i :

$$\Psi^{S} = |\chi_{1}(x_{1})...\chi_{N}(x_{N})\rangle$$

$$= \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_{1}(x_{1}) & \chi_{1}(x_{2}) & \cdots & \chi_{1}(x_{N}) \\ \chi_{2}(x_{1}) & \chi_{2}(x_{2}) & \cdots & \chi_{2}(x_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{N}(x_{1}) & \chi_{N}(x_{2}) & \cdots & \chi_{N}(x_{N}) \end{vmatrix}$$

What becomes $P_{12}(\mathbf{r_1}, \mathbf{r_2})$ when both electrons 1 and 2 have different spin ? same spin ? As a first step, one could consider a 2-electron system.

2 Properties of Slater Determinants

Let's consider the 2-electron Slater determinants:

$$\Psi_1 = \frac{1}{\sqrt{2}} \begin{vmatrix} \chi_i(1) & \chi_i(2) \\ \chi_j(1) & \chi_j(2) \end{vmatrix} \qquad \qquad \Psi_2 = \frac{1}{\sqrt{2}} \begin{vmatrix} \chi_k(1) & \chi_k(2) \\ \chi_l(1) & \chi_l(2) \end{vmatrix}$$

- 1. Norm and overlap
 - (a) Let's suppose that the orbitals ϕ_i, ϕ_j, \dots form an orthonormalized basis set.
 - i. Show that Ψ_1 is normalized.
 - ii. Show that $\langle \Psi_1 | \Psi_2 \rangle = \delta_{ik} \delta_{jl} \delta_{il} \delta_{jk}$.
 - (b) We now consider that the orbitals are no longer orthonormalized. The overlap matrix is noted S.
 - i. Show that

$$\left\langle \left| \begin{array}{cc} \chi_i(1) & \chi_i(2) \\ \chi_j(1) & \chi_j(2) \end{array} \right| \left| \left| \begin{array}{cc} \chi_k(1) & \chi_k(2) \\ \chi_l(1) & \chi_l(2) \end{array} \right| \right\rangle = 2 \det(\mathcal{S})$$

ii. How does $\langle \Psi_1 | \Psi_2 \rangle$ change ?

2. Slater's rules

The goal is to derive Slater's rules in the case of systems with 2 then 3 electrons. For both systems, mono and bielectronic operators are written \mathcal{O}_1 and \mathcal{O}_2 , respectively.

(a) Let's consider a 2-electron system. The following notations are assumed:

$$0 = |\chi_i \chi_j\rangle \qquad S = |\chi_p \chi_j\rangle \qquad D = |\chi_p \chi_q\rangle$$

Evaluate $\langle 0|\mathcal{O}_1|0\rangle$, $\langle 0|\mathcal{O}_1|S\rangle$, $\langle 0|\mathcal{O}_1|D\rangle$, $\langle 0|\mathcal{O}_2|0\rangle$, $\langle 0|\mathcal{O}_2|S\rangle$, $\langle 0|\mathcal{O}_2|D\rangle$.

(b) Let's consider a 3-electron system. The following notations are assumed:

$$0 = |\chi_i \chi_j \chi_k\rangle \qquad S = |\chi_p \chi_j \chi_k\rangle$$
$$D = |\chi_p \chi_q \chi_k\rangle \qquad T = |\chi_p \chi_q \chi_r\rangle$$

Same question. Evaluate also $\langle 0|\mathcal{O}_1|T\rangle$ et $\langle 0|\mathcal{O}_2|T\rangle$.

3. Applications

(a) In this question, the system is ruled by a monoelectronic Hamiltonian written as a sum of \hat{h}_i whose ϕ_i are eigenvectors corresponding to the eigenvalues ϵ_i :

$$\hat{\mathcal{H}} = \sum_{i=1}^{N} \hat{h}_i$$
$$\hat{h}_i \phi_j = \epsilon_j \phi_j$$

What are the energies calculated with Ψ^H ? Ψ^S ? Conclude.

- (b) The system is now ruled by a Hartree-Fock Hamiltonian.
 - i. Give an expression of this Hamiltonian.
 - ii. How are changed the previous energies ?