Master Mathématiques 1ère année Séries Temporelles : 2006-2007

DM 1:13 février - 26 février

DM1-1.

1. Montrer qu'un filtre linéaire $\{a_j\}$ laisse passer un polynôme de degré k sans le transformer, c'est-à-dire, que $m_t = \sum_j a_j m_{t+j}$, $t \in \mathbb{Z}$, pour tout polynôme de degré k, $m_t = c_0 + c_1 t + \ldots + c_k t^k$ si et seulement si

$$\sum_{j} a_{j} = 1$$
 et $\sum_{j} j^{r} a_{j} = 0$, pour $r = 1, \dots, k$.

2. Montrer que le filtre 15-points de Spencer (voir le cours) laisse passer sans distorsion une tendance cubique.

DM1-2. Soit $\{X_t : t \in \mathbb{Z}\}$ une série temporelle stationnaire de moyenne m et de fonction d'autocovariance $\gamma(\cdot)$. On note $\overline{X} = (X_1 + \dots + X_n)/n$ la moyenne empirique associée à X_1, \dots, X_n .

1. Vérifier l'égalité suivante

$$n\text{Var}(\overline{X}) = \frac{1}{n} \left\{ \sum_{h=-(n-1)}^{-1} (n+h)\gamma(h) + \sum_{h=0}^{n-1} (n-h)\gamma(h) \right\}.$$

2. En déduire

$$n\operatorname{Var}(\overline{X}) = \sum_{|h| < n} \left(1 - \frac{|h|}{n}\right) \gamma(h) \leqslant \sum_{|h| < n} \gamma(h).$$

3. Montrer que si $\lim_{n\to\infty} \gamma(n) = 0$, alors

$$\lim_{n \to \infty} \frac{1}{n} \sum_{|h| < n} \gamma(h) = 0.$$

En déduire que \overline{X} converge, lorsque $n \to \infty$, vers m dans L^2 et en probabilité.

4. On suppose que $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$. Montrer que

$$\lim_{n\to\infty} n \mathrm{Var}(\overline{X}) = \sum_{h=-\infty}^{\infty} \gamma(h) < \infty.$$

Justifier votre réponse.