Probabilités de base : examen

mardi 5 mai 2009 - durée 2 heures - résumé autorisé

Exercice I.

Soit $\mathbf{X} = (X_1, X_2, X_3)$ un vecteur gaussien centré de matrice de covariance l'identité et $\mathbf{a} = (a_1, a_2) \neq (0, 0)$ un vecteur de \mathbb{R}^2 . Trouver les lois des variables aléatoires $Y := \frac{(a_1X_1+a_2X_2)}{\sqrt{a_1^2+a_2^2}}$ et $Z := \frac{(X_1+X_2X_3)}{\sqrt{1+X_3^2}}$. On pourra utiliser les fonctions caractéristiques.

Exercice II.

Les durées de vie T_1 et T_2 de deux appareils sont des variables aléatoires indépendantes de même loi exponentielle de paramètre 1. Que valent les fonctions de répartition et les densités des variables aléatoires $T_{(1)} := \min\{T_1, T_2\}$ et $T_{(2)} := \max\{T_1, T_2\}$ et quelle est leur signification dans ce contexte? Montrer que le vecteur aléatoire $T_{(1)}, T_{(2)}, T_{(1)}$ possède une densité et la calculer. Les variables aléatoires $T_{(1)}$ et $T_{(2)}, T_{(1)}$ sont-elles indépendantes? Comment pouvez-vous interpréter les résultats obtenus?

Exercice III.

Au lancer d'une pièce on obtient pile avec une probabilité $p \in]0, 1[$. On lance cette pièce d'une manière répétée et on note W le nombre minimal de jets pour obtenir k fois pile $(k \ge 1)$. Expliquer pourquoi W peut s'écrire comme une somme de k variables aléatoires indépendantes de même loi géométrique. Montrer que la limite en loi $\lim_{p\to 0} 2pW$ est une variable aléatoire de loi gamma dont on indiquera les paramètres.

Exercice IV.

Soit g la densité de probabilité d'une variable aléatoire gaussienne réelle d'espérance m et de variance $\sigma^2 > 0$.

- 1. Calcular $\int_{\mathbb{R}} (x-m)g(x)^2 dx$.
- 2. Soit $d \ge 1$ entier et $f_d : \mathbb{R}^d \to \mathbb{R}$ définie par

$$f_d(x_1, \dots, x_d) := \left(\prod_{i=1}^d g(x_i)\right) \left(1 + \prod_{j=1}^d (x_j - m)g(x_j)\right), (x_1, \dots, x_d) \in \mathbb{R}^d.$$

Montrer que, pour tout entier $d \ge 1$, f_d est une densité de probabilité.

- 3. On désigne par (X_1, \ldots, X_d) un vecteur aléatoire admettant f_d comme densité de probabilité et soit p un entier tel que $1 \leq p \leq d-1$. Montrer que la densité f_p du p-uplet (X_1, \ldots, X_p) vaut $f_p(x_1, \ldots, x_p) = g(x_1) \ldots g(x_p)$.
- 4. Le p-uplet (X_1, \ldots, X_p) est-il gaussien? Les variables aléatoires réelles X_1, \ldots, X_p sont-elles indépendantes? Le vecteur (X_1, \ldots, X_d) est-il gaussien?

Exercice V.

Soit $\{Z_n\}_{n\geqslant 1}$ une suite de variables aléatoires indépendantes et de même loi de densité $f(x)=e^{1-x}\mathbb{1}_{x\geqslant 1}$. Dans la suite on justifiera soigneusement chaque passage à la limite en précisant le sens des convergences.

1. Que valent les limites suivantes :

$$\ell_1 := \lim_{n \to \infty} (\frac{1}{n} \sum_{j=1}^n Z_j)^2, \quad \ell_2 := \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n Z_j^2 \quad \text{et} \quad \ell_3 := \lim_{n \to \infty} \frac{2}{n(n-1)} \sum_{1 \le j < k \le n} Z_j Z_k.$$

Pour calculer ℓ_3 on pourra utiliser les deux suites précédentes.

2. Calculer, lorsqu'elles existent, les limites, quand $n \to \infty$, des suites :

$$\sqrt{n}\left(\left(\frac{1}{n}\sum_{j=1}^{n}Z_{j}\right)^{2}-4\right),\ \sqrt{n}\left(\left(\frac{1}{n}\sum_{j=1}^{n}Z_{j}^{2}\right)-5\right),\ \sqrt{n}\left(\left(\frac{2}{n(n-1)}\sum_{1\leqslant j< k\leqslant n}Z_{j}Z_{k}\right)-4\right).$$