Master Mathématiques 1ère année Séries Temporelles : 2006-2007 DS1 - le 26 mars 2007

durée 1 heure - documents et calculatrice autorisés

DS1-1. (3 points)

Soient $\{W_t\}_{t\in\mathbb{Z}} \sim IID(0,1)$ et W une variable aléatoire réelle centrée réduite. Calculer $\mathrm{E}(X_t)$ et $\mathrm{E}(X_tX_{t+h})$ pour chacun des deux processus $\{X_t\}_{t\in\mathbb{Z}}$ suivants. Dans chaque cas décider si le processus est stationnaire ou non.

- (a) $X_t = W_{t+1}W_t W_tW_{t-1}$.
- (b) $X_t = (-1)^t W$.

DS1-2. (6 points)

- 1. Soit $Y_t = .3 + .75t + s_t + Z_t$, $t \in \mathbb{Z}$, où $\{Z_t\}_{t \in \mathbb{Z}} \sim WN(0,9)$ et $\{s_t\}_{t \in \mathbb{Z}}$ est de période 3. Trouver un filtre de la forme $I B^d$ pour éliminer la composante périodique de $\{Y_t\}_{t \in \mathbb{Z}}$. Ensuite calculer l'espérance et la fonction d'autocovariance de la série filtrée $X_t = (I B^d)Y_t$.
- 2. Supposons que $\{X_t\}_{t\in\mathbb{Z}}$ est une série temporelle stationnaire de carré intégrable telle que : $X_t = .25X_{t-1} + W_t$, où $W_t = 2ZZ_t$, $t \in \mathbb{Z}$. Ici $\{Z_t\} \sim WN(0,1)$ et Z est une variable aléatoire réelle centrée réduite et indépendante de $\{Z_t\}_{t\in\mathbb{Z}}$. Montrer que W est un bruit blanc et exprimer X_t en fonction de $\{W_s : s \leq t\}$. En déduire l'espérance et la fonction d'autocovariance de $\{X_t\}$.

DS1-3. (6 points)

Soit la série temporelle $X_t = .9X_{t-1} - .2X_{t-2} + Z_t + Z_{t-1}, t \in \mathbb{Z}, \{Z_t\}_{t \in \mathbb{Z}} \sim WN(0, 1).$

- (a) Décider si ce modèle est ou non causal et/ou inversible.
- (b) Calculer, le cas écheant, les coefficients ψ_i de la représentation causale $X_t = \psi(B)Z_t$.
- (c) Calculer la fonction d'autocovariance donner un aperçu de sa représentation graphique (diagrammes en bâtons).