TD1

Useful Tools for Quantum Chemistry

Paul Fleurat-Lessard
Mikael Kepenekian
mikael.kepenekian@ens-lyon.fr

1 Hartree Products and Slater Determinants

Let's consider a system of N electrons in N spinorbitals $\chi_{i}(i \in 1, \ldots, N) . \phi_{i}$ and s_{i} are defined as the spatial part and the spin part of the spinorbital χ_{i} respectively i.e. $\chi_{i}(x)=\phi_{i}(\mathbf{r}) s_{i}(\omega)$.

We aim at the probability $P_{12}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ of finding the electron 1 in the volume $d \mathbf{r}_{1}$ centred on \mathbf{r}_{1} and the electron 2 in the volume $d \mathbf{r}_{2}$ centred on \mathbf{r}_{2}.

1. Give an expression of $P_{12}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ depending on Ψ the electronic wavefunction of the system.
2. On a first approach, let's consider that the electronic wave-function can be written as a Hartree product:

$$
\Psi^{H}=\chi_{1}\left(x_{1}\right) \ldots \chi_{N}\left(x_{N}\right)
$$

Conclude on $P_{12}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$.
3. Ψ is now written as a Slater determinant constructed on the χ_{i} :

$$
\begin{aligned}
\Psi^{S} & =\left|\chi_{1}\left(x_{1}\right) \ldots \chi_{N}\left(x_{N}\right)\right\rangle \\
& =\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\chi_{1}\left(x_{1}\right) & \chi_{1}\left(x_{2}\right) & \cdots & \chi_{1}\left(x_{N}\right) \\
\chi_{2}\left(x_{1}\right) & \chi_{2}\left(x_{2}\right) & \cdots & \chi_{2}\left(x_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\chi_{N}\left(x_{1}\right) & \chi_{N}\left(x_{2}\right) & \cdots & \chi_{N}\left(x_{N}\right)
\end{array}\right|
\end{aligned}
$$

What becomes $P_{12}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ when both electrons 1 and 2 have different spin ? same spin ? As a first step, one could consider a 2 -electron system.

2 Properties of Slater Determinants

Let's consider the 2-electron Slater determinants:
$\Psi_{1}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}\chi_{i}(1) & \chi_{i}(2) \\ \chi_{j}(1) & \chi_{j}(2)\end{array}\right|$
$\Psi_{2}=\frac{1}{\sqrt{2}}\left|\begin{array}{cc}\chi_{k}(1) & \chi_{k}(2) \\ \chi_{l}(1) & \chi_{l}(2)\end{array}\right|$

1. Norm and overlap
(a) Let's suppose that the orbitals $\phi_{i}, \phi_{j}, \ldots$ form an orthonormalized basis set.
i. Show that Ψ_{1} is normalized.
ii. Show that $\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}$.
(b) We now consider that the orbitals are no longer orthonormalized. The overlap matrix is noted \mathcal{S}.
i. Show that

$$
\langle | \begin{array}{cc}
\chi_{i}(1) & \chi_{i}(2) \\
\chi_{j}(1) & \chi_{j}(2)
\end{array}\left|\left|\left|\begin{array}{cc}
\chi_{k}(1) & \chi_{k}(2) \\
\chi_{l}(1) & \chi_{l}(2)
\end{array}\right|\right\rangle=2 \operatorname{det}(\mathcal{S})\right.
$$

ii. How does $\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle$ change ?
2. Slater's rules

The goal is to derive Slater's rules in the case of systems with 2 then 3 electrons. For both systems, mono and bielectronic operators are written \mathcal{O}_{1} and \mathcal{O}_{2}, respectively.
(a) Let's consider a 2-electron system. The following notations are assumed:

$$
0=\left|\chi_{i} \chi_{j}\right\rangle \quad S=\left|\chi_{p} \chi_{j}\right\rangle \quad D=\left|\chi_{p} \chi_{q}\right\rangle
$$

Evaluate $\langle 0| \mathcal{O}_{1}|0\rangle,\langle 0| \mathcal{O}_{1}|S\rangle,\langle 0| \mathcal{O}_{1}|D\rangle,\langle 0| \mathcal{O}_{2}|0\rangle,\langle 0| \mathcal{O}_{2}|S\rangle,\langle 0| \mathcal{O}_{2}|D\rangle$.
(b) Let's consider a 3-electron system. The following notations are assumed:

$$
\begin{array}{ll}
0=\left|\chi_{i} \chi_{j} \chi_{k}\right\rangle & S=\left|\chi_{p} \chi_{j} \chi_{k}\right\rangle \\
D=\left|\chi_{p} \chi_{q} \chi_{k}\right\rangle & T=\left|\chi_{p} \chi_{q} \chi_{r}\right\rangle
\end{array}
$$

Same question. Evaluate also $\langle 0| \mathcal{O}_{1}|T\rangle$ et $\langle 0| \mathcal{O}_{2}|T\rangle$.
3. Applications
(a) In this question, the system is ruled by a monoelectronic Hamiltonian written as a sum of \hat{h}_{i} whose ϕ_{i} are eigenvectors corresponding to the eigenvalues ϵ_{i} :

$$
\begin{gathered}
\hat{\mathcal{H}}=\sum_{i=1}^{N} \hat{h}_{i} \\
\hat{h}_{i} \phi_{j}=\epsilon_{j} \phi_{j}
\end{gathered}
$$

What are the energies calculated with Ψ^{H} ? Ψ^{S} ? Conclude.
(b) The system is now ruled by a Hartree-Fock Hamiltonian.
i. Give an expression of this Hamiltonian.
ii. How are changed the previous energies ?

