Problème B du 28 octobre 2006

Agrégation de Mathématiques - Analyse et Probabilités (Mihai Gradinaru)

Tout au long du problème $(\Omega, \mathcal{A}, \mathbb{P})$ désigne un espace de probabilité sur lequel on définit une suite $\{X_n\}_1^{\infty}$ de variables aléatoires réelles indépendantes de carré intégrable et centrées. On pose $\sigma_n := (\mathbb{E}[X_n^2])^{\frac{1}{2}} > 0$ et $\Sigma_n := (\sum_{\ell=1}^n \sigma_\ell^2)^{\frac{1}{2}}, n \in \mathbb{N}^*$. On utilisera S_n pour noter la somme partielle $X_1 + \ldots + X_n$ et $\widehat{S}_n := S_n/\Sigma_n = (\sum_{\ell=1}^n X_\ell)/\Sigma_n$.

Enfin, dans la suite on notera $\{Y_n\}_1^{\infty}$ une suite de variables aléatoires indépendantes et indépendantes des variables X_n , de même loi de densité $\gamma(y) = (2\pi)^{-\frac{1}{2}} \exp(-y^2/2)$, $y \in \mathbb{R}$ et $\widehat{T}_n := (\sum_{\ell=1}^n \sigma_\ell Y_\ell)/\Sigma_n$.

Première partie

Dans cette partie seulement on supposera que les variables X_n ont la même loi, de variance $\sigma_n^2 = 1$ et, de plus, elles ont des moments finis de tout ordre.

1. Montrer que, pour tout entier $m \ge 3$,

$$\mathbb{E}\left[S_n^{m+1}\right] = n\mathbb{E}\left[X_n(X_n + S_{n-1})^m\right] = nm\mathbb{E}\left[S_{n-1}^{m-1}\right] + n\sum_{j=2}^m C_m^j \mathbb{E}\left[X_n^{j+1}\right] \mathbb{E}\left[S_{n-1}^{m-j}\right].$$

- **2.** Que valent Σ_n et \widehat{S}_n ? Déduire une égalité pour $\mathbb{E}\left[\widehat{S}_n^{m+1}\right]$. On note $L_m := \lim_{n \to \infty} \mathbb{E}\left[\widehat{S}_n^m\right]$. Montrer par récurrence que L_m existe pour tout $m \in \mathbb{N}$ et que pour tout $m \in \mathbb{N}^*$, $L_{m+1} = mL_{m-1}$.
- **3.** En déduire que : $\lim_{n \to \infty} \mathbb{E}\left[\widehat{S}_n^{2m-1}\right] = 0$ et $\lim_{n \to \infty} \mathbb{E}\left[\widehat{S}_n^{2m}\right] = \frac{(2m)!}{2^m m!}$.
- **4.** Montrer que \widehat{T}_n et Y_1 ont la même loi et que :

$$\mathbb{E}\left[e^{\alpha Y_1}\right] = \exp\left[\frac{\alpha^2}{2}\right] = \sum_{m=0}^{\infty} \frac{\alpha^{2m}}{2^m m!}, \ \alpha \in \mathbb{R}.$$

Vérifier que les Y_n ont des moments de tout ordre et les calculer.

5. En déduire que pour toute fonction polynomiale $\varphi: \mathbb{R} \to \mathbb{R}$, on a :

$$(\star) \qquad \lim_{n \to \infty} \mathbb{E}\left[\varphi(\widehat{S}_n)\right] = \int_{\mathbb{R}} \varphi(y)\gamma(y)dy.$$

Deuxième partie

On reprend les hypothèses générales du problème. On notera

$$g_n(\varepsilon) := \frac{1}{\Sigma_n^2} \sum_{\ell=1}^n \mathbb{E} \left[X_\ell^2 \mathbb{1}_{|X_\ell| > \varepsilon \Sigma_n} \right].$$

On veut montrer que si $\lim_{n\to\infty} g_n(\varepsilon) = 0$, pour chaque $\varepsilon > 0$, alors, pour des fonctions φ satisfaisant certains hypothèses de régularité, l'égalité (\star) ci-dessus a lieu.

- 1. Soit $\varphi \in C^3(\mathbb{R}; \mathbb{R})$ ayant ses dérivées seconde et troisième bornées.
 - a) Soit la suite $\{Y_n\}_1^{\infty}$ comme dans l'introduction. On pose

$$\widehat{X}_{\ell} := \frac{X_{\ell}}{\Sigma_n}, \, \widehat{Y}_{\ell} := \frac{\sigma_{\ell} Y_{\ell}}{\Sigma_n}, \, 1 \leqslant \ell \leqslant n, \, \text{ et } U_m := \sum_{\ell=1}^{m-1} \widehat{X}_{\ell} + \sum_{\ell=m+1}^n \widehat{Y}_{\ell}, \, \text{ pour } 1 \leqslant m \leqslant n,$$

(ici la première somme est nulle si m=1 et la deuxième somme est nulle si m=n). Montrer que

$$\begin{split} \left| \mathbb{E} \left[\varphi(\widehat{S}_n) \right] - \int_{\mathbb{R}} \varphi(y) \gamma(y) dy \right| &= \left| \mathbb{E} \left[\varphi(\widehat{S}_n) \right] - \mathbb{E} \left[\varphi(\widehat{T}_n) \right] \right| \\ &\leqslant \sum_{m=1}^n \left| \mathbb{E} \left[\varphi(U_m + \widehat{X}_m) \right] - \mathbb{E} \left[\varphi(U_m + \widehat{Y}_m) \right] \right| \\ &= \sum_{m=1}^n \left| \mathbb{E} \left[R_m(\widehat{X}_m) \right] - \mathbb{E} \left[R_m(\widehat{Y}_m) \right] \right| \leqslant \sum_{m=1}^n \left\{ \left| \mathbb{E} \left[R_m(\widehat{X}_m) \right] \right| + \left| \mathbb{E} \left[R_m(\widehat{Y}_m) \right] \right| \right\}, \end{split}$$

où le reste R_m est donné par :

$$R_m(\xi) := \varphi(U_m + \xi) - \varphi(U_m) - \xi \varphi'(U_m) - \frac{\xi^2}{2} \varphi''(U_m), \ \xi \in \mathbb{R}.$$

b) Prouver que:

$$|R_m(\xi)| \le \left(\|\varphi'''\|_{\infty} \frac{|\xi|^3}{6} \right) \wedge \left(\|\varphi''\|_{\infty} |\xi|^2 \right).$$

En déduire que, pour chaque $\varepsilon > 0$:

$$\sum_{m=1}^{n} \mathbb{E}\left[\left|R_{m}(\widehat{X}_{m})\right|\right] \leqslant \frac{\|\varphi'''\|_{\infty}}{6} \sum_{m=1}^{n} \mathbb{E}\left[\left|\widehat{X}_{m}\right|^{3} \mathbb{1}_{|X_{m}| \leqslant \varepsilon \Sigma_{n}}\right]$$

$$+\|\varphi''\|_{\infty} \sum_{m=1}^{n} \mathbb{E}\left[\widehat{X}_{m}^{2} \mathbb{1}_{|X_{m}| > \varepsilon \Sigma_{n}}\right] \leqslant \frac{\varepsilon \|\varphi'''\|_{\infty}}{6} \sum_{m=1}^{n} \frac{\sigma_{m}^{2}}{\Sigma_{n}^{2}} + \|\varphi''\|_{\infty} g_{n}(\varepsilon).$$

tandis que

$$\sum_{m=1}^{n} \mathbb{E}\left[\left|R_{m}(\widehat{Y}_{m})\right|\right] \leqslant \frac{\|\varphi'''\|_{\infty}}{6} \mathbb{E}\left[|Y_{1}|^{3}\right] \sum_{m=1}^{n} \frac{\sigma_{m}^{3}}{\Sigma_{n}^{3}} \leqslant \frac{\sqrt{2} \, r_{n} \|\varphi'''\|_{\infty}}{3\sqrt{\pi}},$$

avec $r_n:=\max_{1\leqslant \ell\leqslant n}\frac{\sigma_\ell}{\Sigma_n}.$ En déduire l'inégalité : pour chaque $\varepsilon>0,$

$$\left| \mathbb{E}\left[\varphi(\widehat{S}_n) \right] - \int_{\mathbb{R}} \varphi(y) \gamma(y) dy \right| \leqslant \left(\frac{\varepsilon}{6} + \frac{r_n}{2} \right) \|\varphi'''\|_{\infty} + g_n(\varepsilon) \|\varphi''\|_{\infty}.$$

c) Prouver que, pour tout $1 \leq m \leq n$,

$$\sigma_m^2 \leqslant \Sigma_n^2 \left(\varepsilon^2 + g_n(\varepsilon) \right)$$
 et donc que $r_n^2 \leqslant \varepsilon^2 + g_n(\varepsilon)$.

En déduire que si $\lim_{n\to\infty} g_n(\varepsilon) = 0$ lorsque $n\to\infty$, pour chaque $\varepsilon>0$, alors (\star) a lieu.

- **2.** Soit $\varphi \in \mathcal{C}(\mathbb{R}; \mathbb{R})$ telle que $\sup_{y \in \mathbb{R}} \frac{|\varphi(y)|}{1+y^2} < \infty$.
 - a) Soit une fonction $\rho \in C^{\infty}(\mathbb{R}; [0, \infty[) \text{ à support compact dans }] 1, 1[telle que <math>\int_{\mathbb{R}} \rho(y) dy = 1$. Montrer que la fonction

$$\varphi_k(y) := k \int_{-k}^k \rho(k(y-x))\varphi(x)dx, \ y \in \mathbb{R}, \ k \in \mathbb{N}^*$$

est infiniment dérivable et à support compact. Montrer que $\lim_{k\to\infty} \varphi_k = \varphi$ uniformément sur tout compact. De plus, prouver qu'il existe K>0 tel que

$$\sup_{k \in \mathbb{N}^*} |(\varphi - \varphi_k)(y)| \leqslant K(1 + y^2) \text{ pour tout } y \in \mathbb{R}.$$

b) Appliquer le point 1 de cette partie pour vérifier que, lorsque $\lim_{n\to\infty} g_n(\varepsilon) = 0$, pour chaque $R \in]0, \infty[$,

$$\begin{split} & \limsup_{n \to \infty} \left| \mathbb{E} \left[\varphi(\widehat{S}_n) \right] - \int_{\mathbb{R}} \varphi(y) \gamma(y) dy \right| \\ & \leqslant \limsup_{k \to \infty} \limsup_{n \to \infty} \mathbb{E} \left[|(\varphi - \varphi_k)(\widehat{S}_n)| \right] + \limsup_{k \to \infty} \int_{\mathbb{R}} (|\varphi - \varphi_k)(y) |\gamma(y) dy \\ & \leqslant K \limsup_{n \to \infty} \mathbb{E} \left[(1 + \widehat{S}_n^2) \mathbb{1}_{|\widehat{S}_n| > R} \right] + K \int_{|y| > R} (1 + y^2) \gamma(y) dy. \end{split}$$

Calculer la limite du dernier terme du majorant lorsque $R \uparrow \infty$.

c) On veut montrer que le premier terme du majorant tend vers zéro. On choisit $\eta \in C_b^{\infty}(\mathbb{R}; [0,1])$ telle que $\eta \equiv 0$ sur $[-\frac{1}{2}, \frac{1}{2}]$, $\eta \equiv 1$ hors de]-1,1[et on pose $\eta_R(y) := (1+y^2)\eta(y/R)$ pour $y \in \mathbb{R}$. Appliquer encore une fois le point 1 pour vérifier que

$$\limsup_{n\to\infty} \mathbb{E}\left[(1+\widehat{S}_n^2)\mathbb{1}_{|\widehat{S}_n|\geqslant R}\right]\leqslant \lim_{n\to\infty} \mathbb{E}\left[\eta_R(\widehat{S}_n)\right]=\int_{\mathbb{R}}\eta_R(y)\gamma(y)dy.$$

et calculer la limite lorsque $R \uparrow \infty$.

Par b) et c) déduire que si $\lim_{n\to\infty}g_n(\varepsilon)=0$, pour chaque $\varepsilon>0$, alors (\star) a lieu.

3. Soient a < b deux réels. On veut montrer que

$$(\#) \qquad \lim_{n \to \infty} \mathbb{P}(a \leqslant \widehat{S}_n \leqslant b) = \int_a^b \gamma(y) dy.$$

- a) Soient $\{\alpha_k\}_1^{\infty}$ et $\{\beta_k\}_1^{\infty}$ deux suites de fonctions dans $C_b(\mathbb{R}; \mathbb{R})$ telles que la suite croissante positive $\{\alpha_k\}_1^{\infty}$ satisfait $\lim_{k\to\infty} \alpha_k = \mathbb{1}_{]a,b[}$ et la suite decroissante plus petite que 1, $\{\beta_k\}_1^{\infty}$, satisfait $\lim_{k\to\infty} \beta_k = \mathbb{1}_{[a,b]}$. Minorer $\liminf_{n\to\infty} \mathbb{P}(a \leqslant \widehat{S}_n \leqslant b)$ à l'aide de α_k et majorer $\limsup_{n\to\infty} \mathbb{P}(a \leqslant \widehat{S}_n \leqslant b)$ à l'aide de β_k .
- b) Montrer que les hypothèses du point $\mathbf 2$ précédent sont vérifiées et utiliser (\star) pour déduire (#).

Troisième partie

Soit $\varphi \in C^1(\mathbb{R}; \mathbb{R})$ telle que $\|\varphi'\|_{\infty} < \infty$. On pose $\psi(x) := \varphi(x) - \int_{\mathbb{R}} \varphi(y) \gamma(y) dy$ et on définit

$$x \in \mathbb{R} \mapsto f(x) := e^{\frac{x^2}{2}} \int_{-\infty}^x \psi(t) e^{-\frac{t^2}{2}} dt.$$

- 1. Montrer que $f \in C^1(\mathbb{R}; \mathbb{R})$ et que $f'(x) xf(x) = \psi(x), \ x \in \mathbb{R}$. En déduire qu'en fait $f \in C^2(\mathbb{R}; \mathbb{R})$ et que $f''(x) - xf'(x) = f(x) + \varphi'(x), \ x \in \mathbb{R}$.
- **2.** Montrer que ψ et f ne changent pas lorsqu'on remplace φ par $\varphi \varphi(0)$. En déduire qu'on peut supposer $\varphi(0) = 0$. Prouver que $|\varphi(t)| \leq ||\varphi'||_{\infty} |t|$ et que

$$\left| \int_{\mathbb{R}} \varphi(y) \gamma(y) dy \right| \leqslant \|\varphi'\|_{\infty} \sqrt{\frac{2}{\pi}}.$$

3. Montrer que $f(x)=-e^{\frac{x^2}{2}}\int_x^\infty \psi(t)e^{-\frac{t^2}{2}}dt$, $x\in\mathbb{R}$. En déduire successivement que

$$|f(x)| \le e^{\frac{x^2}{2}} \int_{|x|}^{\infty} |\psi(t \operatorname{sgn}(x))| e^{-\frac{t^2}{2}} dt$$

et

$$|f(x)| \leqslant \|\varphi'\|_{\infty} e^{\frac{x^2}{2}} \int_{|x|}^{\infty} \left(t + \sqrt{\frac{2}{\pi}}\right) e^{-\frac{t^2}{2}} dt, \ x \in \mathbb{R}.$$

4. Montrer que

$$e^{\frac{x^2}{2}} \int_{|x|}^{\infty} t e^{-\frac{t^2}{2}} dt = 1 \text{ et } e^{\frac{x^2}{2}} \int_{|x|}^{\infty} e^{-\frac{t^2}{2}} dt \leqslant \sqrt{\frac{\pi}{2}}, x \in \mathbb{R}.$$

En déduire $||f||_{\infty} \leq 2||\varphi'||_{\infty}$.

5. Utiliser l'équation différentielle du second ordre satisfaite par f pour calculer $\frac{d}{dx}(e^{-\frac{x^2}{2}}f'(x))$. Montrer que:

$$f'(x) = -e^{\frac{x^2}{2}} \int_x^{\infty} (f(t) + \varphi'(t))e^{-\frac{t^2}{2}} dt, \ x \in \mathbb{R}.$$

En déduire par la même méthode que $||f'||_{\infty} \leqslant 3\sqrt{\frac{\pi}{2}}||\varphi'||_{\infty}$ et que $||f''||_{\infty} \leqslant 6||\varphi'||_{\infty}$.

- **6.** On suppose de plus que $\varphi \in C^1(\mathbb{R}; [0,1])$ est décroissante. Montrer que $\|\psi\|_{\infty} \leqslant 1$ et que $|xf(x)| \leqslant 1$, $x \in \mathbb{R}$. Utiliser l'équation différentielle du premier ordre satisfaite par f pour déduire que $\|f'\|_{\infty} \leqslant 2$.
- 7. On note

$$\chi(x) := \frac{e^{-\frac{x^2}{2}}f(x)}{\sqrt{2\pi}} = \int_{-\infty}^x \psi(t)\gamma(t)dt \text{ et } a := \inf\{t : \psi(t) = 0\}.$$

Étudier la monotonie de χ sur $]-\infty,a]$ et $[a,\infty[$ et calculer ses limites en $\pm\infty.$ On note

$$G(x) := \int_{-\infty}^{x} \gamma(t)dt.$$

En déduire que,

$$\|\chi\|_{\infty} = \chi(a) = \int_{-\infty}^{a} \varphi(t)\gamma(t)dt - G(a)\int_{\mathbb{R}} \varphi(t)\gamma(t)dt$$

et que

$$\|\chi\|_{\infty} \leqslant \left(G(a)\int_{\mathbb{R}} \varphi(t)\gamma(t)dt\right)^{\frac{1}{2}} - G(a)\int_{\mathbb{R}} \varphi(t)\gamma(t)dt \leqslant \frac{1}{4}.$$

8. Prouver que $|f(x)| \leqslant \sqrt{2\pi e} |\chi(x)|$, pour $x \in [-1,1]$. En déduire $||f||_{\infty} \leqslant \sqrt{\frac{\pi e}{8}}$.

Quatrième partie

On reprend les hypothèses générales du problème. On note

$$x \in \mathbb{R} \mapsto F_n(x) := \mathbb{P}(\widehat{S}_n \leqslant x) \in [0, 1].$$

On voit (par (\star) ou (#)) que la suite F_n tend vers la fonction G introduite au point 7 de la troisième partie. On veut estimer la distance $\|F_n - G\|_{L^1(\lambda;\mathbb{R})}$.

1*. Soit $\varphi \in C^1(\mathbb{R};\mathbb{R})$ ayant sa première dérivée bornée. Montrer que

$$\int_{\mathbb{R}} \varphi'(x) (G(x) - F_n(x)) dx = \mathbb{E} \left[\varphi(\widehat{S}_n) \right] - \int_{\mathbb{R}} \varphi(y) \gamma(y) dy.$$

On pourra d'abord supposer que $\varphi \in C^1(\mathbb{R}; \mathbb{R})$ est à support compact et telle que $\varphi(0) = 0$; puis faire une intégration par parties, séparement sur chacun des intervalles $]-\infty,0]$ et $[0,\infty[$.

2. Montrer, avec les notations de la Troisième partie, que

$$\mathbb{E}\left[\varphi(\widehat{S}_n)\right] - \int_{\mathbb{R}} \varphi(y)\gamma(y)dy = \mathbb{E}\left[\psi(\widehat{S}_n)\right] = \mathbb{E}\left[f'(\widehat{S}_n)\right] - \mathbb{E}\left[\widehat{S}_n f(\widehat{S}_n)\right]$$
$$= \sum_{\ell=1}^n \left(\widehat{\sigma}_{\ell}^2 \mathbb{E}\left[f'(\widehat{S}_n)\right] - \mathbb{E}\left[\widehat{X}_{\ell} f(\widehat{S}_n)\right]\right),$$

où on a posé $\hat{\sigma}_{\ell} := \frac{\sigma_{\ell}}{\Sigma_n}, 1 \leqslant \ell \leqslant n.$

3. On pose, pour $t \in [0, 1]$

$$\widehat{T}_{n,\ell}(t) = \widehat{S}_n + (t-1)\widehat{X}_{\ell}.$$

Montrer que $\widehat{T}_{n,\ell}(0)$ est indépendante de \widehat{X}_ℓ et conclure que pour chaque $\ell \in \{1 \dots, n\}$,

$$\mathbb{E}\left[\widehat{X}_{\ell}f(\widehat{S}_{n})\right] = \int_{0}^{1} \mathbb{E}\left[\widehat{X}_{\ell}^{2}f'(\widehat{T}_{n,\ell}(t))\right] dt$$
$$= \hat{\sigma}_{\ell}^{2} \mathbb{E}\left[f'(\widehat{T}_{n,\ell}(0))\right] + \int_{0}^{1} \mathbb{E}\left[\widehat{X}_{\ell}^{2}\left(f'(\widehat{T}_{n,\ell}(t)) - f'(\widehat{T}_{n,\ell}(0))\right)\right] dt$$

4. En déduire

$$\int_{\mathbb{R}} \varphi'(x) (G(x) - F_n(x)) dx = \sum_{\ell=1}^n \hat{\sigma}_{\ell}^2 A_{\ell} - \sum_{\ell=1}^n \int_0^1 B_{\ell}(t) dt,$$
où $A_{\ell} := \mathbb{E} \left[f'(\widehat{S}_n) - f'(\widehat{T}_{n,\ell}(0)) \right]$ et $B_{\ell}(t) := \mathbb{E} \left[\widehat{X}_{\ell}^2 \left(f'(\widehat{T}_{n,\ell}(t)) - f'(\widehat{T}_{n,\ell}(0)) \right) \right].$

5. On va supposer que les X_n ont des moments d'ordre trois et on pose $\tau_n := (\mathbb{E}[|X_n|^3])^{\frac{1}{3}}, n \in \mathbb{N}^*$. On rappelle que $r_n = \max_{1 \le \ell \le n} \frac{\sigma_\ell}{\Sigma_n}$ Vérifier que

$$|A_{\ell}| \leqslant \hat{\sigma}_{\ell} ||f''||_{\infty} \leqslant \left(r_n \wedge \frac{\tau_{\ell}}{\Sigma_n}\right) ||f''||_{\infty}$$

et que pour chaque $t \in [0,1]$ et $\varepsilon > 0$,

$$|B_{\ell}(t)| \leqslant 2\varepsilon t \hat{\sigma}_{\ell}^{2} ||f''||_{\infty} + 2 \frac{||f'||_{\infty}}{\sum_{n}^{2}} \mathbb{E} \left[X_{\ell}^{2} \mathbb{1}_{|X_{\ell}| \geqslant 2\varepsilon \Sigma_{n}} \right].$$

En déduire

$$\int_{\mathbb{R}} \varphi'(x) (G(x) - F_n(x)) dx \leqslant (r_n + \varepsilon) ||f''||_{\infty} + 2g_n(2\varepsilon) ||f'||_{\infty}.$$

6. Utiliser les estimations du point 5 de la Troisième partie pour obtenir

$$||F_n - G||_{\mathrm{L}^1(\lambda;\mathbb{R})} \le 6(r_n + \varepsilon) + 3\sqrt{2\pi}g_n(2\varepsilon)$$

7. Vérifier que

$$|B_{\ell}(t)| \leqslant t \int_0^1 \mathbb{E}\left[|\widehat{X}_{\ell}|^3 \left| f''(\widehat{T}_{n,\ell}(st)) \right|\right] ds \leqslant t ||f''||_{\infty} \frac{\tau_{\ell}^3}{\sum_n^3}.$$

En déduire

$$||F_n - G||_{\mathrm{L}^1(\lambda;\mathbb{R})} \leqslant \left(6r_n + \frac{2\sum_{\ell=1}^n \tau_\ell^3}{\sum_n^3}\right) \wedge \left(\frac{8\sum_{\ell=1}^n \tau_\ell^3}{\sum_n^3}\right).$$

En particulier si les variables X_n sont de variance $\sigma_n^2 = 1$ et si pour tout $n \in \mathbb{N}^*$, $\tau_n \leqslant \tau$, alors

$$||F_n - G||_{\mathrm{L}^1(\lambda;\mathbb{R})} \leqslant \frac{6 + 2\tau^3}{\sqrt{n}} \leqslant \frac{8\tau^3}{\sqrt{n}}.$$

Cinquième partie

Dans la suite on notera $L^2(\gamma; \mathbb{C})$ l'espace des fonctions complexes définies sur \mathbb{R} , de carré intégrable par rapport à la mesure gaussienne $\gamma(y)dy$ et par $\langle \cdot, \cdot \rangle_{L^2(\gamma;\mathbb{C})}$ son produit scalaire.

1. Pour $n \in \mathbb{N}$ on définit le polynôme réel

$$H_n(x) := (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} \left(e^{-\frac{x^2}{2}} \right), x \in \mathbb{R}.$$

de degré n, ayant le coefficient du terme de plus haut degré égal à 1. On notera $\bar{H}_n(x) := \frac{H_n(x)}{\sqrt{n!}}$ les polynômes de Hermite (normalisés). On veut montrer que $\{\bar{H}_n : n \in \mathbb{N}\}$ est une base orthonormée de $L^2(\gamma; \mathbb{C})$.

a) Soit A_+ et A_- les deux opérateurs définis sur $C^1(\mathbb{R};\mathbb{C})$ par :

$$[A_{+}\varphi](x) := -\frac{d\varphi}{dx}(x) + x\varphi(x) \text{ et } [A_{-}\varphi](x) := \frac{d\varphi}{dx}(x), x \in \mathbb{R}.$$

Montrer que pour deux fonctions réelles φ et ψ continûment différentiables, ayant des dérivées à croissance au plus polynomiale à l'infini, on a :

$$\langle \varphi, A_+, \psi \rangle_{\mathrm{L}^2(\gamma; \mathbb{C})} = \langle A_- \varphi, \psi \rangle_{\mathrm{L}^2(\gamma; \mathbb{C})}$$

b) Montrer que $H_{n+1} = A_+ H_n$ pour tout $n \in \mathbb{N}$. En déduire que pour des entiers $0 \le m \le n$

$$\langle H_m, H_n \rangle_{\mathrm{L}^2(\gamma;\mathbb{C})} = \langle H_m, A^n_+ H_0 \rangle_{\mathrm{L}^2(\gamma;\mathbb{C})} = \langle A^n_- H_m, H_0 \rangle_{\mathrm{L}^2(\gamma;\mathbb{C})} = m! \delta_{m,n}.$$

c) Pour chaque $z\in\mathbb{C}$ on pose $H(x;z):=\exp\left[zx-\frac{z^2}{2}\right],\,x\in\mathbb{R}.$ Montrer que :

$$H(x;z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} H_n(x), \ x \in \mathbb{R},$$

où la convergence de la série est uniforme sur tout compact de $\mathbb{R} \times \mathbb{C}$. Utiliser l'orthogonalité des H_n et la valeur de leur norme $\|\cdot\|_{L^2(\gamma;\mathbb{C})}$ pour déduire que, pour chaque R > 0,

$$\lim_{m \to \infty} \sup_{|z| \leqslant R} \sum_{n=m}^{\infty} \left| \frac{z^n}{n!} \right|^2 \|H_n\|_{\mathrm{L}^2(\gamma;\mathbb{C})}^2 = 0.$$

En déduire que la convergence de la série donnant H(x;z) est, pour z dans un compact fixé de \mathbb{C} , uniforme dans $L^2(\gamma;\mathbb{C})$.

- d) Soit $\varphi \in L^2(\gamma; \mathbb{C})$ quelconque qui est orthogonale à tous les \bar{H}_n (ou H_n). Montrer que $\langle \varphi, e^{z \bullet} \rangle_{L^2(\gamma; \mathbb{C})} = 0$, pour $z \in \mathbb{C}$. On pose $\psi(x) = (2\pi)^{-\frac{1}{2}} e^{-\frac{x^2}{2}} \varphi(x)$, $x \in \mathbb{R}$. Montrer que $\psi \in L^1(\lambda; \mathbb{C})$. Ici et ailleurs on note $\lambda(dy) = dy$ la mesure de Lebesgue.
- e) Montrer que la transformée de Fourier de ψ définie par $\hat{\psi}(\xi) := \int_{\mathbb{R}} \exp\left[\mathrm{i}\xi x\right] \psi(x) dx$ est identiquement nulle. Calculer

$$\lim_{\alpha\downarrow 0} \frac{1}{2\pi} \int_{\mathbb{R}} e^{-\alpha|\xi|} \exp\left[\mathrm{i}\xi x\right] \hat{\psi}(\xi) d\xi$$

et en déduire que ψ et donc φ s'annulent presque partout. Conclure que $\{\bar{H}_n : n \in \mathbb{N}\}$ est une base orthonormée.

2. En utilisant la base orthonormée $\{\bar{H}_n : n \in \mathbb{N}\}$ on introduit d'une manière unique le multiplicateur de Hermite \mathcal{H}_{θ} pour chaque $\theta \in \mathbb{C}$, par

$$\mathcal{H}_{\theta}\bar{H}_n := \theta^n \bar{H}_n$$
, pour chaque $n \in \mathbb{N}$.

a) Montrer que le domaine de définition de l'opérateur \mathcal{H}_{θ} est

$$\operatorname{Dom}(\mathcal{H}_{\theta}) = \left\{ \varphi \in L^{2}(\gamma; \mathbb{C}) : \sum_{n=1}^{\infty} |\theta|^{2n} \left| \langle \varphi, \bar{H}_{n} \rangle_{L^{2}(\gamma; \mathbb{C})} \right|^{2} < \infty \right\}$$

et que

$$\mathcal{H}_{\theta}\varphi = \sum_{n=1}^{\infty} \theta^{n} \langle \varphi, \bar{H}_{n} \rangle_{L^{2}(\gamma;\mathbb{C})} \bar{H}_{n}, \ \varphi \in \text{Dom}(\mathcal{H}_{\theta}).$$

b) Montrer que l'opérateur \mathcal{H}_{θ} est une contraction (c'est-à-dire de norme ≤ 1) si et seulement si θ est un élément du disque unité fermé \mathbf{D} de \mathbb{C} et qu'il est unitaire (c'est-à-dire de norme 1) précisement lorsque $\theta \in \partial \mathbf{D}$.

- c) Montrer que l'adjoint de l'opérateur \mathcal{H}_{θ} est $\mathcal{H}_{\bar{\theta}}$. En déduire que l'opérateur \mathcal{H}_{θ} est auto-adjoint si et seulement si $\theta \in \mathbb{R}$.
- **3.** Pour $\theta \in]0,1[$ et $x,y \in \mathbb{R}$ on considere le noyau de Mehler

$$M(x, y; \theta) := \frac{1}{\sqrt{1 - \theta^2}} \exp \left[-\frac{(\theta x)^2 - 2\theta xy + (\theta y)^2}{2(1 - \theta^2)} \right].$$

a) Montrer que, pour tout $\theta \in]0,1[$ et $(x,z) \in \mathbb{R} \times \mathbb{C},$

$$\int_{\mathbb{R}} H(y;z)M(x,y;\theta)\gamma(y)dy = H(x;\theta z).$$

b) En déduire que pour $\theta \in]0,1[$ et $\varphi \in L^2(\gamma;\mathbb{C})$

$$\mathcal{H}_{\theta}\varphi = \int_{\mathbb{R}} M(\cdot, y; \theta) \varphi(y) \gamma(y) dy.$$

Utiliser cette égalité pour vérifier que pour chaque $\varphi \in L^2(\gamma; \mathbb{C})$, la fonction :

$$(\theta, x) \in]0, 1[\times \mathbb{R} \mapsto \mathcal{H}_{\theta} \varphi(x) \in \mathbb{C}$$

est une fonction continue qui est de plus positive si φ l'est presque partout.

c) Calculer, pour $\theta \in]0,1[$ et $x \in \mathbb{R}$,

$$\mathcal{H}_{\theta}\mathbf{1}(x) = \int_{\mathbb{R}} M(x, y; \theta) \gamma(y) dy$$

et en déduire, en utilisant la symétrie de M en (x, y), la valeur de $\int_{\mathbb{R}} M(x, y; \theta) \gamma(x) dx$ pour $(\theta, y) \in]0, 1[\times \mathbb{R}.$

d) Justifier pour quoi on peut appliquer l'inégalité de Jensen et l'utiliser pour prouver que, pour tout $p \in [1, \infty[$

$$|[\mathcal{H}_{\theta}\varphi](x)|^p \leqslant \int_{\mathbb{R}} M(x,y;\theta) |\varphi(y)|^p \gamma(y) dy$$

et

$$\int_{\mathbb{R}} |[\mathcal{H}_{\theta}\varphi](x)|^p \gamma(x) dx \leqslant \iint_{\mathbb{R} \times \mathbb{R}} M(x, y; \theta) |\varphi(y)|^p \gamma(x) \gamma(y) dx dy.$$

En déduire, que pour tout $p \in [1, \infty[$,

$$\|\mathcal{H}_{\theta}\varphi\|_{L^{p}(\gamma;\mathbb{C})} \leq \|\varphi\|_{L^{p}(\gamma;\mathbb{C})}.$$

4. Pour $f \in L^1(\lambda; \mathbb{C})$ on notera l'opérateur de Fourier

$$[\mathcal{F}f](\xi) := \int_{\mathbb{R}} e^{i2\pi\xi x} f(x) dx, \, \xi \in \mathbb{R}.$$

a) Montrer que, pour tout $p \in]1, \infty[$ et tous complexes ζ et η on a

$$\frac{1}{\sqrt{2\pi p}} \int_{\mathbb{R}} \exp\left[(\zeta + \mathrm{i} \eta) y - \frac{y^2}{2p} \right] dy = \exp\left[\frac{p}{2} (\zeta + \mathrm{i} \eta)^2 \right]$$

et en déduire l'égalité

$$\sum_{n=0}^{\infty} \frac{\zeta^n}{n!} \int_{\mathbb{R}} e^{\mathrm{i} 2\pi \xi x} H_n(\sqrt{2\pi p} \, x) e^{-\pi x^2} dx = e^{-\pi \xi^2} \sum_{n=0}^{\infty} \frac{\zeta^n}{n!} \theta_p^n H_n(\sqrt{2\pi p'} \, \xi),$$

où $p' = \frac{p}{p-1}$ est le conjugué de Hölder de p et où $\theta_p := \mathbf{i}(p-1)^{\frac{1}{2}}$. On pourra faire le changement de variables $y = \sqrt{2\pi p} x$ et $\eta = \sqrt{\frac{2\pi}{p}} \xi$.

b) En déduire que, pour chaque $p \in]1, \infty[$ et $n \in \mathbb{N}$,

$$\int_{\mathbb{R}} e^{i2\pi\xi x} H_n(\sqrt{2\pi p} \, x) e^{-\pi x^2} dx = \theta_p^n H_n(\sqrt{2\pi p'} \, \xi) \, e^{-\pi \xi^2}.$$

En prenant une valeur particulière de p, montrer que

$$(*) \mathcal{F}h_n = i^n h_n, n \in \mathbb{N},$$

où h_n est la n-ième fonction de Hermite

$$h_n(x) := H_n(2\pi^{\frac{1}{2}}x)e^{-\pi x^2}, n \in \mathbb{N} \text{ et } x \in \mathbb{R}.$$

c) Pour chaque $p \in]1, \infty[$ on définit \mathcal{U}_p sur $L^p(\gamma; \mathbb{C})$ par

$$[\mathcal{U}_p \varphi](x) := p^{\frac{1}{2p}} \varphi(\sqrt{2\pi p} x) e^{-\pi x^2}, x \in \mathbb{R}.$$

Montrer que \mathcal{U}_p est une isométrie surjective de $L^p(\gamma; \mathbb{C})$ sur $L^p(\lambda; \mathbb{C})$. Montrer que, pour tout $p \in]1, \infty[$ et tout polynôme φ

$$\mathcal{U}_{p'}^{-1} \circ \mathcal{F} \circ \mathcal{U}_p \varphi = A_p \mathcal{H}_{\theta_p} \varphi, \text{ où } A_p := \left(\frac{p^{\frac{1}{p}}}{(p')^{\frac{1}{p'}}} \right)^{\frac{1}{2}}.$$

d) On pose

$$ar{h}_n := rac{2^{rac{1}{4}}}{(n!)^{rac{1}{2}}} h_n, \, n \in \mathbb{N}.$$

Par le point précédent, montrer que $\bar{h}_n = \mathcal{U}_2\bar{H}_n$. En déduire que $\{\bar{h}_n : n \in \mathbb{N}\}$ est une base orthonormée de $L^2(\lambda; \mathbb{C})$. Utiliser alors l'égalité (*) du point b) ci-dessus pour déduire l'identité de Parseval :

$$\|\mathcal{F}f\|_{\mathrm{L}^2(\lambda;\mathbb{C})} = \|f\|_{\mathrm{L}^2(\lambda;\mathbb{C})}, \, f \in \mathrm{L}^1(\lambda;\mathbb{C}) \cap \mathrm{L}^2(\lambda;\mathbb{C}).$$

Conclure que \mathcal{F} détermine un opérateur unitaire $\bar{\mathcal{F}}$ sur $L^2(\lambda; \mathbb{C})$, tel que

$$\bar{\mathcal{F}}f = \mathcal{F}f \text{ pour } f \in L^1(\lambda; \mathbb{C}) \cap L^2(\lambda; \mathbb{C}).$$

e) Utiliser le résultat précédent pour vérifier la formule d'inversion de Fourier L²,

$$\bar{\mathcal{F}}^{-1} = \widetilde{\mathcal{F}}$$
.

οù

$$[\widetilde{\mathcal{F}}f](x) := [\mathcal{F}f](-x), x \in \mathbb{R}, \text{ pour } f \in L^1(\lambda; \mathbb{C}) \cap L^2(\lambda; \mathbb{C}).$$