Mihai Gradinaru 1

Maîtrise de Mathématiques 2003-2004 Statistiques

5. Statistiques exhaustives complètes, théorème de Lehmann-Scheffé, modèles exponentiels

- **5.1.** Soit (X_1, \ldots, X_n) un *n*-échantillon de loi P_{θ} , $\theta \in \Theta$. Indiquer des statistiques exhaustives pour le paramètre θ . S'agit-il des statistiques complètes? Trouver ensuite des estimateurs efficaces pour θ .
 - a) $\Theta = [0,1]$ et $P_{\theta} = \mathcal{B}(1,\theta)$ (loi de Bernoulli);
 - **b)** $\Theta = \mathbb{R}_+$ et $P_{\theta} = \mathcal{P}(\theta)$ (loi de Poisson);
 - c) $\Theta = \mathbb{R}$ et $P_{\theta} = \mathcal{N}(\theta, 1)$ (loi normale avec variance connue);
 - **d)** $\Theta = \mathbb{R}_+^*$ et $P_\theta = \mathcal{N}(0, \theta^2)$ (loi normale avec espérance connue);
 - e) $\Theta = \mathbb{R} \times \mathbb{R}_+^*$ et $P_\theta = \mathcal{N}(m, \sigma^2)$ (loi normale);
 - f) $\Theta = \mathbb{R}_+$ et $P_{\theta} = \mathcal{E}(\theta)$ (loi exponentielle).
- **5.2.** Soit (X_1,\ldots,X_n) un *n*-échantillon de loi uniforme sur $[\mu,\theta], -\infty < \mu < \theta < \infty$.
 - a) Indiquer une statistique exhaustive pour le paramètre (μ, θ) .
 - b) Supposons que μ est connu et que le seul paramètre est θ . Trouver une statistique exhaustive complète pour θ . Peut-on trouver l'estimateur efficace pour θ ? (On pourra faire $\mu = 0$.)
- c)* Supposons cette fois que $\theta = \mu + 1$, est que le seul paramètre est μ . Montrer que la statistique trouvée au premier point est exhaustive mais n'est pas complète.
- **5.3.** Soit (X_1, \ldots, X_n) un *n*-échantillon de loi géomètrique de paramètre $p \in]0,1[$. Trouver une statistique suffisante pour p. Est-elle complète?
- **5.4.** Soit (X_1, \ldots, X_n) un *n*-échantillon de loi $\mathcal{B}(1, 1/(1+\theta)), \theta > 0$. Montrer que $X_1 + \ldots + X_n$ statistique exhaustive. Est-elle complète?
- **5.5.** Soit (X_1, \ldots, X_n) un *n*-échantillon de loi $\mathcal{N}(\theta, \theta)$, $\theta > 0$. Montrer que $(S,T) := (X_1 + \ldots + X_n, X_1^2 + \ldots + X_n^2)$ est une statistique suffisante pour θ . Calculer l'espérance de $S^2 T$. Que peut-on conclure?
- **5.6.** Soit (X_1, \ldots, X_n) un *n*-échantillon de loi $\gamma(p, \lambda)$.
 - a) Montrer que $(X_1 ... X_n, X_1 + ... + X_n)$ est une statistique suffisante pour le paramètre (p,λ) .
 - b) Supposons ensuite que λ est connu. Donner une statistique suffisante pour p.
 - c) Montrer que \overline{X} est une statistique exhaustive pour le paramètre $\theta > 0$, lorsque la densité de l'échantillon est $f_{\theta}(x) = \frac{1}{6\theta^4} x^3 e^{-x/\theta} \mathbb{1}_{]0,\infty[}(x)$.
- **5.7*.** Soit $((X_1,Y_1)\dots,(X_n,Y_n))$ un n-échantillon de loi $\mathcal{N}_2\left(\binom{m}{\mu},\binom{\sigma^2}{\rho},\frac{\rho}{\tau^2}\right)$. Montrer que $(\sum_{i=1}^n X_i,\sum_{i=1}^n Y_i,\sum_{i=1}^n X_i^2,\sum_{i=1}^n Y_i^2,\sum_{i=1}^n X_iY_i)$ est une statistique exhaustive pour $(m,\mu,\sigma^2,\tau^2,\rho)$.

Mihai Gradinaru 2

5.8. Soit (X_1, \ldots, X_n) un *n*-échantillon de loi $\mathcal{B}(1,p)$. On prend comme paramètre la variance $\theta = p(1-p)$. Utiliser le théorème de Lehmann-Scheffé pour trouver l'estimateur efficace de θ .

- **5.9.** Soit (X_1, \ldots, X_n) un *n*-échantillon de loi $\mathcal{P}(\lambda)$. On fixe $r \in \mathbb{N}$ et soit $\theta_r = e^{-\lambda} \lambda^r / (r!)$.
 - a) Soit r = 0 et on note $S = X_1 + ... + X_n$ et $N_0 = \sum_{i=0}^n \mathbb{1}_{\{X_i = 0\}}$.
 - i) On pose $T = \mathbb{E}(\frac{1}{n}N_0 \mid S)$. Montrer que $T = \mathbb{E}(\mathbb{1}_{\{X_1=0\}} \mid S)$.
 - ii) Montrer que $\mathbb{E}(\mathbb{1}_{\{X_1=0\}} \mid S=s) = \mathbb{P}(X_1=0 \mid S=s), s \in \mathbb{N}.$
 - iii) En déduire que $\mathbb{E}(\mathbb{1}_{\{X_1=0\}} \mid S=s) = \left(\frac{n-1}{n}\right)^s, s \in \mathbb{N} \text{ et que } T = \left(1 \frac{1}{n}\right)^{n\overline{X}}.$
 - iv) Montrer que T est un estimateur sans biais et efficace de θ_0 .
- b)* Reprendre un raisonnement identique pour trouver un estimateur sans biais efficace de θ_r , pour $r \in \mathbb{N}^*$.
- **5.10.** Soit (X_1, \ldots, X_n) un *n*-échantillon de loi gaussienne $\mathcal{N}(m, \sigma^2)$. Trouver l'estimateur efficace de $p := \Phi(-\mu/\sigma)$, où Φ est la fonction de répartition d'une variable gaussienne standard (la fonction de Laplace). On pourra considérer d'abord le cas où σ^2 est connu.
- **5.11.** Soient (T_1, \ldots, T_r) , r estimateurs sans biais d'un paramètre θ et on note $cov(T_i, T_j) = \sigma_{ij}$, $i, j \in \{1, \ldots, r\}$.
 - a) Parmi les combinaisons linéaires des T_i , trouver l'estimateur sans biais de variance minimale.
 - b) Si $\sigma_{ij} = 0$ pour $i \neq j$, que vaut cette variance minimale?
 - c) On dispose de r échantillons indépendants de tailles n_i , i = 1, ..., r, de lois $\mathcal{N}(m_i, \sigma^2)$. Proposer un estimateur sans biais de σ^2 . Est-il efficace?
- **5.12.** Indiquer lesquels des modèles suivants sont des modèles exponentiels:

$$\{\mathcal{B}(1,\theta): \theta \in [0,1]\}; \{\mathcal{P}(\theta): \theta > 0\}; \{\mathcal{G}(\theta): \theta \in [0,1]\}; \{\mathcal{E}(\theta): \theta > 0\};$$

$$\{\gamma(p,\lambda): \theta=(p,\lambda)\in\mathbb{R}_+^*\times\mathbb{R}_+^*\}; \{\mathcal{N}(m,\sigma^2): \theta=(m,\sigma^2)\in\mathbb{R}\times\mathbb{R}_+^*\};$$

$$\left\{ \mathcal{N}_2 \left(\begin{pmatrix} m \\ \mu \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho \\ \rho & \tau^2 \end{pmatrix} \right) : (m, \mu, \sigma^2, \tau^2, \rho) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}_+^* \times \mathbb{R}_+^* \times \mathbb{R} \right\}.$$