Méthodes d'analyse pour processus stochastiques : devoir en classe

mardi 19 mars 2013 - durée 3 heures - documents de cours autorisés

Exercice I.

Pour $n \ge 1$ entier on introduit les processus continus à valeurs réelles $\{Z_n(t) : t \in [0,1]\}$. On suppose que la suite $\{Z_n\}_{n\ge 1}$ converge en loi vers Z dans l'espace $E = C([0,1];\mathbb{R})$ muni de la topologie de la convergence uniforme. Soit $h: \mathbb{R} \to \mathbb{R}$ une fonction continue et on introduit

$$V_n := \int_0^1 h(Z_n(s)) ds$$
 et $V := \int_0^1 h(Z(s)) ds$.

Montrer que $\{V_n\}_{n\geqslant 1}$ converge en loi vers V. Que pouvez-vous dire de la suite $\{(Z_n,V_n)\}_{n\geqslant 1}$?

Exercice II.

Considérons Q, Q_1, Q_2, \ldots des probabilités sur un espace métrique $(E, \mathcal{B}(E))$ et supposons que la suite $\{Q_n\}_{n\geqslant 1}$ converge étroitement vers Q. Soient f et g deux fonctions continues sur E à valeurs réelles que $|f(x)| \leq g(x)$ pour tout $x \in E$. On suppose que :

$$\int_E g\,dQ_n < \infty, \forall n\geqslant 1, \quad \int_E g\,dQ < \infty \quad \text{ et } \lim_{n\to\infty} \int_E g\,dQ_n = \int_E g\,dQ.$$

Montrer que $\lim_{n\to\infty} \int_E f dQ_n = \int_E f dQ$.

On pourra introduire la fonction $h_{\varepsilon}(x) = 1/(1 + \varepsilon g(x)), x \in E, \varepsilon > 0.$

Exercice III.

Soit $F: E \to S$ une bijection continue entre deux espaces métriques séparables. Considérons $\{P^{\varepsilon}\}_{\varepsilon>0}$ une famille de probabilités exponentiellement tendue sur $(E, \mathcal{B}(E))$ et notons $Q^{\varepsilon} = P^{\varepsilon} \circ F^{-1}$. On suppose que la famille $\{Q^{\varepsilon}\}_{\varepsilon>0}$ satisfait un principe de grandes déviations sur $(S, \mathcal{B}(S))$ avec fonction de taux J. Montrer que la famille $\{P^{\varepsilon}\}_{\varepsilon>0}$ satisfait un principe de grandes déviations avec bonne fonction de taux $I = J \circ F$.

Pour obtenir la minoration du p.g.d. on pourra procéder comme suit :

- soient un ouvert $O \subset E$ et $x \in O$ arbitraires; on note $\ell = I(x)$ et $K_{\ell} \subset E$ le compact donné par la tension exponentielle de $\{P^{\varepsilon}\}$: montrer que $x \in K_{\ell}$ en utilisant la continuité de F et la minoration du p.g.d. pour $\{Q^{\varepsilon}\}$;
- montrer que $F(O \cap K_{\ell})$ est un voisinage de F(x) pour la topologie induite sur $F(K_{\ell})$ et déduire qu'il existe un voisinage ouvert G de F(x) dans S tel que $G \subset F(O \cap K_{\ell}) \cup F(K_{\ell})^c = F(O \cup K_{\ell}^c)$;
- en utilisant la minoration du p.g.d. pour $\{Q^{\varepsilon}\}$ montrer que

$$\max\{\liminf_{\varepsilon\to 0}\varepsilon\log P^\varepsilon(O), \limsup_{\varepsilon\to 0}\varepsilon\log P^\varepsilon(K_\ell)\}\geqslant -J(F(x))=-I(x)=-\ell,$$

déduire la minoration pour $\liminf_{\varepsilon\to 0} \varepsilon \log P^{\varepsilon}(O)$ et conclure.

Exercice IV.

Soient $\{B_t: t \in [0,1]\}$ un mouvement brownien réel issu de 0 et $\{b_t = B_t - tB_1: t \in [0,1]\}$ le pont brownien. Pour $\varepsilon > 0$, notons Q^{ε} la loi du processus $\{\sqrt{\varepsilon}\,b_t: t \in [0,1]\}$. Montrer que la famille de probabilités $\{Q^{\varepsilon}\}_{\varepsilon>0}$ satisfait un principe de grandes déviations sur $C_0([0,1];\mathbb{R})$ et trouver la fonction de taux. La limite $\lim_{M\to\infty}\frac{1}{M^2}\log P(\sup_{t\in[0,1]}b_t\geqslant M)$ existe-t-elle? Si oui calculer sa valeur. On pourra commencer par étudier la même limite avec B à la place de b. Rappel: $P(\sup_{t\in[0,1]}B_t\geqslant M)\sim_{M\to\infty}2/(M\sqrt{2\pi})e^{-M^2/2}$.

Tournez la page S.V.P.

Exercice V.

Soit $\{B_t: t \in [0,1]\}$ le mouvement brownien standard issu de 0 et soit $g \in L^2([0,1])$. On introduit la variable aléatoire $U := \int_0^1 g(s) B_s ds$.

- 1. Calculer la décomposition en chaos de Wiener de U et déduire la valeur de l'intégrale de Skorokhod $\int_0^1 U \, \delta B_t$.
- 2. Que vaut la dérivée de Malliavin D_tV , où $V:=\int_0^1 B_sds$. En déduire la formule de Clark-Ocone satisfaite par V?

Exercice VI.

- 1. Soit F une variable aléatoire telle que $F \in \mathbb{D}^{1,2}$ et DF = 0. Montrer que $F = \mathcal{E}(F)$. On pourra utiliser la décomposition en chaos de Wiener de F.
- 2. Pour A un événement aléatoire, montrer que $\mathbb{1}_A \in \mathbb{D}^{1,2}$ si et seulement si $P(A) \in \{0,1\}$. On pourra utiliser le point précédent : introduire la fonction $g \in C_0^{\infty}(\mathbb{R})$ telle que $g(x) = x^2$, pour $x \in [0,1]$, et appliquer la dérivation composée pour calculer la valeur de $D\mathbb{1}_A$.