MASTER MATHÉMATIQUES 1ÈRE ANNÉE SÉRIES TEMPORELLES : 2006-2007

2. Espaces de Hilbert

2.1.

- 1. Soit $\{X_t : t \in \mathbb{Z}\}$ une s.t. stationnaire avec fonction moyenne nulle et fonction d'autocovariance $\gamma(\cdot)$ et soit $\{a_k : k \geqslant 1\}$ une suite de réels. Montrer que si la série $\sum_{i,j=0}^{\infty} a_i a_j \gamma(i-j) < \infty$, alors $\sum_{k=1}^{n} a_k X_k$ converge dans L^2 , quand $n \to \infty$.
- 2. Soit $\{X_t : t \in \mathbb{Z}\}$ une s.t. stationnaire et soit $|\theta| < 1$. Montrer que, pour tout p, $\sum_{j=1}^n \theta^j X_{p+1-j}$ converge dans L^2 , quand $n \to \infty$.
- **2.2.** Soit le processus $X_t = A\cos(\omega t) + B\sin(\omega t)$, où $\omega \in]0,\pi[$ et A,B sont non-corrélées centrées de variance σ^2 .
 - 1. Calculer la fonction d'autocovariance $\gamma(\cdot)$.
 - 2. On cherche la meilleure prévision quadratique \hat{X}_3 en termes de X_1 et X_2 . Écrire les équations de prévision et trouver les coefficients de cette prévision. Calculer l'erreur quadratique commise.
 - 3. Quelle est la meilleure prévision quadratique \hat{X}_4 en termes de X_2 et X_3 . De combien de façons peut-on exprimer \hat{X}_4 en termes de X_1 , X_2 et X_3 ?
- **2.3.** Soit $\{X_t: t \in \mathbb{Z}\}$ une s.t. stationnaire avec fonction moyenne nulle. Montrer que $P_{\overline{\text{Vect}}\{1,X_1,\dots,X_n\}}X_{n+1} = P_{\overline{\text{Vect}}\{X_1,\dots,X_n\}}X_{n+1}$.
- **2.4.** Soit $\{Z_t : t \in \mathbb{Z}\}$ une suite de v.a. non-corrélées centrées de variance σ^2 et soit $|\theta| < 1$. On pose $X_t = Z_t \theta Z_{t-1}$. Montrer, en vérifiant les équations de prévision que la meilleure prévision quadratique \hat{X}_{n+1} dans $\overline{\mathrm{Vect}}\{X_j : -\infty < j \leqslant n\}$ est $\hat{X}_{n+1} = -\sum_{j=1}^{\infty} \theta^j X_{n+1-j}$. Calculer l'erreur quadratique commise.

2.5.

- 1. Soit x un élément de l'espace de Hilbert séparable $\mathcal{H} = \overline{\mathrm{Vect}}\{x_1, x_2, \ldots\}$. Montrer que $P_{\overline{\mathrm{Vect}}\{x_1, \ldots, x_n\}} x \to x$, quand $n \to \infty$.
- 2. Soit $\{X_t : t \in \mathbb{Z}\}$ une s.t. stationnaire. Montrer que $P_{\overline{\operatorname{Vect}}\{X_j : -\infty < j \leqslant n\}} X_{n+1} = \lim_{p \to \infty} P_{\overline{\operatorname{Vect}}\{X_j : n-p < j \leqslant n\}} X_{n+1}.$
- **2.6.** Soit $\{Z_t: t \in \mathbb{Z}\}$ une suite de v.a. non-corrélées centrées de variance σ^2 . On pose $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + Z_t, t \in \mathbb{Z}$. Nous allons supposer de plus que, pour chaque t, Z_t est non-corrélée avec $\{X_j: j < t\}$. Utiliser les équations de prévision pour montrer que la meilleure prévision quadratique \hat{X}_{n+1} dans $\overline{\text{Vect}}\{X_j: -\infty < j \leq n\}$ est $\hat{X}_{n+1} = \phi_1 X_n + \phi_2 X_{n-1} + \ldots + \phi_p X_{n+1-p}$.
- **2.7.** Soit $\{X_t: t \in \mathbb{Z}\}$ une s.t. stationnaire avec fonction movenne nulle et fonction d'autocovariance $\gamma(\cdot)$ telle que $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$. On pose $f(\lambda) = 1/2\pi \sum_{h=-\infty}^{\infty} \gamma(h) e^{-ih\lambda}$, $\lambda \in [-\pi, \pi]$. Montrer que $\gamma(h) = \int_{-\pi}^{\pi} e^{ih\lambda} f(\lambda) d\lambda$.