Probabilités de base : devoir maison no. 2

- deux copies doubles maximum, à rendre pour le 1er décembre 2008 -

Exercice I.

Soit (X, Y) un couple gaussien centré de matrice de covariance égale à l'identité I_2 et soit z = a + ib un nombre complexe. Définissons X' = Re(z(X + iY)) et Y' = Im(z(X + iY)). Montrer que (X', Y') est un couple gaussien dont on déterminera l'espérance et la matrice de covariance. Les variables X' et Y' sont-elles indépendantes? Déterminer la fonction caractéristique de (X', Y'). À quelle condition sur z a-t-on $(X', Y') \sim (X, Y)$?

Exercice II.

Soit F_k la fonction $F_k(t) = \begin{cases} 1 - \frac{1}{t^k} & \text{si } t \ge 1 \\ 0 & \text{si } t < 1 \end{cases}$, où $k \ge 2$ est un entier.

- 1) Montrer que F_k est la fonction de répartition d'une variable aléatoire réelle X_k .
- 2) Montrer que $X_k > 1$ p.s. et que X_k admet une densité que l'on calculera.
- 3) Soit $\varepsilon > 0$ et $A_k = \{|X_k 1| > \varepsilon\}$. Calculer $P(A_k)$. En déduire la convergence en probabilité de la suite $\{X_k\}_{k \geq 2}$. Cette suite converge-t-elle presque sûrement? Justifier soigneusement votre réponse.
- 4) Justifier que X_k est intégrable et calculer son espérance ainsi que $E(|X_k-1|)$.
- 5) Trouver l'ensemble de réels $p \ge 1$ pour lesquels $X_k \in L^p$ et calculer $||X_k||_p^p$.
- **6)** Montrer que la suite $\{X_k\}_{k\geqslant 2}$ tend vers 1, dans L¹, lorsque $k\to\infty$. Cette suite converge-t-elle dans L², lorsque $k\to\infty$?

Dans la suite de l'exercice on suppose k = 3.

- 7) Soit G une variable aléatoire réelle de loi gaussienne standard (on ne suppose pas l'indépendance de G et X_3). Montrer que GX_3 est intégrable, puis que $GX_3 \in L^2$.
- 8) Soit Y_1, \ldots, Y_n, \ldots une suite de variables aléatoires indépendantes et de même fonction de répartition F_3 et on note $U_n = Y_1 + \ldots + Y_n$ et $V_n = Y_1^2 + \ldots + Y_n^2$. Que vaut la limite presque sûre de la suite $\{U_n/V_n\}_{n\geqslant 1}$, lorsque $n\to\infty$? On pourra d'abord étudier les suites $\{U_n/n\}$ et $\{V_n/n\}$.
- 9) Avec les notations du point précédent montrer que, lorsque $n \to \infty$ et pour $t \ge 1$ fixé, $\frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{\{Y_j > t\}} \xrightarrow{\text{p.s.}} 1/t^3$.

Exercice III.

Une urne contient des boules rouges et noires. La proportion de boules rouges est $p \in]0,1[$. On effectue des tirages avec remise dans l'urne en notant à chaque fois la couleur obtenue et on dit avoir obtenu un "succès" si une boule rouge est sortie. Les tirages cessent après avoir noté l'obtention de n boules rouges (n succès), $n \ge 1$. Soit T la variable aléatoire égale au nombre total de boules tirées.

- 1) Quel est l'ensemble de valeurs possibles de T?
- 2) Calculer P(T=n) et P(T=n+1).

Tournez la page S.V.P.

- 3) Donner une explication soigneuse et succincte de la formule suivante : pour k appartenant à l'ensemble trouvé au premier point $P(T=k) = C_{k-1}^{n-1} p^n (1-p)^{k-n} =: \pi_k$. Quelle loi obtient-on si n=1?
- 4) Calculer E(T), ainsi que $E\left[\frac{(n-1)}{(T-1)}\right]$ pour $n \ge 2$. On pourra remarquer que $\sum_k \pi_k = 1$.

Exercice IV.

Sur l'espace $([0,1], \mathcal{B}([0,1]), \lambda)$ on considère des suites de variables aléatoires $\{X_n\}_{n\geqslant 1}$. Justifier chacune des phrases suivantes.

- 1) Soit $X_{2^k+j} = \mathbb{1}_{[j/2^k,(j+1)/2^k]}$, pour $n = 2^k+j$, $k \ge 1$ entier et $j \in \{0,1,\ldots,2^k-1\}$. Montrer que $\{X_n\}$ converge en probabilité vers 0, mais ne converge pas presque sûrement.
- 2) Soit $X_n = 2^n \mathbb{1}_{(0,1/n)}$ pour $n \ge 1$ entier. Montrer que $\{X_n\}$ converge en probabilité vers 0, mais ne converge pas dans L^p (0 .
- 3) Soit X_n telle que $P(X_n = n) = 1/n^p = 1 P(X_n = 0)$ (avec $1), pour <math>n \ge 1$ entier, variables aléatoires discrètes. Montrer que $\{X_n\}$ converge presque sûrement vers 0, mais ne converge pas dans L^p .
- 4) Soit $X_n = (-1)^n G$, pour $n \ge 1$ entier, avec $G \sim \mathcal{N}(0,1)$. Montrer que $\{X_n\}$ converge en loi vers G, mais ne converge pas en probabilité vers G.
- 5) Soit $X_n = (-1)^n G$ et $Y_n = G$ pour $n \ge 1$ entier, avec $G \sim \mathcal{N}(0,1)$. Montrer que $\{X_n\}$ converge en loi vers G, que $\{Y_n\}$ converge en loi vers G, mais $\{(X_n, Y_n)\}$ ne converge pas en loi vers (G, G).