Contrôle continu # 2

le 18 novembre 2024; durée 45 minutes; aucun document autorisé.

Exercice 1 Question de cours ou presque

- a) Soient μ une mesure finie sur $([0,1], \mathcal{B}([0,1]))$ et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de [0,1] dans [0,1] qui converge simplement vers 0. Montrer que $\lim_{n\to\infty}\int_0^1 f_n(x)d\mu(x) = 0$.
- b) Sur un espace mesuré (E, \mathcal{A}, μ) , soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables convergeant μ -presque partout vers une fonction f lorsque n tend vers l'infini. On suppose que (f_n) est bornée dans \mathcal{L}^1 , autrement dit $\sup_{n \in \mathbb{N}} \int_E |f_n| d\mu(x) < \infty$. Montrer que f est intégrable.
- c) Sur un espace mesuré (E, \mathcal{A}, μ) , soit f une fonction intégrable. Montrer que pour tout R > 0, on a $\mu(|f| \ge R) \le \frac{1}{R} \int_E |f| d\mu$. En déduire que $\mu(|f| = +\infty) = 0$.

Exercice 2 Fonction indicatrice

Soient (E, \mathcal{A}, μ) un espace mesuré, $f: (E, \mathcal{A}, \mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ une fonction intégrable et $(A_n)_{n\geq 1}$ une suite d'éléments de \mathcal{A} . On suppose que $\lim_{n\to\infty} \int_E |f-\mathbb{1}_{A_n}| d\mu = 0$ et on veut montrer qu'il existe alors $A \in \mathcal{A}$ tel que $f = \mathbb{1}_A$, μ -presque partout.

- a) Vérifier que $\{|f| > 2\} \subset \{|f \mathbbm{1}_{A_n}| > 1\}$ et déduire que $|f| \le 2$, μ -presque partout. On pourra utiliser l'inégalité de l'exercice 1c).
- b) Montrer que l'on a la majoration

$$\int_E |f - f^2| d\mu \leq \int_E |f - 1\!\!1_{A_n}| d\mu + \int_E |f - 1\!\!1_{A_n}| \cdot |f + 1\!\!1_{A_n}| d\mu \leq 4 \int_E |f - 1\!\!1_{A_n}| d\mu.$$

c) En déduire que $f=f^2$ $\mu-$ presque partout et ensuite que $f=\mathbbm{1}_A$ avec A qu'on explicitera.

Exercice 3 Convergence d'une suite

Soient (E, \mathcal{A}, μ) un espace mesuré et $f: E \to \mathbb{R}_+$ une fonction mesurable positive. On considère alors la suite $(a_n)_{n\geq 1}$ définie par

$$a_n := n \int_E \ln\left(1 + \frac{f}{n}\right) d\mu, \quad n \ge 1.$$

- a) On suppose que f est intégrable. Montrer que (a_n) converge et expliciter sa limite. .
- b) Que dire de la suite (a_n) lorsque $\int_E f d\mu = \infty$. On pourra penser au lemme de Fatou.