Feuille d'exercices # 5

Exercice 1 Inversion de sommes et calcul d'intégrale

1. Montrer que pour $x \in \mathbb{R}$, on a

$$\frac{\sin(x)}{x} = \int_0^1 \cos(xy) dy.$$

En déduire que $x \mapsto \sin(x)/x$ est bornée sur \mathbb{R} .

2. À l'aide du théorème de Fubini, calculer l'intégrale suivante

$$\int_0^{+\infty} \frac{\sin(x)}{x} e^{-x} dx.$$

Exercice 2 Pourquoi faire simple...

En étudiant sa dérivée, déterminer une expression plus simple de la fonction suivante :

$$t \mapsto \int_0^{+\infty} \frac{1 - \cos x}{x} e^{-tx} \, \mathrm{d}x.$$

Exercice 3 Inégalité de corrélation

Sur un espace mesuré $(\mathbb{R}, \mathcal{F}, \mu)$, soient f et g deux fonctions intégrables et telles que fg est encore intégrable. On suppose de plus que f et g sont monotones et de même monotonie. Démontrer l'inégalité :

$$\int_{\mathbb{R}} f(x)g(x)d\mu(x) \geq \int_{\mathbb{R}} f(x)d\mu(x) \int_{\mathbb{R}} g(x)d\mu(x).$$

Exercice 4 Transformée de Fourier

Soit $f: \mathbb{R} \to \mathbb{C}$ intégrable (i.e. |f| est intégrable sur \mathbb{R}). On définit la transformée de Fourier de f par :

$$\mathcal{F}f(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-ix\xi} dx.$$

- 1. Montrer que $\mathcal{F}: L^1(\mathbb{R}) \to L^\infty(\mathbb{R})$ définit une application linéaire continue.
- 2. Pour $a \in \mathbb{R}$, notons $\tau_a : f \mapsto f(\cdot a)$. Montrer que $\mathcal{F}(\tau_a f)(\xi) = e^{-ia\xi} \mathcal{F}f(\xi)$.
- 3. Montrer le lemme de Riemann–Lebesgue : $\mathcal{F}f(\xi) \underset{|\xi| \to +\infty}{\longrightarrow} 0$. En déduire que $\mathcal{F}f$ est uniformément continue sur \mathbb{R} .
- 4. Soient $f, g \in L^1(\mathbb{R})$ et h = f * g. Montrer que $\mathcal{F}h = (\mathcal{F}f)(\mathcal{F}g)$.

Exercice 5 Transformée de Fourier encore

On souhaite expliciter la transformée de Fourier suivante, pour $t \in \mathbb{R}$

$$F(t) := \int_{\mathbb{R}} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} e^{-itx} dx.$$

- 1. Montrer que la fonction F est dérivable sur \mathbb{R} et calculer sa dérivée.
- 2. En intégrant par parties l'expression obtenue, montrer que F vérifie l'équation différentielle linéaire suivante F'(t) = -tF(t).
- 3. Expliciter la fonction F, que remarquez-vous?

Exercice 6 Intégration par parties

Soient $f, g \in L^1([a,b])$. Montrer que, en notant $F: x \mapsto \int_a^x f(t) dt$ et $G: x \mapsto \int_a^x g(t) dt$:

$$\int_{a}^{b} f(t)G(t)dt = F(b)G(b) - \int_{a}^{b} F(t)g(t)dt$$

Exercice 7 Variante de l'inégalité de Hölder

Soient $p,q,r \ge 1$ tels que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Soient $f \in L^p(\mu)$ et $g \in L^q(\mu)$. Montrer que $fg \in L^r(\mu)$ et :

$$||fg||_r \le ||f||_p ||g||_q.$$

Exercice 8 Inclusions

- (i) Soient $1 \le p \le q \le +\infty$. Montrer que $L^q([0,1]) \subset L^p([0,1])$. L'inclusion est-elle stricte?
- (ii) Donner un exemple de fonction appartenant à tout L^p , mais pas à L^{∞} sur \mathbb{R} .
- (iii) Soient $p \neq q$. Montrer que $L^p(\mathbb{R})$ et $L^q(\mathbb{R})$ ne sont pas comparables (i.e. ni $L^p(\mathbb{R}) \subset L^q(\mathbb{R})$, ni $L^q(\mathbb{R}) \subset L^p(\mathbb{R})$).
- (iv) Soit (E, \mathcal{A}, μ) un espace mesuré. Montrer que $L^p(E) \cap L^q(E) \subset L^r(E)$ si $1 \leq p \leq r \leq q < +\infty$. En déduire que, pour f donnée, l'ensemble $\{p \in [1, +\infty [, f \in L^p(E)\} \text{ est un intervalle.}\}$

Exercice 9 Espaces de suites

Pour $1 \le p < +\infty$, on définit $\ell^p(\mathbb{N}) = L^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), m)$ où m est la mesure de comptage :

$$\ell^p(\mathbb{N}) = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}, \sum_{n=0}^{+\infty} |u_n|^p < +\infty \right\}.$$

Montrer que $\ell^p(\mathbb{N}) \subset \ell^q(\mathbb{N})$ si $p \leq q$. L'inclusion est-elle stricte?

Exercice 10 Limite quand $p \to \infty$

Montrer que si $\mu(E) < \infty$ et si f est une fonction bornée, alors on a $||f||_{\infty} = \lim_{p \to \infty} ||f||_p$. La suite des normes est-elle monotone?

Exercice 11 Limite quand $p \to 0$

Soient (E, \mathcal{A}, μ) avec μ une mesure de probabilité et f une fonction positive intégrable. Montrer que si $\mu(\{f>0\}) < 1$ alors $\lim_{p\to 0^+} \|f\|_p = 0$. Montrer que $\lim_{p\to 0^+} \int_E f^p d\mu = \mu(\{f>0\})$.

Exercice 12 Inégalité de Hardy

Soit $p \in]1, +\infty[$. À toute fonction $f \in L^p(\mathbb{R}_+, \mathbb{R}_+)$, on associe $F : x \mapsto \frac{1}{x} \int_0^x f(t) dt$. Montrer que l'inégalité de Hardy ci-dessous est vérifiée pour toute fonction $f \in L^p(\mathbb{R}_+, \mathbb{R}_+)$:

$$||F||_p \le \frac{p}{p-1} ||f||_p$$

Indication : on commencera par vérifier la bonne définition des objets en jeu, puis par montrer, pour $f \in \mathcal{C}_c\left(\mathbb{R}_+^*, \mathbb{R}_+\right)$:

$$\int_0^{+\infty} F(x)^p \, \mathrm{d}x \le \frac{p}{p-1} \int_0^{+\infty} f(x) F(x)^{p-1} \, \mathrm{d}x$$

Justifier que la constante $\frac{p}{p-1}$ est optimale. Que dire dans les cas p=1 et $p=+\infty$?