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A COUPLING BETWEEN RANDOM WALKS IN RANDOM
ENVIRONMENTS AND BROX’S DIFFUSION
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ABSTRACT. It has been established in [27] that a properly rescaled version of Sinai’s random
walk converges in distribution to Brox’s diffusion. In this article we quantify this convergence
by considering a specific coupling between Sinai’s walk and Brox’s diffusion. Our method
relies on convergence results for martingale problems considered in the rough path setting.
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1. INTRODUCTION

Sinai’s random walk is a very popular model of random walk in random environment. It
is fairly simple to describe at a mathematical level, and yet it exhibits a highly non-trivial
asymptotic behaviour as time goes to infinity. Let us describe a simplified version of this
object (a more complete version being laid out in Section 2.1).

The state space for Sinai’s random walk {X%;n > 1} is Z. The walk is based on a random
environment {w;;z € Z} which gives the probability of a right jump when one reaches a
level x € Z. The ii.d. sequence {w;;x € Z} is defined on a probability space (2,G,P).
In the original model treated by Sinai [28], once w is fixed,the random walk X? is defined
through the so-called quenched transition probabilities

PYXE =2+ 11X =2)=w, PXI =0-1|X=0)=w, =1-uw]. (1.1)
Then the so-called the following assumption recurrence assumption is spelled out as
Ellog(w, /w/)] =0, forallxz € Z. (1.2)

Under hypothesis (1.2) it is shown in [29] that X is recurrent (almost surely with respect
to the randomness in w). Moreover (see [28]) and [19]) the asymptotic behavior of the path
n +— X2 exhibits a highly nontrivial behaviour of the form

Xd
n Wop (1.3)

log®n

where the limit in distribution is considered with respect to the annealed probability P (dw) x
P and where the law of L is described in [19]. Fascinating behaviours like (1.3) have con-
verted random walks in random environments into very popular objects in discrete proba-
bility and mathematical physics.

Remark 1.1. A typical example of distribution satisfying (1.2) is w;}’ ~ Beta(a, a) distribution
for a parameter a € (0,00). In this case it is well known that

E [log(wy)] = ¥(a) — ¥(2a),

where ¢ is the digamma function. Therefore it is readily checked that w, satisfies the
recurrence condition (1.2).

Remark 1.2. Due to some intricate parity issues, we shall in fact work with a lazy version of
Sinai’s random walk. In order to keep technical details to a minimum in the introduction,
we postpone a full description of this lazy random walk to Section 2.1.
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The second object of interest in this article is called Brox diffusion, which has to be
considered as a Brownian motion evolving in a Brownian environment. This continuous
time process {Xf;¢ > 0} is based on an environment {W(z);z € R} which is given as a
double-sided Brownian motion. We will define W on the same same space of probability
(Q2,G,P) as the environment w of the Sinai random walk. Then X is formally the solution
of the following stochastic differential equation:

1 [t
Xf:—é/ W(X)ds + B, (1.4)
0

where B is a standard Brownian motion independent of . Notice that the drift W in (1.4)
is a distribution which lies in a Sobolev space of regularity a = —% — e. The roughness rules
out the possibility to solve (1.4) in a pathwise sense (see e.g. [3] or [7] for optimal results
concerning pathwise definitions of stochastic differential equations with distributional drifts).
Therefore the process X is usually seen (like in the original contribution [6]) as the Brownian
motion B composed with a properly defined scale function. A behaviour similar to (1.3) is
proved for X¢ in [6]. The similarities pointed out above prompted the community to think
that Brox’s diffusion X°¢ is the continuous time equivalent of the random walk X¢. This
claim has been made precise in the remarkable paper [27]. In this contribution a version X°
of X4 for § > 0, is considered. The process X° is defined through a proper rescaling of time,
space and environment w (see Section 2.4 for a detailed description). Then for a fixed time
horizon 7' it is proved in [27] that

@ e
Xioy — Xfory (1.5)

where the convergence is considered with respect to the Skorokhod metric and also with
respect to the annealed probability (as in (1.3)).

The current contribution has to be seen as a progress in the direction of (1.5). Indeed,
Donsker type theorems like (1.5) do not provide any type of knowledge about rates of conver-
gence in distribution. However for diffusion processes or rough differential equations, a good
wealth of information is available for weak type convergences of discretisations (see e.g. 2],
[23]). In this article we wish to establish a rate of convergence for the limit in distribution
(1.5). Our main findings can be summarized as follows (a more quantitative version will be
spelled out in Section 6).

Theorem 1.3. Let X° be the lazy version of Sinai’s random walk as described in Section 2.1,
properly rescaled as in Section 2.2. Consider the weak solution X¢ to the equation (1.4), as
well as a function h € C3. Then there exists a coupling (X°, X¢)s=o such that for allt € [0,T)
and ¢ € (0,1) we have

E* [0(X7)] — B2 [A(XP)] | < Cur()oT, (1.6)
where Cp,r(w) is a random constant which only depends on h,T and the environment w.

A few comments about Theorem 1.3 are in order:

(1) To the best of our knowledge, equation (1.6) provides the first quantitative convergence
result for the convergence of X to X¢. However, our %7 rate of convergence is not expected to

be optimal. Indeed, as the reader will see, our considerations are mostly based on rough path
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analysis applied in a Brownian context (with Hélder regularity o = $—). Moreover without
anticipating too much on technical details, let us mention that we will use controlled process
expansions of order 1 (which lead to a proper rough paths expansion whenever o > %) We

would expect our rate of convergence to be of order

. 1 1
aer?oi%)mm { (5 — a> ,a} =71

This is seen from (6.24) by taking 7 1 1/2 — a, ' T « and § | 0. However, one has to
consider higher order rough path expansions and higher order controlled processes to make
this work. Even so, at the moment it is still not clear whether 1/4 is expected to be the
optimal convergence rate.

(2) Let us also highlight the fact that (1.6) is a quenched type result. It would be more
consistent with (1.5) to obtain an annealed rate. This would depend on integrability prop-
erties of the random constant Cj r(w). We anticipate this integrability to be similar to the
one obtained in [8] for the Jacobian of rough differential equation.

(3) A rate of convergence for the law of X° in total variation, Wasserstein or other classical
distances for probability measure seems to be out of reach at this moment. Indeed, our
computations for (1.6) will involve integrations by parts, for which some derivatives of g are
needed.

(4) An important aspect of our method is the fact that we are based on our explicit
coupling between the rescaled Sinai random walks X? and the continuous process X¢. While
some other type of coupling can already be found in [17], we believe our coupling might be
interesting in its own right. It certainly allows to transfer some information from X?° to X¢.

We plan to delve deeper into those aspects in future works.

In order to prove the main Theorem 1.3, our analysis hinges on two main ingredients.
First, as detailed later in Section 3.2, a weak solution to the Brox diffusion equation (1.4)
can be apprehended through its martingale problem. This amounts to consider a family of
PDE’s of the form

Ocfi(x) — Lf(x) = ge(x), t€][0,T], z €R, (1.7)
where ¢ is a sufficiently smooth function and where the operator L€ is given by
1 1.
Lf(x) = 31"(2) — SW ) F (x). (19

Note that equation (1.7) is formal at this point, since W in (1.8) is a distribution. An
important contribution in [9] has been to give a pathwise interpretation for a mild form
of (1.7), thanks to rough paths techniques. We are inspired by this approach here. A
substantial part of our efforts in the paper consist in considering a discrete version of (1.7)
and take limits in the discretisation parameter. The intricate technical details are provided
in Section 6. One should mention at this point the interesting alternative approach in [16] to
pathwise interpretations of equation (1.4). We have decided to stick to [9] in our contribution,
since it is much more likely to be extended to multidimensional settings.

The second crucial ingredient in our strategy is related to pathwise approximations in
Donsker’s theorem. namely the discrete version of the operator (1.8) involves a rescaled
random walk increment called U° (see (2.17) for the definition). Using some classical results
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by Komlos, Major and Tusnady [21], we are able to couple U° and W. This coupling will
be the backbone of our coupling between X° and X¢. Observe that our rough path type
approach will force us to state and prove an extension of [21]| to Holder type norms. Also
observe that the methodology outlined above is not restricted to the Sinai random walk
setting. We plan to explore other applications, like branching processes and super-Brownian
motion, in the next future.

Our article is structured as follows: in Section 2 we recall basic facts about Sinai’s random
walk, we properly define its scaling and we introduce related martingale problems. We also
include estimates (some of them new) for the discrete heat kernel which are essential for the
sequel. Section 3 is dedicated to a definition of Brox’s diffusion through martingale problems
considered in the rough paths sense. In particular, we will introduce the rough path setting
employed throughout the article. In Section 4 we derive the rough paths estimates ensuring
a proper solution to the martingale problem of Section 3. While this section is not totally
new when compared with respect to [9], our simplified setting yields clearer calculations.
Moreover, Section 4 lays the ground for our convergence analysis. Section 5 delves into the
strong Donsker type approximations which are at the heart of our method. Building on the
original contribution [21], we obtain a strong approximation result in weighted Holder norms.
Eventually, Section 6 contains the bulk of our convergence estimates, combining elements
contained in the previous sections.

2. SINAI’'S RANDOM WALK

In this section we collect some basic facts about Sinai’s random walk and define its renor-
malized version on a grid whose mesh goes to 0. As anticipated in the introduction, in order
to avoid periodicity problems for random walks we will handle a lazy version of Sinai’s walk.

2.1. Preliminaries on Sinai’s walk. In this section we properly define a lazy version of
Sinai’s random walk and write some related martingale problems which turn out to be crucial
for our limiting procedure.

2.1.1. Definition of Sinai’s walk. In order to define our random walk, we first characterize
the random environment under consideration. In our case of interest, it is given by a sequence
of independent random variables and a parameter ¢ € (0,1) quantifying the randomness of
the walk.

Definition 2.1. Let € € (0,1) be a given small number which is fixed throughout the rest
of the paper. The random environment is given by a sequence of i.i.d. random variables
wt = {wl : © € Z} defined on a probability space (€2, G,P) and satisfying the following
conditions:

(i) [Ellipticity] P-almost surely each w; takes values in [, 1 — & — k] where £ is some given
fixed strictly positive number.

(ii) [Recurrence| E[log(w; /wi)] = 0 where w; £ 1 —¢ — w;.

(iii) [Regularity| The distribution of w;” has a C! density with at most finitely many algebraic
singularities.
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Remark 2.2. The third condition is only set for technical convenience in the application of
the classical KMT approximation theorem (cf. Remark 5.5 for a more detailed discussion).
Notation 2.3. In the sequel 1 — ¢ will play the role of a variance parameter. From now on
we will thus set 02 =1 —&.

Having defined our environment w, we now introduce the random walk itself.

Definition 2.4. Given the environment of Definition 2.1, one can construct a random walk
X4 (called Sinai’s random walk) on another probability space (€2, F,P*) in the following
way:

£, if y = x;
PY(Xnpy =yl Xy =2) 2wk, ify=z+1;
0, otherwise.

Notice that in the above definition and in the sequel, the superscript d stands for discrete
time parameter. The probability P“ is usually called the quenched probability, for which the
randomness of w; is fixed. Otherwise stated, under P* the process { X} : k > 0} is a Markov
chain on Z whose one-step transition matrix 7¢ can be written as

Tf(z) = wi flx +1) +wy fo = 1) +ef(@). (2.1)
We call £¢ the discrete generator of T, defined by
£ =17 —1d. (2.2)

Notice that the discrete generator is often defined as Id — T in the literature. However,
our notation (2.2) allows a better transition to the continuous setting. Furthermore, starting
from (2.1) one can easily deduce the form of the discrete generator T¢—1d. Below we state an
elementary proposition expressing this generator as a perturbed discrete Laplace operator,
which will make it easier to relate with its continuous counterpart.

Proposition 2.5. Let X? be the random walk given by Definition 2.4. Recall that the discrete
generator L of X% is given by (2.2). For f € L>(Z), we set

Alf(x) & fz+1) + fle —1) = 2f(z), Vf(z)£ %[f(%L 1) = flz =1 (2.3)

Also define the discrete potential
Uz) 2wl —w, =20 —(1—¢) =20 — 0% (2.4)

Then for f € L>(Z) we have
L) = % A () + U(a) - V(o). 25)

Proof. Recalling that £¢ = T — Id we have
Lf(z) = wf flz +1) +wy flo—1) +ef(z) - f(z)

2

Tl )+ o= )= 2f@) + (wf = 5 ) (e + 1) - fa = 1)
= T A () + (2 0?) - V(@)
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Taking the definition (2.4) of U into account, this proves our claim (2.5). O

Remark 2.6. The introduction of the “lazy” probability € is merely for technical convenience.
It avoids parity issues in discrete heat kernel estimates. Indeed, if € = 0, the second order
term of the generator £¢ corresponds to the simple random walk, whose n-step transition
probability function is only supported on either even or odd integer points (depending on the
parity of n and the starting point). This creates non-trivial issues when estimating discrete
derivatives of the transition function. Resolution of such issues requires substantially more
technical effort in the analysis. To reduce technicalities and focus more on the essential
parts, we choose to restrict ourselves to the aperiodic situation. Notice that the generator
of the simple lazy random walk with laziness parameter ¢ is

0,2

L3f(z) = 5 (fla+ 1)+ fle—1) = 2f(2)), (2.6)

where we recall that 62 =1 — €.

Remark 2.7. According to [32, Theorem 2.1.2], the reccurrence assumption in Definition 2.1
implies that X is recurrent.

2.1.2. Some martingale problems. Our analysis will hinge crucially on asymptotic proper-

ties for some martingale problems related to X¢. We will thus start by labeling the basic
martingale problem for X¢.

Proposition 2.8. Let X% be the random walk given by Definition 2.4, and consider a func-
tion f € L>®(Z). For j > 1 set

k
2y & FOX) = TG = FX) =B [f()F ] and M2 77, (27)
Then for k > 1 we have
FX3) — Zﬁﬂw M, (2.8)

where L2 is the operator introduced in (2.5) and the process M = M/ is a P¥-martingale.
Proof. We obtain relation (2.8) thanks to some elementary algebraic manipulations (we refer

e.g to |20, Equation (1.3)] for further details). Indeed, a simple telescopic sum argument
reveals that

FXH - => (f( FXE).

Jj=
We now insert terms of the form 7 f(X¢ ;) in order to get

FXE — =Y (FXDH = TU(XE )+ (T - 1d) f(XE).

j=1 j=1
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Since £¢ = T? — Id, this immediately yields

FOX) = F(XE) = chf (X)) =D (F(x) = TH(XGL)

With our notation (2.7) in mind, relation (2.8) is now easily proved. The fact that M is a
martingale is also readily checked. ([l

In the sequel we will need to introduce some space-time stochastic equations, for which
additional notation has to be introduced.

Notation 2.9. In the remainder of the article the subscripts in V,,, T etc. denote the variable
concerned by the operator at stake (generally either a time or space variable). For instance,
the discrete time gradient of a function f € L>°(N x Z) is written as

Vaof(k,x) = f(k+1,2) — f(k,x). (2.9)

With Notation 2.9 in hand, we now define a space-time martingale problem related to Sinai’s
random walk.

Proposition 2.10. Let X¢ be the random walk given by Definition 2.4, and consider a
function f € L*°(N x Z). For j > 1 we set

k
Z; 2 G- 1L,X TG - 1,XE) and M2 7 (2.10)

Recall that the discrete generator L% of X? is given by (2.2). Then for k > 1 we have

k—1

Fl, XE) = £(0,X8) = > [L2F (1, X = Vi f(1, X)) = My, (2.11)

1=0
and the process M = M/ is a P¥-martingale.
Proof. Since T? defined by (2.1) is the transition matrix of our random walk, for any positive

integer k we have T4 f(k, X¢ |) = E,[f(k, X{)|F;_1]. Hence the time increment Z; defined
by (2.10) can be written as

Zy=f(G -1, X — B [ — 1, XH|F;],

from which it is easily deduced that M is a martingale. Moreover, a simple telescoping sum
argument allows us to write

flk, X5 — £(0,X8) =

M»

],Xd flj— 1,X§_1)} . (2.12)

]=1

For any j € {1,...,k}, we decompose the terms on the right hand side of (2.12) as

FGXH—fG-1LXE ) =[fU. XN —fG-LXD]+[fG-1,XH - fi-1,X)].
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Therefore, recalling Notation 2.9 together with the definitions (2.10) and (2.2), we obtain

f(]7XJd) - f(] - 17X]('171)
= an(j - 17X]d) + Zj + [Tdf(j - 17X]('ifl) - f(] - 17X]dfl)]
=Z;+ LIf(G— 1, X))+ Vaf(G — 1, X7).

Plugging this information into (2.12) and setting [ = j — 1 in the sum, this yields our
claim (2.11). 0

2.2. Rescaled version of Sinai’s walk. In this section, we shall describe the dynamics of
Sinai’s walk when this process is accelerated in time and rescaled in space. This will generate
a process which should converge to the Brownian motion in a Brownian environment. In
the sequel, we will simply use 6 > 0 to denote the generic scaling parameter, and one would
like to rescale X¢ according to 6. However, a naive approach to this rescaling procedure
yields a convergence to a standard Brownian motion as 6 — 0 (see e.g. [24]). In order to get
convergence to the Brownian motion in a Brownian environment, we must also renormalize
the environment w in a proper way. The precise renormalization procedure is specified as
follows, starting with some of the heuristic steps in [27]. Namely going back at least to [28],
the analysis of X relies on a potential V¢ : Z — R which can be expressed as

V()= ) log(&),
J€[0,2]

where each random variable &, is defined by

0% —wi W,

The potential V' is used e.g. to express hitting probabilities for X<, see [32]. Now we can
easily invert (2.13) and write

2 2
+ o o

T T ] ek 1 + elog(wz /wi)

w (2.14)

The scaling which is given below is then based on a scaling of &, which enables to have each
w; close to 0% /2.

Definition 2.11. Let w™ = {w} : © € Z} be a given random environment that satisfies
Definition 2.1. Recall that w, =1 — ¢ — w = 0% — W, where ¢ = 1 — ¢? is the given fixed
“lazy” probability. For each fixed § > 0, we define a rescaled version of w™ on the grid §Z by

2

wid & - \/Sl(ijg(w_/é/er/é) and  w;? 2 o0?—wl? forall z€dZ (2.15)
e x x

We now describe a rescaled random walk in the rescaled environment given by (2.15) in a
way which mimics Definition 2.4
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Definition 2.12. Given the rescaled environment in Definition 2.11 we define a Sinai type
random walk X° on 2, F,P¥) with state space 6Z by specifying the transitions

A ) g, if y = x;
IP’W(Xngl =y XS =2) 2 w, ify=x+£4;
0, otherwise.

Our next aim is to obtain a convenient expression for the generator of the walk X?. This
is achieved in the lemma below.

Lemma 2.13. Let X° be the walk introduced in Definition 2.12. We introduce a rescaled
discrete Laplace operator L5 and a potential U° on 07 as
2

L2f(x) & 255 [f (e +0) + f(x = 6) - 2f (). (2.16)
Ul(2) 2 wh® —w;® = 2w — 62 (2.17)

Also consider the twisted gradient @‘; defined by

VL) 2 o (a4 )~ [l =) = 3 (VAf@) + Vof @ =9),  (218)
where VO f is defined on 0Z, by
Vif(r) = 5 (flo+0) - f(x)). (219)

Then the generator L° of X% admits the eTpression

£0f(r) = £3f(2) + $0°(2) - V1) (2.20)

Proof. The transition operator T° for X9 is given, for f : 0Z — R as
T’ f(x) = Wi f(z 4 0) + w,* f(x — 0) + ef (). (2.21)

Thus, thanks to the relation 02 = 1 — ¢ we have

() = 55 (T(@) ~ [@) = 55 (@ F (a4 0) 4+ wsf (e —0) —0*f(2)) . (222)
Therefore resorting to relation (2.16) we can recast (2.22) as
2

£1w) = Lafe) + 55 (w30 = G ) Sa+0) + 5 (w8 = 5 ) fla =)

Now recalling from (2.15) that w;° = 0% — w}*° we can write

£fa) = 5w+ 5 (w27 = G ) 5 (et 0) = flo =),

With the definition (2.18) of V? f in mind, our claim (2.20) is now easily proved. O

Let us also introduce the time partition and the related discrete time derivative we will
deal with in the sequel.
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Definition 2.14. Let T" > 0 be a fixed time horizon. In the remainder of the paper we
consider Ils = {tg,...,tx} a division of the interval [0,T] with step size 6%, where N =
|T/6%]. A generic element of this partition will be denoted by ¢; = jé*. We also introduce
the rescaled discrete gradient of a function f € L*(N x Z), given as follows for ¢; € II; and
T € 0L,

1
v?ftj (l;) £ 6_2(ftj+1 (37) - ftj (ZE)) (223)
Finally we introduce a notation for discrete intervals, namely for s,¢ € [0,7] we write
t; € [s,t] for t; € [s,t] NIL;. We will also write (s, t] for t; € (s, ] N 1Ls.
Let us now define the rescaled random walks which will feature in our coupling procedure.

Definition 2.15. Throughout the paper, we designate by X% = {X]‘?;j > 1} the random
walk on 67Z with transition 7° given by (2.21). Then the time-accelerated random walk X°
considered below is given by

Xf = Xft/(pj = ZX?]‘[tj»thﬁl)(t)? (224)
>0
where we have used the notation of Definition 2.14 for the partition Il = {to,...,tx}. The
filtration related to the process X° is then given by {Ej’é :t; € I}, with
Fl 2 o{X) k< j}=0{X] 1 k<j} (2.25)
and where the superscript w in ]_—25,5 means that the random environment w is frozen.

Remark 2.16. The rescaling of the random environment given in Definition 2.11 is con-
sistent with the one in [27]| for the corresponding weak convergence result. Indeed, with
relations (2.13) and (2.17) in mind, it is readily checked that

. 2
Var(Ug) = Var (0'2 (m — 1)> = 0'4 Var(Zg)J (226)
where we have set
Z‘S _ 1— 6\/351/5

Now a first order approximation of Z when § — 0 is given by

Vo
78~ ks (2.27)

Plugging this information into (2.26) we obtain
Var(U?) o 6,

which is a key constraint for proving convergence under the current perspective (cf. Sec-
tion 2.4 below for a more detailed explanation on this point).

In the context of Definition 2.15, the martingale problem (2.8) can be rescaled on the grid
07Z. We label this property in the proposition below for further use.
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Proposition 2.17. For the random environment outlined in Definition 2.11 and ¢ € (0,1),
let X? be the rescaled random walk introduced in Definition 2.15. Consider a function f €
L>®(0Z). Then for all s,t € [0,T], we have
FXD) = F(X) = 6* Y LOF(X]) = M) — M, (2.28)
tjE[[s,tD
where the process M° = M/ is a P“-martingale with respect to the filtration {.7:;:’5} intro-
duced in (2.25) given by
MYE ST Z) with Z) 2 f(X)) - T F(X) ).
t;€(0,t]
Similarly to Proposition 2.10, we can also define a space-time renormalized discrete mar-

tingale problem related to X?°. Its proof is very similar to the proof of Proposition 2.10 and
is thus omitted for sake of conciseness.

Proposition 2.18. Recalling the notation of Definition 2.14 and Definition 2.15, let X°
be given by (2.24) and consider f € L*([0,T] x Z). Then for any s,t € [0,T] and any
d € (0,1), we have

FUXP) = (X8 = S0 % [ L7, (XD) = Vify (XE,)| = MF = L, (2.29)
t;€[s,t)
where M° is a P¥-martingale with respect to the filtration {ffj’a} given by
M)A ST Z) with Z) & f (X)) =T fi, (XD ). (2.30)

t;€(0,t]

We close this section by giving a representation of the martingale M° which will be useful
in order to take limits to the Brownian motion in Brownian environment.

Proposition 2.19. Let {Z;S ;7 = 1} be the sequence of random variables defined by (2.30).

We introduce {CJ‘S :j =1} and {ijé :J = 1} sequences of i.i.d. random variables defined by
G = Lusevicyzy — Lusev12) (2.31)
and
z,0 A
G = Lt sevicwt®/a—ey — Lo, se v swi®j1—e)p (2.32)
where {(U;,V;) : j = 1} are independent copies of uniform random variables on [0, 1]. Then
the follow@ng relatzon holds true in distribution.:
(ftm( 5 0) = fun(X] = 0)) - G (2.33)

5 (o X5 4 0) = (X5 - 0)) - (G - ) — B [655 - 817

1
5 (P X8 +0) = 2,0 (X0) + firn (5] = 9)) - ((G0)” — B [ (1)1 )
where © £ Xf]_ and Fi; 1s a slight variation of (225) defined by
Fi; £ U{f,‘j,(,f’é k< j}.
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Proof. We invoke a generalization of a discrete It formula stated in [12]. Namely if {S;,;¢; =
j6°} is a random walk on 6Z such that S, ., = S, + &, with &, € {—0,0,6}, then for
f:0°N x 6Z — R we have

Jj+1

1
ftj+1 (Stj+1) - ftj(Stj) = 2_5 (ftj+1 (Stj + 6) - ftj+1 (S 5)) (St]+l - Sg) (234)
1
252 (ft1+1(5tj + 1) + ft]+1(stj ) 2ftj+1(stj)) (Stj+1 - Stj)Q + ftj+1(Stj) - ftj (Stj)‘
Moreover, having in mind the sequences (° and (9 introduced in (2.31) and (2.32) respec-
tively, X° admits the following representation:

X9 (d)

t+1

X5 +6- C+1»

Since the difference Xf+1 — ij takes values in {—4,0,0}, one can apply (2.34) in order to
get
P ) = KE) = o XE) = 5,
+ s (Fun (X5 46) = fi (X5 — ) (5-¢20)
+ % (ftm(ij +0) = 2fu, 0 (XD) + fopn (X7, — 6)) (5 : Cffl>2. (2.35)

We now evaluate 7° Tt (ij ), for which we start from the simple decomposition

T fin(X5) = Bu|[fynlX7,,)I7]
= B S0 (X))~ (XOIF] + £, (X7).
Therefore, taking expected values in (2.35) we end up with
1
T foy(X5) = 5 (Fopea (X5 4+ 0) = Fi,s (X3 = 8)) B [0
1
+ 3 |:ftj+1 (Xf + 5) - 2ftj+1 (Xf> + ftj+1 (Xti - 5)] Ew {( J+1> |"T_;f :|

+ fon(XD) = F (XD + f,(X7). (2.36)

Recall from (2.30) that Z2 o = Ty (X g+1) T‘;fth(ij). Hence subtracting (2.36) from
relation (2.35), we get

=5 (a0 40) — £ (3] —0) - (5~ B[R (237)
g (o (X8 )= 26, X8) + 0068 = 9) - ((675)” -2 [ (2) 1] )

In order to conclude, we first observe that

(G)? = ()™ (2.38)
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Indeed, by definition we have

20 =1 1
( j+1) = L ii>evin<y2y + Lujasevii>1/2y
— 2L sevin<y Luasevias12 = L se-

The same relation holds for (CffI)Q. Therefore, (2.38) holds. By adding and subtracting

(21 — Eu[C0, | F,] to the right hand side of (2.37), and using the relation (2.38), we easily

obtain our claim (2.33). O

Remark 2.20. On the right hand side of (2.33), we will see in the next sections that the limit
of the sum (over j) of the first term yields a continuous martingale (3.16) (which will be a
stochastic integral with respect to a Brownian motion B), while the limit of the sum of the
second and third terms is zero.

2.3. Mild formulation of a discrete PDE. Equation (2.29) involves the operator V°— L£?.
Related to this fact, for a function g € L*°([0,T] x 6Z) one would like to give a meaning
and solve the following forward discrete partial differential equation,

fot].(x) - Eift]-(x) = Ot (z). (2.39)

where we recall that V? is given by (2.23). As a preliminary step, we introduce the associated
symmetric random walk and the discrete heat kernel as follows.

Definition 2.21. Recall that £° was the operator defined for z € 0Z by (2.16). We consider
the renormalized lazy symmetric random walk Y?, whose generator is £°. We will denote
the corresponding renormalized discrete heat kernel by p?. Due to the homogeneity of Y7,
the kernel p° is defined on [0, 7] x 6Z as the transition function of Y, namely

po(a) £ P (Y, =YY =0). (2.40)
The corresponding transition operator on L?(§7Z) is denoted by P°.
Remark 2.22. In a non-rescaled situation, corresponding to 6 = 1 in Definition 2.21, we shall
use a superscript d as in Section 2.1. Therefore we shall consider objects of the form Y, p?,
P L% or V2. Tt should be noticed that p? can be expressed in terms of p? in the following

way:
pi(x) = pls(x/d), (s,x) € 6°Z x IZ. (2.41)

We would now like to express the solution of equation (2.39) in terms of a suitable fixed
point problem which allows us to compare with the continuum limit. To this aim, we derive
the mild formulation of our discrete partial differential equation below.

Proposition 2.23. Let £° be the operator defined by (2.21) and consider g € L*°([[0,T] x
07). Recall that the discrete heat kernel p° is introduced in (2.40). Then the mild form of
equation (2.39) can be written for x € 67 as

ftj (.Z') = th (x) + th (l'), (242)
where the function G is given for x € 07 by:

Gg®%=§jﬁxx—whw%+ﬁﬁi§:£jldx—yMMw~

YyESZL =0 y€edZ
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In equation (2.42) we also have that J;,(x) can be expressed as below (recall that the twisted
gradient @g is defined by relation (2.18)):

i, (x 52 S pl =0 W)V, (), (2.43)

(=0 y€edZ

where we recall that U°(y) is given by (2.17).

Proof. We divide the proof into several steps. For the sake of clarity, we will first derive the
mild formulation in a non-rescaled case (namely § = 1). Specifically, recalling the notation U
introduced in (2.4) as well as Proposition 2.5 and Remark 2.22, we can recast equation (2.39)
in the non-rescaled case as

Vife(@) = L2 fu(z) + U(x) Vafil@) + gil(@), (2.44)

where fp is given as an initial condition. Note that existence and uniqueness for equa-
tion (2.44) is trivial. In fact, by the definition of Vy, one can easily build up the solution
recursively from the initial data fy. We start by deriving the mild formulation for (2.44).

Step 1: Mild formulation for the free equation. Let us first consider the standard homoge-
neous free equation:

V{F(r) = LEF(z), with initial condition Fy(z) = fo(). (2.45)

Recalling our Remark 2.22 about the symmetric random walk Y¢ on Z and its transition
operator P?, the solution to (2.45) is given by

F(x) = P fo(z) = B[ /(Y)Y = a]. (2.46)

Although relation (2.46) is very classical, we now proceed to its verification due to similar
manipulations to be performed later in the proof. To this aim, let F¥ be the space-time
function defined by the right hand side of (2.46). According to the Markov property, we have

Fk+1 Zp1 r—y f0<Yk)|Yd—y}
= cF(2) S(F(a+1)+ Fl(z—1)).

Therefore,
2
o _
Vb (@) = Fi(z) = Fi(w) = S AL () = LoF ().

Step 2: Mild formulation of an inhomogeneous PDE. Next we consider a function g defined
on N x Z and the standard inhomogeneous equation

{kam) — LF(x) + gi(w),

Fyo(x) = fo(z). (2.47)
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One can derive an expression for F in terms of F'# thanks to Duhamel’s principle. Namely
we claim that F' can be written as

k—1
Fi(x) = Fi' (@) + ) Bulg; (Vi )IYy = 2, (2.48)
=0
where we have used the convention Zj_:lo £ (. Indeed, for F' defined by (2.48) we have
k—1
ViFi() = Vi (2) + gole) + ) Bulg; (Vi) — (V)Y = 4], (2.49)
=0

Hence recalling the notation for the transition operator P? in Remark 2.22 as well as equa-
tion (2.45) for F# we get

T
L

ViFi(r) = LoF (2) + go(x) + Y (P = 1d) P,y g;(x) (2.50)

<.
Il
o

Now thanks to the fact that P¢ — Id = £ and resorting to the definition of F in the right
hand side of (2.48), we end up with

Vi) = £ )+ gule) + Y Lo, (VLY =
= LOF(2) + gr(2). (2.51)

Our claim (2.48) is now achieved.

Step 3: Mild formulation for the PDE in a random environment. Finally, we consider the
original equation (2.44), whose solution is called f. Also recall that F’ designates the solution
0 (2.47), and we set

Op(z) = Fi(z) — falz). (2.52)
Subtracting the right hand side of (2.47) from the right hand side of (2.44), it follows that
Py(-) =0 and
Vi® = Vi F — Vif = LD —U(z) -V, f.
The above equation is of the form (2.47) with g = —U -V, f and f, = 0. Therefore, applying
(2.48) with F = (0 we get the following expression for ®:

ZE Yk 1 j @:ij(ykdflfj)pfod:m]' (2.53)

We now gather relations (2.48), (2.52) and (2.53) in order to get the following expression for
the solution f to (2.44),

k—1
i) = B oV = 2]+ Bulg; (V)Y = 2]
j=0
k—1
+ ZEw[U(ka—l—j) : @:cfj(ykd—1—j>|%d = z]. (2.54)

J=0
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Notice that in (2.54) we have chosen to write the formula in terms of the symmetric random
walk Y. Recalling Definition 2.21 and Remark 2.22 for the symmetric random walk kernel
p?, one can recast (2.54) as

:Zpi(x—y)fo(y) + Zzpk 1— ] Y)9;(y)

YEL j=0 y€eZ

T ZZm 1@ =9 U@)Vaf(y), (2.55)

71=0 yeZ

Observe that since p? is finitely supported, the sums over y € Z in (2.55) are in fact finite
sums. Otherwise stated, we have proved (2.42) for § = 1.

Step 4: Rescaling the equation. Now let us move to the rescaled picture and write down
the solution to the corresponding discrete PDE. We will also illustrate the fact that Defi-
nition 2.11 is the suitable rescaling for the random environment. As in Definition 2.11 and
Definition 2.14, we use t; to denote a generic point in 82N and z to denote a generic point in
8Z. We also write £, L7, @g and V¢ for the rescaled operators respectively given by (2.21),
(2.16), (2.18) and (2.23). Recall that we obtained the relation (2.20) connecting £°, £° and
v

With relation (2.20) in hand and given an initial condition fj, we are now interested in
the following rescaled PDE:

Vi fuo(2) = L fu (@) + 9o, (2). (2.56)

Let us start by mimicking Step 1 and Step 2 in the rescaled picture. First the solution to
the homogeneous free equation is now given by

F?(x) = B[ fo (Y)Y = al,

173

where Y is the rescaled random walk introduced in Definition 2.21. In addition, the solution
to the standard inhomogeneous equation corresponding to (2.56) needs to be adjusted as

k—1
F) (x) = FiP(x) +6° ) Eulg, (V2 )IYS =), (2.57)
7=0

With respect to (2.48), the appearance of the factor §2 in (2.57) is easily checked. Indeed,
let F} (x) be defined by equation (2.57). Then we have

) (@) = Fy () = B[ () = B (2) + 6y, (2)

tht1
k—1

023 (Bulgn, (V) )IVE = ] = Bufgn, (Y, )V =) . (258)

=0
Moreover, similarly to (2.50) and (2.51), we obtain
Eulge, (Ve IY5 = a] = Eulg, (Y, 1) )Y0 = 2] = 6 LiBulge, (Y, )IYs =a].  (2.59)
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Therefore, plugging (2.59) into (2.58) we have

k-1
F) (z) = F)(x) = F; (2) — Fi° () + 8%y, (2) + 6* > LBy [g0, (V7)Y = 2],
§=0

Since V¢ is defined by (2.23), we thus get
ViE, () = ViF,(2) + gy (+ +522£5 olon (V9 )1Yg = al.
On the other hand, if F? is given by (2.57) we also have
LOF) (x) = LOFM (x) + 62 Zcé VS Y =al.

Consequently, similarly to (2.51) we have proved that F° defined by (2.57) solves the non
homogeneous equation

Vi F (2) = Ly (2) + o (2).

Starting from the above relation, we let the patient reader check (along the same lines going
from (2.48) to (2.55)) that the solution f to (2.39) is expressed in the mild form by

fu(x Zptk y)foly) + (522 Zptk =7 )gt (y)

YyEZL 7=0 yedzZ
k-1
+ 0> > P (@ =y UV ().
=0 yeéZ
We have thus shown relation (2.42), which finishes the proof. U

In order to connect the mild equation (2.42) with its continuous counterpart, it will be
beneficial to proceed to an integration by parts procedure. This is summarized in the next
proposition.

Proposition 2.24. Under the setting and conditions of Proposition 2.23, let J be the term
defined by (2.43). For an arbitrary a € 0Z and y € 0Z also set

L(a,y) 2 > U)Vifil2), (2.60)

z€[a+26,y]
where we recall that U° is defined by (2.17). Then the following holds true:

(i) An alternative way to write J;,(x) is given by

o 52 Z Z vﬂ?pt —1— te —0— y) Iti(a’ y) (2.61)

(=0 y€eZ
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(ii) Let f be the solution of the mild equation (2.42). The equation governing the derivative
Vo fi,(x) can be written for x € 0Z as

Ve fi () = VOG,, (x) + &2 Z VIR =) T (a,y), (2.62)

(=0 y€edZ
where for ¢ € L>(JZ) we define

1
Vie(r) £ 5 (p(z +0) + oz = 0) = 20(x)) -
(iii) We also obtain an equation for the twisted derivative @g f of f, namely:
Vi fi, (@) = V3G, (z) + 6 Z > VIV (=0 = y)T) (a,y). (2.63)
(=0 yeoz

Proof. We start from the expression (2.43) for J and perform a discrete integration by parts.
To this aim, we first notice from (2.60) that

T} (a,y) = Ip,(a,y = 6) = U (y) Vi fu, (1)

Hence using the fact that p?(x, -) is finitely supported, we can rewrite the second sum in (2.43)
as

Q= Y ol =y (T(ay) - T (a,y—0))

yEIZ
= > )@=y Tay) = > Pl (@ =9I (a,y —0).
YyESZ YyESZ

Therefore resorting to an elementary change of variables in the right hand side above, we
end up with

Q= ) (pfj_l_tl (x—y) =),y (x =0 y)) 7, (a,y)

yESZ
= 0 Vil (=0T (a,y).
yeOZL

Plugging this identity into (2.43) we have proved our claim (2.61). Relations (2.62) and
(2.63) are then easily obtained by taking discrete derivatives on both sides of (2.61), which
ends the proof of Proposition 2.24. O

2.4. Heuristic considerations and rescaling. With Proposition 2.24 in hand, let us
briefly outline the coupling strategy at the heart of our considerations. Specifically, one
can gather Propositions 2.23 and 2.24 and write the mild form of equation (2.39) as

fiy (@) = Gy (2) + G} (2) + J, (@), (2.64)
where

- Z pfj(x =) fo(y), G2 = ¢’ Z Z Dy; - (T = Y) g, (y),

YEOL (=0 yedZ
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and where the term .J; () is defined by (2.61). Let us now figure out heuristically how
relation (2.64) will converge to a continuous limit. First of all, the local central limit theorem
(see e.g. [25]) implies formally that if (x5) € 0Z converges to € R then we have

o
lim gpf(fﬂa) = pi(), (2.65)

where p° is introduced in (2.40). Also note that in (2.65), p designates the heat kernel on R
(with variance 0% = 1 — ¢) given by
1 22

pt(x) = \/meim- (266)

Now let us recast the term G! in (2.64) as

L) =03 5l (e~ u) (o) (267)

YEOZL

Using relation (2.65) and convergence of Riemann sum considerations, it is easily conceived
that

lim G (z) = /R prlx — ) fol)dy. (2.68)

6—0 tj

In the same way we expect that

lim G2 (z / /pt s(z —v)gs(y)dy ds. (2.69)
d—0 3

In order to derive the heuristics about the limiting behavior of the term J in (2.64), let
us analyse the sum Z?(z,y) defined by (2.60). This will also yield an explanation for our
renormalisation of the environment w. Indeed, the term V2 f;(z) in the definition of Z9(x, y)
is expected to converge to 0, f;(z). Thus we also expect to have (whenever t; — t)

() <l Y DRV = [ aLE@awe, @

z€[a+24,y]

where TW(z) is a Brownian motion on R with suitable variance 72. Now if we want (2.70) to
hold, this imposes that Var(U°(z)) is of order § for all z € 0Z. According to Remark 2.16,
we are led to renormalization of the environment w given by Definition 2.11.

Let us summarize our computations so far. If we gather (2.68), (2.69) and (2.70), w.
expect the discrete equation (2.64) to converge to the PDE given in (3.9) below. Our aim
is to justify this assertion in the following sections, and provide a rate of convergence in the
limiting procedure thanks to a coupling method.

2.5. Estimates for the discrete heat kernel. In Section 2.3 we have defined the simple
random walk Y related to the generator £° in Definition 2.21. In this section we review some
notation about the transition kernels for Y° and state some useful Gaussian type bounds.



RANDOM WALKS IN RANDOM ENVIRONMENT 21

Recall that Y4 = {Y¢ : n € N} is the symmetric random walk with one-step transition
density given by

g, ifl =k;
Py, =Y =k) =55 ifl=k+];
0, otherwise.

Noticing that Y? is space time-homogeneous, the n-step transition function of Y¢ is denoted
as

pa(k) 2 P(Y, = k[Yy' = 0). (2.71)
One can also view Y4 = Y& + & + -+ + &,, where {& : i > 1} is an ii.d. sequence with
distribution X
—€

P =0)=e and P& =1)=P&=-1)= 9
Note that the variance of & is Var[§] = 1 — & = o2 Given § > 0, we shall consider the
following rescaled version of the kernel p? on the space-time grid 62N x 6Z, defined by

. 1 1

where p? is introduced in (2.41). We also recall that p;(x) denotes the continuous heat kernel
with variance 02 =1 —¢:
A 1 ;

() \/me*m, t>0,z€R. (2.73)

Let us summarize some notation about discrete spatial gradients on the grid ¢Z for § > 0.
First we have set, for x € §Z,

Vi) = 5 (a4 0) — f@), and VifG) = o (fe+ )~ =) (270

For higher orderé rescaled discrete gradients, we have used the following conventions:
VIS@) = s (fe+0)+ fe - 0) —2f(x) (275)
VI S) = VIVE (@) = 5 (V¥ +0) - V2 () (2.76)
VEf(r) = - (f(r+26) — Af(x+ )+ 6f(x) — Af(x — 6) + flx —28)) (277)

54
Also recall from (2.23) that the rescaled discrete time gradient V¢ is given on 62N x §Z by
1
vfftj (ZL’) £ 5_2<ftj+1 (.T) - ft](x))

With this series of notation in hand, let us highlight the fact that the discrete heat kernel p°
displayed in (2.72) satisfies the discrete heat equation

2
o o R =5 ~
Vip; (x) = 5 V2P (x) = L3p) (), (2.78)

where the operator £ is introduced in (2.16). We now state a quantitative local central
limit theorem (CLT) as well as a uniform bound on the discrete kernel p°.
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Theorem 2.25 (cf. [25]). Recall that p(k) is the discrete kernel of Y¢ defined by (2.71), and
pi(z) is the Gaussian kernel with variance 0> = 1 — ¢ defined by (2.73). Then for m = 2,4
there exists a constant C, . > 0 depending only on m and ¢, such that

C
m, d m m,e

The following uniform Gaussian upper bound for the discrete kernel p? is classical. The
proof for the cases when m = 0,1 is essentially contained in [15, Theorem 5.1]. However,
to our best knowledge the case for higher derivatives does not seem to be easily available in
the literature and the extension of the argument in [15] is not entirely straightforward. We
thus provide an independent proof based on the local CLT and the Markov property, which
works for any order of spatial derivatives V™.

Proposition 2.26. For § > 0, let p° the kernel defined by (2.72). Consider the gradient
V29 given by (2.75), as well as the gradient V4° introduced in (2.77). Then for m = 2,4
there exist two universal constant Cy,Cy > 0 depending only on m and the lazy parameter ¢,
such that

C 2
m,5 /\(5 1 —C u
V™5 ()] < e (2.80)
for all (t,u) € 6°N x §Z with t > 0. Fort =0, the bound (2.80) becomes
6 C
A% ’5Pg(u)’ < 5m—i1 Tjui<sy- (2.81)

Proof. For t = 0 we have pj(z) = 6 '1{,—q;. Hence the bound (2.81) derives immediately
from the definitions (2.75)-(2.77). In what follows we thus focus on proving (2.80).

Step 1: Strategy. In order to prove (2.80), fix m = 2 for sake of clarity (the case m = 4 is
treated very similarly). Writing explicitly the definition (2.75) of V™° and resorting to the
expression (2.72) for p¢, we let the reader check that (2.80) is equivalent to the non rescaled
version

m a —bk?/n
VPl (k)] gme /n o forall n>1 and k€ Z, (2.82)

where V™ is defined by (2.75) with 6 = 1 and p? is defined in (2.71). In (2.82), the numbers
a,b are universal constants depending only on m and . The choice of a,b will be clear in
the course of the proof. We are going to prove (2.82) by induction on n. The main idea
is that the quantitative local CLT (cf. Theorem 2.25) easily yields (2.82) for the regime
{k : |k|?> < n}. The other regime is then handled by induction and the Markov property. In
what follows, the notation Cgyypseript denotes a constant depending only on the parameters
specified in the subscript whose value may change from line to line.

Step 2: Case |k*| < An. To begin with, by applying the triangle inequality to (2.79) we
obtain that

Chn.c
VPl (k)| < | V™ pa(k)| + iy forall n>1 and k€Z. (2.83)

By the explicit expression (2.73) of p,(k), it is easy to show that

Crme _ 2
V" p (k)| < < 3% forall n>1 and k€ Z. (2.84)

= pm41)/2
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Now let A be a positive universal constant whose value will be specified later on. According
to (2.83) and (2.84), we arrive at the following estimate:

2
|V pi(k)| < Omed —sb g an n,k such that |k?| < An. (2.85)

m+1)72€

This proves (2.82) for |k?| < An.

Step 3: Inductive procedure. Let Cp,.p and o? be the constants in (2.85). Next, we are
going to prove (2.82) by induction on n with suitably chosen constants

1
a > Cm,e,/\; and b < ﬁ (286)
Note that if the estimate (2.82) is valid, it remains true for larger a and smaller b. We first
fix ag, by to be such that (2.82) holds (with a = ag,b = by) when n =1 for all k € Z. Since

V™pd is finitely supported, the existence of such numbers is obvious. We will define
a = ap V Cm,e,A7

where Cy, - is the constant appearing in (2.85) and the choices of b, A will be clear later
on. Now suppose that the estimate (2.82) holds for fixed n and all k& € Z. To establish
the induction step, we only need to consider the case when |k|?> > A(n + 1) (the other case
is proved in (2.85) with the presumed constraint (2.86) for a,b). By applying V™ to the
Markov property, we see that

1—¢
Vmpn-l—l (k> = 9
According to the induction hypothesis, we have

1—c¢ a _b(k=1)2 a _ b(k+1)?
9 pmrn2¢ " + pmrn2¢ " t+e- mr1)2¢

+1

a 1 2 1l—¢/ sx-12? _ b(k+1)? _ b2
=mrnmoe Uty 2 \& " e ) TEee )

bk? /n+1

(Vb — 1)+ VTpu(k+ 1)) + eV, (k).

bk?2

V" Pura(F)] <

Multiplying both sides above by e and performing some elementary manipulations on

the exponential functions, it follows that
m bk a
Ve B < Gy - P

where we have set
+1

1\ % 2 2bk
D, = (1 + ﬁ) e D ((1 — e)e’% cosh (7> + 5) . (2.87)

In order to complete the induction step, the crucial point is thus to prove that one can choose
b and A so that the factor D,, satisfies

D, <1, forall |k]*>A(n+1). (2.88)

We now proceed to prove (2.88).
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Step 4: Bounding D,,. In order to prove (2.88), it is important to note that we are working
with the regime |k|*> > A(n + 1). Another basic observation is that V™p,, (k) is only non-
zero when |k| < C,,n (since the one-step transition probabilities are finitely supported). As
a result, the effective k-region under consideration is

Aln+1) <k < C2n” (2.89)

We also recall the following elementary inequalities to be used later on:

m-+1

1 2 C! 1
(1+—) <1+ Vn>1; e’x<1—§x; coshr <14+ 2* Vz€0,9], (2.90)
n n

where 7 is some universal constant. Now we choose b to satisfy
1 1

202 " C2, /172C'm " 16’
where C,, is the constant appearing in (2.89) and ag, by are defined after (2.86). Then taking
relations (2.86) and (2.91) into account we know that

bk? 2b|k|

n(n+ 1)

Therefore, the inequalities in (2.90) imply that

<mn, forall |kl <Cpyn.

m—+1

1Y) 2 2 2bk
D, < (1 + —) . e~ cosh <—)
n n

(14—2%2) (1—-%5125235) (1+—§§§f> , (2.92)

whenever k satisfies |k| < C,,n. To analyze the last expression, we first note that

N

1 bk? 4b% k2 1 k? k2
1l 1+ — ) <1 -b| 20— —4b— | . 2.93
< 2n(n+1)) ( * n? ) (2n(n+1) n2) (2.93)
Since b < 1/16, it is elementary to see that
K1 k2
M < -— (2.94)

n? 4n(n+1)
Plugging (2.94) back to (2.93) and then into (2.92), we end up with

Dn<(1+%%><l—igé%;5). (2.95)

In addition, we have k* > A(n + 1). Therefore we can further bound the right hand side

of (2.95) as
!
D, < <1+%) (1_%) <1_<%_q’n) l
n 4dn 4 n

It is now clear that we have
bA
D, <1, aslong as ik c. (2.96)

Consequently, with such choices of b, A we conclude that our claim (2.88) holds true for n+1
if we assume that it holds for n > 1.
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Step 4: Conclusion. The bound (2.88) we have just proved allows to complete the induction
step for (2.80). To summarize the above procedure, we highlight the following facts:

(i) We first choose ag, by to obtain the initial step n = 1. Next, we choose b to satisfy (2.91).
Then we choose A to satisfy (2.96). Finally, we choose a = ag V Cy,c a.

(ii) With the above constants fixed, for k¥* < A(n+1) our desired inequality (2.80) is ensured
by (2.84).

(iii) For k? > A(n + 1), our induction procedure yields (2.80).
The proof of the proposition is thus complete. O

Remark 2.27. Proposition 2.26 and Theorem 2.25 of course hold for other type of discrete
derivatives (e.g. forward differences) for all m € N. Here we have chosen a formulation that
is directly applicable to our situation.

3. BROWNIAN MOTION IN BROWNIAN ENVIRONMENT

In this section, we recall some basic facts about the continuous analogue of the random
walk X? given by Definition (2.4). This classical object is called Broz diffusion (or Brownian
motion with Brownian potential), denoted here by X¢ (in the sequel, the superscript ¢ stands
for continuous time parameter). We will recall some important definitions concerning X°¢
in Section 3.1. Then we will introduce a martingale problem related to X¢ in Section 3.2.
Eventually we introduce some rough paths metric which allows to get a pathwise meaning
to the martingale problem in Section 3.3. Throughout this section we will use the following
notation.

Notation 3.1. For a smooth enough function f: R — R, we set
Vef=0,f, and A°f=092F.

3.1. Definition of the Brox diffusion. Let WW be a one-dimensional, two-sided Brownian
motion defined on a probability space (€2, G, P) with suitable variance 72 (the exact value of
72 is specified by (5.8) below). The process X¢ can be seen as the solution to the following
formal stochastic differential equation:

1.

where B is a one-dimensional standard Brownian motion independent of WW. To be consistent
with the discrete Definition 2.4, we will assume that B is defined on a probability space
(Q,]—" ,IP) which is independent of (£2,G,P). For our later purpose of comparison with the
discrete case, throughout the rest we always assume that B has variance 02 = 1 — ¢ (i.e.
with generator %QAC = %28253)) where ¢ is the parameter introduced in Definition 2.1.

Since the drift W in (3.1) is a distribution, this equation does not admit a strong solution.
Therefore a more standard way to introduce the process X¢ is to define it as a Feller diffusion
with the following generator:

2 1.

Lof(x) = %Qew@/*am (e*W@)/Uan f) (x) = %AC fa) = W @) Vf (@), (3.2)
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where we observe that the second expression is still formal. Also observe that X¢ can be
seen as a Markov process whose Dirichlet form on L2(R, ), with p(dz) = e W@/ dz is
given by

£(f) = 0* / V@I, () de, (3.3)

and we notice that expressions like (3.3) now make sense even if W is not differentiable.

The definition of X¢ as a Markov process is a well established fact. Below we summarize
some classical results in this direction, which can be found e.g in [13]| (also see references
therein).

Proposition 3.2. Let W be a one-dimensional two-sided Brownian motion defined on a
probability space (2, G, P). We consider the operator L° defined by (5.2). Then we have:

(i) The domain of L¢ is dense in the space Co(R) of continuous functions vanishing at
nfinity.

(ii) On a probability space (Q, F,P), one can construct a Markov process X¢ whose generator
s given by L°.

While Proposition 3.2 is certainly a substantial progress in the understanding of equa-
tion (3.1), its main shortcoming is that it yields a very weak notion of solution. A consider-
able amount of effort has been devoted in the recent past to a more pathwise definition of X¢.
The first important contribution in this direction is [16], which hinges on the It6-McKean
representation (see [6, 30]) of X¢, as well as a thorough analysis of local times. The second
main work on pathwise interpretations of (3.1) can be found in [9]. It relies on a pathwise
interpretation of the martingale problem related to (3.1) thanks to rough paths techniques.
In the current contribution we will mostly stick to the setting of [9], since it might be easier
to generalize to higher dimensional contexts. As in the introduction, one should also mention
the articles |3, 7], which show that equations like (3.1) admit a strong solution even in cases
where the drift W is a distribution. However [3, 7] fall short of handling the case of a drift
W e C1/27¢ like a white noise on R.

In conclusion, our interpretation of (3.1) will rely on the martingale problem and related
pathwise rough PDEs developed in [9]. We now proceed to give a heuristic derivation of the
martingale problem framework.

3.2.  Heuristics about the PDE problem related to Brox diffusion. In order to
understand the nature of the family of mild PDEs related to equation (3.1), let us first
consider the following smoothened version of the white noise W defined for n > 0:

W =W *p,, (3.4)
where p; denotes the continuous heat kernel in R, defined as in (2.66) by
1 22
p(z) = e 2%, (3.5)

V2mo?t
Also denote by P, the heat semigroup associated to the generator %QAC = %2
alleviate notation, we will still write £¢ for the operator defined by (3.2) with W replaced

92,. In order to
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by W". Namely we set
2

1.
Lf(z) =L"f(x) = %Acf(a:) - §W’7(3§)ch(x), (3.6)
where we recall that we have set V¢f = 0, f.

The martingale problem for equation (3.1) relies on a family of PDEs. Namely for a
generic function g € C(R, x R), we consider the solution f of the following equation:

atft(l‘) - [’;ft<x) = gt(x)v le [OvT]’ reR. (37)

Since W7 in (3.4) is smooth, equation (3.7) can be solved in a strong sense. However, in order
to take limits as 7 — 0, we will first write (3.7) in a mild form which echoes Proposition 2.23.
This is the content of the following proposition.

Proposition 3.3. Fizn > 0 and recall that W is defined by (3.4). Then if g € C(R,. x R),
the mild form of equation (3.7) can be written as

fi#) = Pufols //ptsx— e dyds+//pt5:c— V()Y f. () dyds. (3.9)

Furthermore, an alternative way to write equation (3.8) is

fi@) = Pofola /ds/pts 1)gs(v) dy

= / s / dy e+ — ) / L0, ()AW(z), (3.9)

where a is an arbitrary real number. In addition, an equation is also available for the deriv-
ative of f; with respect to the space variable:

O fi() = BuPyfola / / Oupis(z — y)gu(y)dyds

- / [z ( /j@ﬂ(z)dW"(z)) dyds. (3.10)

Proof. We proceed as in the proof of Proposition 2.23. Namely start with the simple PDE
2
atF:%ACF_’_g? F0:f07

whose solution can be written as

Fy(z) = P fo(x / /pt s(r —1)gs(y)dyds. (3.11)
Also set J 2 F — f, where f solves (3.7). Then .J satisfies Jy = 0 and

o? o? . o? 1.
atJ = atF — 8tf = ?ACF +g— ?Acf — §W77 cht —g= 7ACJ — §W7] cht.

Therefore the function J can be written in mild form as

) = —% /0 t / Pis(T = Y)W'(y) V°fiy) dyds. (3.12)
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Substracting (3.12) from (3.11), it follows that f = F — J satisfies equation (3.9).

As for equation (2.63), we go from (3.8) to (3.9) thanks to an integration by parts proce-
dure. More specifically, due to the vanishing properties of the heat kernel at infinity one can
write

[ st i) Vo sy = = [ pese = ([ o.pamvn)
- [ ( A 0zfs(2)dW"(2)) dy. (313)

Plugging this relation into (3.8), our claim (3.9) is easily proved.

Our last argument is as follows: exactly as in the proof of Proposition 2.23, relation (3.10)
is obtained from (3.9) by differentiating with respect to x on both sides of the relation. This
finishes our proof. 0J

Remark 3.4. As mentioned earlier, Proposition 3.3 is stated for a regularized version of the
noise W. The pathwise interpretation of the martingale problem related to equation (3.1)
can then be reduced to a limiting procedure in equation (3.10). We give some hints about
this procedure in the current section, the technical details being deferred to Section 4.

At the heart of the approach in [9] is the fact that one can solve equation (3.7), or better
said equation (3.10), in a pathwise way. As mentioned in Remark 3.4, this is achieved by
taking limits in equation (3.13). We summarize this result in the following theorem, which
is stated here quite informally.

Theorem 3.5. Let fo,g be two given C?-functions, and consider an arbitrary time horizon
T > 0. Then there exists a unique function f in a proper space of controlled process with
respect to W, satisfying the following equation in the rough paths sense on [0,T] x R:

040 = [ onte )ty + | t JR

5 [ [Eoete—n ([ oncaw ) dvas. @

Our aim in this section is to recall the main setting allowing to properly state and prove
Theorem 3.5. Before getting into the computational details, let us recall that this theorem
has to be seen as the main building block in order to set up the martingale problem for
equation (3.1). Namely our ultimate goal is to get the result below.

Theorem 3.6. Let fo,g be two given C2-functions, and consider an arbitrary time horizon
T > 0. Let f be the unique solution to equation (3.14). Then there exists a probability PV

and a canonical process X¢ on a filtered space (Q, (Fi)iepo,r]) such that under PV the process
M = M7 is a martingale, where

M= (XD - 53 - [ (L8 LX) — B (X) ds. (3.15)
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In addition, there exists a Brownian motion B defined on (Q, (Ft)eeo,1]) such that the mar-
tingale M admits the representation

M, = / 00 1.(X) dB.. (3.16)
0

Section 3.3 below is devoted to specify the setting under which we will achieve Theorem 3.5
and Theorem 3.6.

3.3. The rough path structure for the fixed point problem. In order to get a better
grasp on the rough path setting employed below, let us first vaguely summarize the main
philosophy invoked in [9] in order to get Theorem 3.5:

(i) We think of 0, fi(x) in (3.14) as the unknown object, denoted as v;(z). For each fixed ¢,
the function z — v,(x) is regarded as a rough path controlled by the Brownian motion W.
Therefore, the integral f vs(2)dW (2) is well-defined in the rough path sense. Notice that
the rough paths point of view is needed here. This is due to the fact that W is a double sided
Brownian motion, and therefore z — v,(z) cannot be thought of as an adapted process.

(ii) We introduce an essential transformation

M v (Mo, / / 2 pes(z — )( / yvs(z)dW(z)> dyds. (3.17)

This is a transformation on a suitable space of controlled rough paths. Equation (3.14) can
thus be written as v = Muv. Namely v is a fixed point for the mapping M.

(iii) In order to solve the fixed point problem, we must expect that M is a contraction. The
major technical challenge here is to define the rough path metric in a delicate way, so that
the transformation M is indeed a contraction. This is a highly non-trivial point, as there is
no a priori evidence about why M needs to be a contraction at all (it is not surprising that
M is a bounded linear transformation though).

Notice that in the setting of [9], an auxiliary component Z;(x) is introduced to form a
two-dimensional rough path (W,(z), Z;(x)). This is needed due to the time-inhomogeneity of
the diffusion equation therein. However, the generator in our situation is time-homogeneous.
This largely simplifies the rough path viewpoint. In particular, it allows us to treat W as
a one-dimensional rough path with the obvious lifting, and the analysis is also simplified
accordingly. This is why we have included a self contained version of the computations in
Section 4. We now introduce the rough path setting which will be used in order to solve
equation (3.14).

3.3.1. Metric on the Brownian rough path W. Our regularities will be quantified in terms of
two parameters 1/3 < f < a < 1/2. The parameter « will be the Holder-exponent for W,
while g will be used for the Holder-exponent of the solution path v.

Recall that  — W(x) is a two-sided Brownian motion. On each compact interval [—a, al,
it can be viewed as a one-dimensional a-Holder rough path in the obvious way, that is
W = (W' W?) with

Wz,y) = W(y) = W(z), and W3(z,y) = (W(y) —W(z))". (3.18)
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It is important for our purposes to consider W on the entire real line. Thus we need to
introduce a suitable metric on W to take into account its growth at infinity.
Lemma 3.7. Let W' be defined by (3.18) and recall that o € (1/3,1/2). For each a > 1,
we define a random variable H, by
Wl
HoAwed 2 gy @0 (3.19)

~aszry<a |y = 2[°

Then for any x > 1/2 — «, we have supa>1 ¢ < 00 almost surely.

t Ha law 1

Proof. The Brownian scaling property shows that /¢ = ——s5— - Hi. As a result, we have

ZIP’( ntl )ziP(H1>e(n+1)X_(1/2_°‘)- (ni1)x>

The series is clearly convergent since H; has Gaussian tail (according to Fernique’s lemma).
Therefore a standard application of Borel-Cantelli shows that ”*1 — 0 almost surely, further
implying that

Ha Hn+1
sup — < sup
a>1 aX n>1 NX

< o0 a.s.
This finishes our proof. U
In view of Lemma 3.7, we will first label our assumptions on «, 5 and y:

1
1/3<f<a<1/2, and §—a<x<§ (3.20)

We let the reader check that the hypothesis on x in (3.20) can be met whenever 1/3 < a <
1/2. Next, given «, § and x satisfying (3.20), we define a random variable k,,, (W) by

e ||W2||[‘“>

ax ax

(3.21)

Kax (W) £ sup (

az>1

where the norm |[W2[|L.* is defined similarly to (3.19). The quantity ka.(W) is finite
almost surely, as seen from Lemma 3.7.

3.3.2. The solution space and the corresponding rough path metric. The definition of the
solution space for equation (3.17) and the corresponding metric is much more involved. This
is largely due to the need of obtaining a contraction property for the transformation M
defined by (3.17).

We shall identify a Banach space B where the solution path v for the fixed point problem
given by (3.14) or (3.17) lives. Let us first describe what the object v looks like. Recall that,
in the fixed point problem, we want to think of the integral f Yv,(2)dW (2) as a rough path
integral. This requires viewing z — v,(z) (for each fixed t) as a rough path controlled by W
(similar to [14, Definition 1]). Therefore, the object v;() must also come with a Gubinelli
derivative path Oy vi(+). In other words, the a priori shape of the object v should be given
by a pair

V = (v, 0wv), (3.22)
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where
v:[0,T] xR —R, and Jdyv:[0,7] xR —R.
To make sense of the rough integral, we require that, for each fixed ¢ € [0, T], the path

2= Vi(2) = (v(2), Oww(2))

is a §-Holder path controlled by W. Namely, both v;(-) and Oy v (-) are S-Holder continuous
on compact intervals, and the remainder

R (2,y) = vi(y) — ve(z) — dwui(x) - (W(y) — W(x)) (3.23)
has 28-Holder regularity in the sense that for each a > 1 we have

—a, (1/ RVt bl
||RVt||[ A sup ’ (.ZE 2y>’
—a<zty<a |y — T|?

(3.24)

Our next task is to define a rough path metric on V quantitatively. As mentioned above,
the main effort here is to tune this metric in a careful way so that we end up with a
contraction for the transformation M described by (3.17). We first introduce the following
general notation. For a given function f : [0,7] x R — R, we define:

0.t]x|~a,a —a,a - 0,t]x[—a,a
[F)Saa e & || x4 g =072 | Bl (3.25)
where
[fo(2") = fi(@)]
Fligay 2 sup |
H HB/Q,B (5.2 25" 2)€[0,1] % | —aa] |8/ _ S|5/2 + |1" . xlg

We now define some weight functions in order to take into account the fact that we are
considering controlled processes on the real line R.

Definition 3.8. Recall that «, (3, x satisfy relation (3.20). Consider another set of parame-
ters \,0 > 1. Then for a > 1 and t > 0 we set

E%a,t) & eMtoetbet — and  Q(a,t) := aX - (a5/2 + t_6/2) , (3.26)
with the convention Q(a,t)~! £ 0 if t = 0.

With Definition 3.8 in hand, we can now introduce the proper notion of controlled processes
we wish to consider in this article. Namely the space B%* below will be the underlying space
on which the fixed point problem (3.17) is solved.

Definition 3.9. Let the notation of Definition 3.8 prevail, and consider a controlled process

V = (v,0wv) such that (3.24) holds true. We introduce a new parameter v = 72 > (.
Then we define the norm of V in the following way:
e WV)&£ sup E%a,t)7!
te[0,T],a>1
x ([[v]]g)/’;{;[—“] + AT ool S5+ ATQa, 1) IR IS 1) (3.27)

We denote by B%* the space of those V’s such that ©%*(V) < co. It follows that B%* is a
Banach space under the norm ©%*.
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Remark 3.10. Notice that the choice v = 0‘4;6 in Definition 3.9 might seem obscure at this
point. The reason for this will be made clear in the following sections. Also observe that the

norm ©%* is decreasing in \. As a result, we have B%* C B if X < \.

Before getting into any technical estimates, it would be helpful to point out why the norm
©%* is designed in such a way. Unfortunately the explanation can only be vague at this
stage.

(i) The weight €’ in E%*(a,t) allows the solution to grow at most exponentially in space at
infinity.

(ii) The weights /2 in (3.25) and the term aX*#/2 in Q(a, t) are used to absorb the polyno-
mial factors in a which come out when estimating the transformation MV. The appearance
of polynomial factors is not surprising due to the polynomial growth of HWHE;‘I’“] as a — 00.
(iii) The weights e*% and A= are used to ensure that M is a contraction. As we will see,
when estimating the norm of the transformation M, a negative power of A\ comes out due
to the introduction of these weights. As a result, if we make the a priori choice of A to be
large enough, M becomes a contraction. This is the most magical part of the analysis.

(iv) The term t=%/2 in Q(a,t) accounts for the singularity of the heat kernel at the origin.
Such singularity will appear naturally when estimating a remainder term in MV. This is
also related to our one-dimensional rough path viewpoint.

3.3.3. The transformation M. Having introduced the Banach space (B%* ©%A(.)), we will
now define the key transformation M as a rough path in B%*. Namely given V = (v, dyv),
we define

MY £ [(t, 2) = (MV)i(@), 0w (MV)()))], (3.28)

where MV is given by (3.17). As far as 0w (M) is concerned, we will see in Section 4.3.4
that for (¢,z) € [0,7] x R we have

Ow (MV),(z) £ = v(z), (3.29)

where we recall that ¢? is introduced in Notation 2.3. Furthermore, in view of the formal
equation (3.14), it is natural to consider the following transformation on (B%* ©%(.))

MV MY 2L+ 4 MV, (3.30)

where 9!, 1? are functions respectively defined by

M) 2 / Oupu( — 9 foly)dy, and 3(x) 2 / / Oupra( — y)gs(y)dyds.  (3.31)

Our goal in Section 4 will be to show that M admits a unique fixed point in the Banach
space B?*. More precisely, this is the content of the following result.

Theorem 3.11. Let T be a finite time horizon and consider «, 3, x,0 as in Definitions 3.8
and 3.9. We also consider the quantity ko, (W ) introduced in (3.21). Recall that the trans-
formation M is defined by (3.30). Then there exists A = Ao gro1.,. > 0, such that for any
A > A and fo, g € C?, we have:

(i) The functions ¥',4? € B%* defined by (3.51) are elements of B%*.
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(ii) There exists a unique fized point for M, that is a unique element V of the space B%*
satisfying

Y =t + 9%+ MV.

Otherwise stated one can solve equation (3.7) for n = 0, under its mild form (3.14). The
unique solution sits in the space B%>.

(ili) The controlled process V satisfies
0" (V) <,

for a constant ¢ depending on fo and g only.

To put Theorem 3.11 into perspective, let us mention again that this result allows to solve
equation (3.7) in a pathwise sense for all continuous functions g. Hence there is a unique
solution to the martingale problem related to equation (3.1), that is Theorem 3.5 holds true.
Going from Theorem 3.11 to Theorem 3.5 is a matter of standard considerations, for which
we refer e.g. to [18, 31]. Let us mention that the martingale M = M7 in (3.16) can now be
written as

M, = [,(XE) — folXE) — / 9:(X?)ds,

where f is the solution to the following rough PDE on [0, 7] x R:

Ji(@) = Prygo(2) + / ' / Des( — )00 o)W (dy) ds. (3.32)

Notice that (3.32) is a backward version of the mild equation (3.8), which can be solved
exactly in the same way. In our paper we have chosen to deal with the forward equation (3.8)
for notational convenience. Let us also mention that with Theorem 3.5 in hand, the existence-
uniqueness of a weak solution to equation (3.1) is again a matter of standard arguments. We
summarize this in the following theorem.

Theorem 3.12. Fiz a realization of the process W in (2,G,P). Then there exists a proba-
bility PV on the canonical space (C(Ry), B(C(R,))) and a Brownian motion B defined on
that canonical space, such that (X, B) satisfies the following integral form of equation (3.1):

. 1

t
Xt = 2/0W(X§)ds+Bt, forall t>0.

We close this section by labeling some notation which will prevail for our computations
below.

Notation 3.13. We use Cgybsarips 10 denote a constant depending only on the parameters
specified in the subscript but nothing else. We also use C' to denote a constant depending
only on «, 8, x, 8, T, € but nothing else. Careful inspection on the analysis will reveal that the
dependence of C' on 0,7 is at most e”(+1)*  The value of these constants can change from
line to line. We also use P,(w) to denote universal polynomials of |w| which only depend on
a, B, x and T (the dependence on T only appears in the coefficients and is polynomial).
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4. THE ROUGH PATH FORMULATION OF THE MARTINGALE PROBLEM

As mentioned in Section 3, Theorem 3.11 is the key to establish existence and unique-
ness for the martingale problem related to equation (3.1). Arguably, our Theorem 3.11 is
contained in [9] Theorem 5. However we have decided to include a detailed proof of the
main estimates here for two reasons: first our context where W only depends on the space
variable lead to simpler considerations than in [9]. In addition, the bounds presented in this
section will play a prominent role in our analysis of the convergence in Section 6. We will
thus handle the rough path type estimates for Muv in Sections 4.1-4.2-4.3, and complete the
proof of Theorem 3.11 in Sections 4.4-4.5.

4.1. Rough integral estimates. As mentionned before, the integral [¥ v,(z)dW (2) in (3.17)
is defined in the rough paths sense. With respect to the usual rough paths setting of [14],
those integrals in R have to involve weighted norms in space. In the current section we de-
velop some basic tools for integrals of processes in spaces of the form B%* (see Definition 3.9).
Let us start with a bound on those integrals, depending on an interval [—a,a] C R.

Proposition 4.1. Let W = (W' W?) be the one-dimensional rough path given by (5.18).
We consider a, 5 satisfying (3.20) and a controlled path x — V(x) with V(z) = (v(z), 6Wv( )
as introduced in (3.22)-(3.23). Then for anya > 1 and x,y € [—a, a] the integral [¥ v(z)dW (2)
1s well-defined, and we have

Yy
| / W)W () — (@)W (2. ) - Owo(x) W (a.y)
Cs - (lowoll5 W25 - Jy = a4 RV G- [Wleed -y — wf*29) - (41)
where the Hélder norms above are understood as in (3.19).

Proof. This is a mere elaboration of [14, Theorem 1], whose proof is omitted for sake of
conciseness. O

Notice that we have stated Proposition 4.1 for a usual controlled process, since we are
only using the function x — V(z) in our estimate. Therefore here v is just considered as one
single rough path rather than a family of rough paths parametrized by time. However, in
the sequel we shall need a corollary stated for processes in B%*. This is summarized in the
lemma below.

Lemma 4.2. Consider a,3,x such that (3.20) is fulfilled. Let V = [(t,z) — Vi(x) =
(v¢(z), Owvi(x))] be an element in B%*, as given in Definition 3.9. To simplify notation, let
us set

K2 kay(W), ©26°V), E=E"at), (4.2)
and
D(a,t,2) 2 a®|z|* 4+ a® P2 2208 1 2X(aP/? 4 17P/2)| 20425, (4.3)
Then for any t € (0,T], a > 1 and x,y € [—a,al, we have

‘/ 2) — v (z)WH(x,y)| < Cs s OE X D(a,t,y — x) (4.4)
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and

< CskOE XN (aXy — z|* + D(a,t,y — x)). (4.5)

[

Proof. In order to get the first estimate we resort to relation (4.1), which yields

Y
’/ v (2)dW (2) — vy ()W (2, y) ‘ ’6’th ‘ (W?(z,y)|
+ o (w25 -y = P4 4 R W) fy = af*7)

Next we bound |0y v,(x)| and |W?(z,y)| above thanks to their Hélder and supremum norms.
We get

Yy
| [ W ) = o)W )| < ool &y — o
0,t] x[—a,a] a,a o ] l—a,a —a,a a
+ Cs - (lowoll S w5y — 2 4 RV G- W e -y — w27

We now use the definition (3.21) of k,,, (W) as well as Definition 3.9 in order to obtain

| / "o (2)dW (=) — ()W (s, )

<Csk-OF - X - (a™|y — x> + > PPy — 2T + o™X (aP? + 17072 |y — z|*+2P)
(4.6)

from which our estimate (4.4) is easily achieved. Our second claim (4.5) is also deduced from
(4.4) plus the trivial bound

()W (2, y)| < [ ST aX k- Jy — 2| < KOE - a¥y — .

The proof is now complete. U

4.2. A key estimate for heat kernel convolutions with rough integrals. In view
of the expression (3.17) of (MV)(x), an essential ingredient in the analysis of MV is to
estimate heat kernel convolutions with rough path integrals carefully. This is summarized
in the following key lemma.

Lemma 4.3. Consider «, 8, x such that (3.20) is fulfilled. Let V = (v,0wv) be a controlled
path in the space B introduced in Definition 3.9. Recall that the heat kernel on R is given
by (3.5) and the constants k, 0, E are spelled out in (4.2). Then the following two estimates
hold true:

(i) Let 0 < 7 < B/2 and k = 1. For anya > 1, x € [—a,a] and 11 < 7o € (0,T], we
have

/ /ﬁ' Pt '| [ @

dwds < C - KOE - \1~"27q” . 7 2 (4.7)
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(i) Let 0 < oy < B and k > 1. For anya > 1, x € [—a,a] and 1y < 7o € (0,7, we have

r
' ‘ xpl
Sl+0‘1

gC-RQE-W’aT_BaX (a’g/z—l-T;ﬁ/Q) -Tf_al. (4.8)

T+/sw
/ (Vry—s(2) = Vpy—s(2))dW (2) | dwds

Remark 4.4. The factors \'~ 2" and A7~ 7" appearing in the above two estimates are crucial.

O!—

In fact, we will choose v = === in the a priori definition of . This implies that the factor

N = A s decaying. ThlS point is critical for obtaining the contraction property of

MY.

Proof of Lemma 4.3. We will divide this proof into several steps.
Step 1: Estimate for the rough integral. Set

T4+/sw
Ap s :/ Vry—s(2)dW (2). (4.9)
Then according to (4.5), for any = € [—a,a] we can upper bound | A, s .| by

Cs - kO - E(a+ Vslw|, 72— s) - A7+ ((a + v/s|w])¥*s*|w|* + (a + v/s|w|)**s*|w[*®
-t VARl 4 (]2 42
+(a + V/s|w]) X (ry — 8) P2 EB gy |2

Hence recalling that we write P,(w) for any polynomial in w and that our time horizon is
T, we get that | A, s.u.,| can be upper bounded as follows:

CskON - P,(w) - E(a+ v/s|w|, 72 — s) - ((a + VT |w|)Xs*? 4 (a + VT|w|)>s® (4.10)
+(a+ ﬁ|w|)2x+6/2sa+6/2 + (a+ \/T|w|>2x+ﬁ/28a/2+ﬁ + (a + ﬁ|w|)2X(TQ — S)—B/2Sa/2+6> ]
In addition, still invoking the fact that our time horizon is T', we can write

Ela+Vs|w|, 7 —s) = eMr2—8)+0(a+V/s|w|)+0(aty/s|w|) (2 —s) (4.11)
< Ela,m) - HAFTIWTIw| | = (A+0(atvTIwl))s (4.12)

Consider now 7, < 72 < 3/2 as in the statement of our current lemma. Setting p £ a-+v/T|w|
and plugging (4.12) in (4.10), we obtain that

87(1+71) ’Ax,s,w,Tz ‘ < Cg/ﬁ@)ﬂPu(w)E(a, 7'2)69(1+T)\/T|w| : 67()\+0p)8¢1 (p7 $>7 (413>

where we define two functions ¢;, ¢ = 1,2, as follows:

%ilp,s) = (pxsa/2—1—%- + pPXgaT i
e e A G e IR CB EY

and we notice that ¢o will be used in (4.17).
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Step 2: Decomposition of a time integral. With a proper estimate for A, ;. -, in hand, we
turn to an estimate of the double integral (4.7). To this aim, we first consider the s-integral
and we set

T1
DTI (’UJ) :/ S_(1+71)A:c,s7w77'2d3- (415)
0
Then taking (4.13) and (4.14) into account we get

D, (w)| < CsONP,(w)E(a, 7'2)66(1+T)\/Tw/ e~ M3 g (p, 5)ds.
0

We will now gain a small factor 77>~ by playing with the fact that 75 > ;. Namely we
easily obtain

D, (w)] < Cori” KON Py (w) E(a, 75) e DVl 7 (4.16)

where we have set
Tu= [ 0o, (4.17)
0

and where we recall that ¢, is introduced in (4.14). In addition, we shall decompose the
integral J into J = J' + J2, where we define

T1
‘-77'11 é/ 6—(>\+9P)s . (pxsa/2—l—’y2 + p2x8a—1—'yg +p2X+’8/2sa+’8/2_1_72
0
+p2x+ﬁ/2sa/2+ﬁ—1772) ds

and
T2 2 [ e Osmn gy - g e g (1.18)
0

The methods in order to estimate J' and J? are slightly different, and thus those two tasks

will be carried out separately. The main non-trivial effort here is to see that
T < Copp™ - A7, for i=1,2. (4.19)

This is the critical point where a negative power of A\ appears (recall that § < «), which in
turn contributes to the contraction property of the transformation M.

Step 3: Estimation of J'. By applying a change of variables r = (X + 0p)s, we obtain

- (A+0p)T1 X2 P—— p2x—72 -
-2 — -r I PR 0 7/ e > S o a2
o= [ (T

p2x+l3/2—72 p2x+,6’/2—w
TOC+B/2_’Y2—1 +
(A + gp)a+,8/2—w2 (X + gp)a/zwiwz

Therefore collecting the terms of the form p® /(A + 0p)** and computing the integrals

fooo e "r* dr, the reader can easily check that

+

pX 2 p2x—72 p2x+ﬁ/ 2—72 p2x+ﬁ/ 2—2 )

(A + Op)a/2— * (A +Op)oa— + (A + Op)otB/2— T (A + Op)o/2+6-
(4.20)

p_’yijll < Ca,,B : (
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Hence to reach the estimate (4.19), we need to show that

pX_'YQ p2x—’72 p2x+5/2—'yg pQX_,_/g/Q_,yQ .
v v v <AE (4.21)
(A +0p)e/2=z = (A4 0p)a2 "~ (A +0p)etB/2=2 (X 4 Op)e/2+6—

In order to achieve (4.21), we first observe that the above four quotients all have the form
pb772
v+ Op)

More precisely, we recall from (3.20) that § < « and x < 1/2, and we have also assumed
that 73 < 72 < /2. Thus it is readily checked that the exponents in (4.21) satisfy (4.22),
by respectively considering the following values for a, b:

. b=x .. b=2x b:2X+5/2 ' :2X+ﬁ/2
(i) {a:a/2 , (i) {a:a , (iii) {a=a+ﬁ/2 . (iv) {a:oc/2+ﬁ (4.23)

With (4.21) in mind, we now claim that for all A\, p > 1 we have:
b—2
p

with 0 < b < a and a > 7,. (4.22)

bVy2—a
W < A 72 V)\,p 2 1. (424)

Indeed, if p > A, we have (recall \,0 > 1 and b < a)
po < e < AP APz
(A +0p)a—2 h h '
On the other hand, if 1 < p < A and b > 5, we have
pb—’Yz < pb—’m
(A +Op)a—2 = Na=n

Eventually, if 1 < p < A and b < 7, then

pbiw 1 ot bV
J— 2—a 2—a
(A +8p)a=r pr=b(A+Op)a—e sATESA ‘

Therefore, the claim (4.24) follows. The estimate (4.19) for J*' is then established by re-
porting (4.24) into the cases (i)-(iv) in (4.23). Notice that we have

(i) § —xVr=(a-p)/2

(i) a=2xVypz2a-p La-8
(i) (a+8)—2x+4)Vvyep=a-2x=>a-8 ~ 2
(iv) (§5+6) = (2x+5) Ve =% —2x

in each of the four cases respectively. This achieves (4.21), and recall that plugging (4.21)
into (4.20) we obtain

g )\bfa < )\b\/'yzfa.

a—b\/%:

T < Oy (4.25)
that is relation (4.19) for J'.

Step 4: Estimation of J?. We first recall an elementary estimate, which holds true for all
r,c>0
e "< crh (4.26)
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Observe that (4.26) can be seen from = < e” for z > 0 and taking = r/c Now we recall
that 72 is defined by (4.18). We use (4.26) in this definition and choose r = (A + fp)s, with
a parameter ¢ > 0 to be specified later on. We end up with

cp- Tl a/2+B-z—c=1(_ _ N=B/2,
()\—1—9,0)0/0 s (19— 5) s

Therefore the elementary change of variable s £ 7 u yields

Dy —
Ccp X—72
— 2
p2TE <

2X—72 7_104/2+ﬁ*’72 —-c

(A +0p)°

cp

1
p_”jfl < / ua/%ﬁ_”?_c_l(@ — Tlu)_ﬁ/zdu,
0

and since we have assumed 7; < 7, we can write (7, — 1u) /2 < 71_6/2(1 —u)7P2. We get
/2B 2

5% ’yg,rfé Y2—¢C
(A + Op)°

We now pick a convenient value for the parameter ¢ above. Indeed, one can choose ¢ =
g+ B — 72, so that Ta/2+ﬁ/2 7% = 1. With this value of ¢, we let the reader check that the

exponent a/2+ [ — 2 — ¢ — 1 in the right hand side of (4.27) is larger than —1. It follows
that

_ cp
p 72‘7721 <

1
/ uo/HHB el (] ) TR 2 gy, (4.27)
0

p2x_72
(A + Op)e/2+6/2=72"
Notice that the ratio in (4.28) has the form of (4.22), with b = 2x and a = (o + §)/2. In

addition, our relation (3.20) on «, 3, x ensures that b < a. Thus according to (4.24), we
obtain that

(4.28)

— 2
72;77—1 X a B

p*’mj‘r?l < Ca,ﬁ . )\(QX)VW*J

Cop- A2, (4.29)

<
where we have resorted to the fact that (2x) V 72 < f for the second inequality above.
Therefore, we have established the estimate (4.19) for J2.

Summarizing our considerations so far, we have proved (4.19) by gathering (4.29) and (4.25).
Therefore recalling that we have set J = J' + J? and relation (4.16), we get that the term
D,, defined by (4.15) satisfies

D, ()| < Cop - 7" 2 KOP, (w) Ea, 75)OFTVTIwl )0+ 5% e, (4.30)

Step 5: Conclusion. Recall that our aim is to achieve the upper bound (4.7). With (4.9)
and (4.15) in hand, the left hand side of (4.7) can be written as

/R 108 o1 (w)| Dy, (w) dw.

Therefore plugging (4.30) into the above expression, we get that (recall p = a + VT |w|):
[105 01 (0)] Doy (1) < Co - OB, X5
R

/ | ap1(w)| - Py(w) - ee(HT)\/T'w'(a + \/T|w|)72dw.
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Hence some elementary heat kernel estimates entail
/|8f,,,$p1(w)|DTl(w) dw < Ca,g,k’(,eg (1+7)? - KOE(a, Tg))\7+ 22T g
R

= Coprore  KOE(a,m)- )\7+[37Taa727'172_71. (4.31)

This finishes the proof of (4.7). For sake of conciseness we leave the proof of (4.8) to the
patient reader. It is based on the same kind of arguments as for (4.7), also taking into
account the extra regularity brought in by the increments v, s(z) — v, _s(x). O

For our future computations it will be useful to extend the estimate (4.8) to a context with
time increments of v. This is the content of the following lemma.

Lemma 4.5. We assume that the hypothesis of Lemma 4.3 hold true. In particular, we
consider a process v in B> and we recall that the parameter v in Definition 3.9 satisfies
v = O‘T_B. Then the following bound holds true:

1 | ;L«pl | :(:—Q—fu;
Sl+0’1 ‘ UTQ 8 UTQ(:E))dW(Z)’dwdS

< C - kOFE(a, 1)aX <aﬂ/2 - T;ﬁp) -715_01. (4.32)

Proof. We decompose the increment v, 4(z) — v, (z) into

Ury—5(2) = Uy (T) = [Vry—5(2) = Vry—5(@)] + [Vr,—s(7) — vy (2)] -

Then notice that the integral (4.32) corresponding to v,,_s(2) — v-,—s(z) has been handled
n (4.8). We will thus focus on the following term:

T1 ‘ xpl | J:—&-fw
Evmira e (Ury—s(@) — vy (2))dW (2)| dwds. (4.33)

In order to bound SMMQ we observe that the increment v, s(x) — v, (z) does not depend
on the variable z. Therefore we have

T1 k
Eviri // Oz (0 ‘| Vry—s () — vy ()| - (W (2, 2 + V/5w)|dwds . (4.34)

Sl+0’1

Next we bound the increments of v resorting to the bound on [v]g/2 5 ensured by Defini-
tion 3.9, together with the definition (3.25) of [-]s/2,3. This yields

|Ury—s(2) — vy ()| < a’?E(a, )0 - s7/2, (4.35)
The increments of W can be estimated thanks to the fact that k., (W) (see equation (3.21))
is a finite quantity. We get
(W (z, 2+ Vsw)| < k- (a+ VT w|)X - 5% |w|* < Cyr - k- Po(w) - a¥s%/?, (4.36)
where we recall that P,(w) designates any polynomial in the w variable. Now plugging (4.35)
and (4.36) into (4.34) we obtain

a+5

T1
Eomm < C’-fiaX+ﬂ/2E(a,7'2)@ / s lmogs — /iaX+B/2E(a )0 -1 2 e
0
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atB
Then we trivially bound 7, > by C’Tf (recall that 7 will be chosen as a small constant) and

a/B/Q by a/ﬁ/Q + t_B/Q. We end up W]th
gx,ﬁ,‘rz < C- KE(Q, 7‘2)@ . Tlﬁ—alax (aﬁ/Q + t—ﬁ/Q) ’

which means that we have achieved the bound (4.32) for &, ;, ,. Our claim (4.32) is thus
obtained thanks to the considerations at the beginning of our proof. O

4.3. Estimating the norm of MV. Recall that our main object of interest is the trans-
formation MYV introduced in Section 3.3.3. For convenience recall that this transformation
is defined in (3.28) as

MY £ [(t,2) = (MV)i(x), 0w (MV)i(2))], (4.37)

where the first term (Muv)(z) is defined by (3.17) and where the Gubinelli derivative
Ow (MV), is defined in (3.29). One of our main steps toward the proof of Theorem 3.11
is the following contraction property for the norm ©%*(MV).

Proposition 4.6. Consider a set of parameters «, 5,7, x, 0, A satisfying (3.20). Let M be the
map whose definition is recalled in (4.37). Then M is a well-defined linear transformation
on the Banach space B’ introduced in Definition 3.9. It satisfies the following estimate:

BN MY) < C - (1 + kar (W) - AT - 072(V), (4.38)

where C' is a constant depending only on all the parameters «, 8,7, x,0, A, but not on W
and V. In particular, by choosing \ to be large enough, we can ensure that

1
0N MV) < 5@“(V). (4.39)
Therefore M is a contraction on B%*.

Going back to the Definition 3.9 of B%* and its norm ©%*, the estimate for M can be split
in four main terms (i) a uniform estimate for MV, (ii) an estimate for the time fluctuations
of MV, (iii) a bound on the spatial fluctuations of MV and (iv) a control on the remainder
RMY. We develop these four estimates in the following sections. At this point it is helpful
to recall the following change of variables, which will be extensively used in the sequel and
is valid for s > 0, z,y € R, with y = x + y/sw, and k > 1:

_ k41

> oF _pi(w). (4.40)

Unless otherwise stated, we always shorten our notation as in (4.2) in order to avoid lengthy
expressions.

oF sz — y)|y:x+\/gw =C, s

4.3.1. The uniform estimate for MV. We begin the proof of Proposition 4.6 with the fol-
lowing simple uniform estimate for (MV);(x).

Lemma 4.7. Under the conditions of Proposition 4.6, consider t € [0,T] and x € [—a,al.

Then we have
_a=pB
4

|((MV)y(z)| < C - kOE(a,t) - A (4.41)
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Proof. Starting from the expression (3.17) for Mwv, writing y = = + /sw and invoking

relation (4.40) we get
p1(w whvsw
/ / e / v—s(2)dW (2) | dwds. (4.42)

Our claim (4.41) is thus a direct consequence of Lemma 4.3 (i) with £ = 2, 74 = 72 = 0 and
TN = To = t. [

4.3.2. The time variation estimate for MV . In this section we investigate the time fluctua-
tions of MV, which is another step toward the proof of Proposition 4.6.

Lemma 4.8. We work under the conditions of Proposition 4.6. In particular, recall that
a, 3 satisfy (3.20). Then for any elements x € [—a,a] and ti,ty € [0,T] such that t; < ta,
we have

|(MV)t2 <$> - (MV)tl (I)‘ < CH@E(CL, tg)aﬁ/Z)\ia‘i;ﬁHQ — t1|ﬁ/2. (443)

Proof. Invoking equation (3.17), it is readily checked that the time increments of MV can
be written as

(MV), () — (MV),, ( / / O pry—o(z — ) / ()W () dyds
/ / 02 Pto—s(x — y) — 02ppy—s(x — y)) /zyvs(z)dW(z)dyds.

Hence, writing the increment 02 p;, s(z —y) — 02,ps,—s( — y) in terms of a time derivative

and owing to the fact that p satisfies O;p = %28§$p, we get a decomposition of the form

2
o
(MV)y, () = (MV)i, (2) = 5T + T, (4.44)
where the terms 7; and 75 are respectively defined by

T / ds/dy/ O (x — )du/myvs(z)dW(z)
T = / [ amsto =) [ o)W ey (1.45)

where we write dip instead of 91 ,.p for notational sake. We now estimate 7; and T
separately.

FEstimation of Ti: By a change of variables w = (y — x)/+/u, and owing to relation (4.40)
we can write 77 as

T. =G, / 94p1 (w)dw / ds / u~2du / I+ﬁwv8(z)dW(z). (4.46)

We first look at the triple integral inside the w-integral, that is

T4/ uw
Tiwwt s = / ds/ 2clu/ vs(2)dW (2). (4.47)
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In order to upper bound 7 4.4, 1, We perform the change of variable u = ¢; +r — s so that

we get
t1 to—t1 d,r, :c«h/ﬁw
ﬂ,x,w,thtz _/0 dS/O m/ US(Z)dW(Z).

Then switching the order of integration in r and s and setting p = t; +r — s we obtain

la— t1 ti+r z+\/pw
Tiawnts = / / 1+ﬁ/2+1 B8/2 / Uty 4r—p(2)dW (2).

This can be easily bounded as
to—t1 t1+r d T+/pw
7-1,m,w,t1,t2‘ g/ Tﬁ/zld?"/ pl—i-—pﬁ/2 / UtlJrr,p(Z)dW(Z) .
0 0 T

Therefore, plugging (4.48) into (4.47) and then (4.46), we end up with

2—t1 9 1 t1+r T+/pw
7 [Jtmlaw [t [T [T e
0
t1+r T+/pw
:/0 rB2=1 .. /‘Qgpl ‘dw/ 1+B/2‘/ Vg 4r—p(2)dW (2)].

We can now resort to Lemma 4.3 (i) with v = 75 = /2. This yields

Ti < CkOE(a, t2)a’ 2N 72 |ty — 1|72 = CkOE(a, t)a® 2N~ T |ty — 1|72, (4.49)

where in the second identity we have used the fact that v = O‘T_B.

(4.48)

Estimation of T3: The upper bound for 75 is obtained similarly to 7;. Namely starting from
expression (4.45) some elementary change of variables in the space and time variables yield

ta—11 Y
T2 = / / 2 (T / Uiy (2)dW (2)dydr.

Therefore setting y = 2 + /rw and resorting to (4.40) in order to replace p, by p1, we get

t2=t1 I z+y/Tw
To=C, / / 2.1 (w / Vpy—r(2)dW (2)dw.

The above identity enables the application of (4.7), where we choose 7y, = 72 = 0. We get

To < CkOE(a, t2)a’ 2\~ "7 [ty — 1,|%/2. (4.50)
Hence reporting (4.49) and (4.50) into the decomposition (4.44), the proof of our claim (4.41)
is easily achieved. 0

4.3.3.  The space variation estimate for MV . This section is devoted to the third ingredi-
ent in our global strategy, namely the upper bound on the -Holder norm for the spatial
increments of MV. In order to ease notation, we will often use the convention

fa, o) = f(z) = f(a), (4.51)
valid for any function f of a spatial variable x in R or §Z. This notation will prevail for the
remainder of the article. Our main aim is to prove the lemma below.
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Lemma 4.9. Let the assumptions and notations of Proposition 4.6 prevail. Then for any
€ (0,7 and z, 2" € [—a,a], we have

|(MV)y(z,2)| < C - kOE(a,t) - )\_QT_BaB/QW —z|?. (4.52)

Proof. Before starting our discussion, recall our identity (3.13), for which we had chosen an
arbitrary a € R. Differentiating this relation with respect to x and taking limits as n — 0
in the rough path sense, we get that the integral

/ [ni-n [ ()W (2)dyds (4.53)

does not depend on a. This fact will be used without further mention in the remainder of
the proof.

As an application of (4.53), let ¢t € (0,7] and z,2’ € [—a,a]. Starting from the expres-
sion (3. 17) for MV and owing to the fact that the lower bound z can be chosen arbitrarily
in Yo,z , it is readily checked that

(MV),(z,2') = / / (2, pu(a’ — y) — ,pu( — 1)) / D)W () dyds.  (4.54)

We now divide our analysis in two cases according to the respective value of ' — x and t.

Case (i): |2’ — z|*> < t. With identity (4.54) in mind, let us split the interval [0,¢] into
0, |2 — z|] U [|2" — z|, ] in order to get the following decomposition

(MV)(2") — (MV)(z) = T (2') — Ty (x) + I, (4.55)

where for £ € R we have set

/|x a:|2/ ( 7aPs(€ =y /:vt_s(z)dW(Z)) dyds. (4.56)

and where the term Z, is given by

T, = /| » / dy / y)du / Do (2)AW (2), (4.57)

where we use again 92p instead of 93 p for notational sake. We proceed to estimate the
term Z;(§) in (4.56). To this aim we resort to the same type of change of variables as in

Lemma 4.8 and invoke the identity (4.40) once more. We get

1Z.(8)] </|z - ds/| 2 o1 (w)|dw /jJr\/ngt_s(z)dW(z) .

We are thus in position to apply Lemma 4.3 (i) with 7, = |2/ — z|?, 72 = 8/2 and v, = 0.
Also we recall that we have chosen v = O‘Tfﬁ. This implies

1 <C-kK a,t-_a%a r — x|”. .58
T.(6)| < C - kOE A TP — ) 4
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Let us turn to an upper bound on the term Z in (4.57). Switching the order of integration
and thanks to (4.40), one can write
ut+/sw
/ vy—s(2)dW (2)

x’ t ds .
2l < / du /x,_mpm /R|awpl<w>|dw
u++/sw
/ vi—s(2)dW (z)],

z’ t ds
1 B8-1 3
< |2 =z /I du/o —51+B/2/R‘8xp1(w)}dw

where we have enlarged the term 51/2+@/2 to |2’ — x[~! and then enlarged the s-integral over
the region [0, ¢]. By applying Lemma 4.3 (i) to the inner (s, w, z)-integral with v; = v = /2,
we get

1T,| < C - kOB (a,t) - A\~ a??|2’ — z?. (4.59)
Reporting (4.58) and (4.59) into (4.55) we have

|(MVy(z,2')| < C - kOE(a,t) - )Fan/Baﬂ/QW —zf?.
Therefore our claim (4.52) is proved whenever |z’ — z|* < ¢

Case (ii): |2/ —=z|? > t. This case is essentially contained in the above Z; (§)-estimate. Indeed,
starting directly from (4.54) we can write

MV (x,2") = T1 (2") — T(x),

// D2.ps(E—y /:vt_s(z)dW(z)dyds, £ eR.

The only difference between Z7(£) and Z; (&) introduced in Case (i) is that the region for the
s-integral becomes [0, ] rather than [0, |2’ — x|?]. By exactly the same argument as before,
the estimate (4.58) becomes

where

IZ,(6)] < C - KOE(a,t) - A\~ 1" aP/24%/2,

Since |2/ — x|? > t, it follows that

‘MVt(:C x’ ‘ < ‘I’ ’—i— |I{(x)|
< C-KkOE(a,t) - )\_aTiBaﬁ/ﬂx' — z|?.
This achieves (4.52) for |2’ — z|? > ¢ and finishes our proof. O

4.3.4. The remainder estimate for MV. Recall that the remainder of a controlled process
is introduced in (3.23). Moreover, we defined the Gubinelli derivative of MV as —2v/0?
n (3.29). Gathering those two relations and recalling notation (4.51), we get that the
remainder of (MV); is given as

RMY(z,2") = MV, (2, 2") + %vt(:v)Wl(x, x'). (4.60)

We will now prove that RMY is indeed a 23-Hélder increment.
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Lemma 4.10. Let «, 3, x,7,0,\ be parameters such that (3.20) is fulfilled. Recall that
the functions E and @ are introduced in Definition 3.8, and that the norm © 1is given in
Definition 3.9. Then the remainder R™MY defined by (4.60) satisfies

RV (2, 2)| < O k(0,000 - Qa ) - o' — af, (4.61)

for allt € (0,T) and z,2’" € [—a,a).
A crucial point for proving Lemma 4.10 is to make use of the decomposition in the following
lemma. This decomposition, together with the estimates developed in Lemma 4.12 and

Lemma 4.13 below, will explain why the Gubinelli derivative of (MV); should be defined to
be —2uv;/0?.

Lemma 4.11. As in Lemma 4.10, we consider the remainder R™MY given by (4.60). Then
for allt € [0,T] and x,2’' € [—a, a] we have
2
RMY(2,2') = RO(x,2) + ;vt(x) (PW (z") — BW (x)), (4.62)

where the increment R° is defined by

RY(z. ) t// e’ =) = e =) ([ (o) = (e AW (e) ) g

(4.63)
and where Py has been defined after (3.5) as the heat semigroup in R with variance o?.

Proof. Recall that starting from the expression (3.17) for MV we already obtained the space
increment (4.54). We now add and substract v;(x) in the integral on the right hand side
of (4.54). With the definition (4.63) of R" in mind, this yields

MVt(x,x/) - R l’ ZE + Ut / / mmps .Z' - y agzps(x - y)) Wl(x7y> dde (464>

Furthermore, the decaying properties of the heat kernel p imply that fR 2 ps(x —y)dy =0
for all 2" € R. Therefore one can insert +W (') in (4.64) and one gets

MVy(z,2) = Ri/(z,2) + v (z) (Bi(a') — By()), (4.65)
where the term B,() is defined for £ € R by

/ / 92,ps(€ — y) WH(E, y)dyds.

Next we simplify the expression for By(€) by involving the relation 02,ps(y) = Z0:ps(y).
Interchanging integral and differentiation, we obtain

&@—%AE(QM—WW@WQw—gf@@W@—mmw,@w

[

where we recall that P, designates the heat semigroup and where we have used the fact that
Jg Ps(2)dz = 1. We now simply evaluate the time integral in (4.66) in order to get

Bu(E) = — (PW(E) ~ W(E)).
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Plugging this identity in (4.65) we end up with
2
MVy(z,2") = Ri(z,2") + —ue) (AW(2) = W(2) = (AW (x) = W(2))),

2 2
= Ri(w,2") + —u(x) (AW (@) = BW(z)) = —u(x) (W () = W(z),
from which our claim (4.62) is easily deduced. O

In view of Lemma 4.11, the estimate of RV (x 2') contains two ingredients: the
RY(z,x')-estimate and the heat semigroup variation estimate. We develop these two in-
gredients separately, starting with an estimate for RY(z, 2’).

Lemma 4.12. We consider the setting of Lemma 4.10, and let R° the increment defined
by (4.63). Then for any t € (0,T] and z,2" € [—a,al, we have

IRY(z,2)] < C - kE(a,t)0 - Q(a,t) - |2/ — x> (4.67)

Proof. As in the proof of Lemma 4.9 we divide our discussion into two cases, according to
the value of |z’ — x|.

Case (i): |2’ — x|? < t. In this case, we start with the following decomposition:
Rz, ') =T + K, (4.68)
where the terms J and K are respectively defined by

g /|m'—$|2 ds/ (02,05 (2" —y) — O2,ps(x — ) (/:(Ut_s(z) — Ut(x))dW(z)) dy (4.69)
/m o2 / 07, ps(" — y) = F,ps(x — y)) (/:(vt_s(z) — vt(m))dW(z)) dy. (4.70)

Next we further divide the integral 7 in (4.69) as
J = T(") = Ji(x) + T, (4.71)
where the terms J;(§) and J, are given by

a© - [ T ds [ pte ) ( /j<vt_s<z>—vt<5>>dw<z>) dy,  (472)

o a2
g = / ds / 2 pu(e’ — ) () — o)) - WA g)) dy. (473)

We now proceed to estimate the terms in (4.69)-(4.73). Let us start with a bound on the
term J1(§) defined by (4.72). To this aim, we first resort to the same kind of change of
variables as for (4.46). We get

@)l < [ ) [ et

We are now in a position to apply Lemma 4.5 directly (with oy = 0), which yields
|76 < C - kOE(a, t)a* - Q(a,t) - |2 — x[*’. (4.74)

E4/Ew
. /g (vi—s(2) — v(£))dW (2)| dw.
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As far as the J; integral is concerned, we perform our usual change of variable in space. We
obtain

o a2 g
Jo = /0 - 83:5291(“}) (@) —w(2) - WHa', 2" + Vsw) dw. (4.75)

S

Then we estimate the right hand side of (4.75) thanks to the fact that v verifies Definition 3.9
and Kq,(w), as introduced in (3.21), is finite. We obtain

lue(z') — v (z)] < E(a,t)0d??|z’ — z|?, (4.76)
(W2, o'+ Vsw)| < CrPy(w)aXs*?. (4.77)
By substituting (4.76)-(4.77) into (4.75) and performing the w-integral, we arrive at

|’ —x|?
51 <0 nstopon ot [
0
< C-kE(a, )00 |2’ — x|® o' — 2[* < C- kOE(a,t) - Q(a,t) - |2/ — x**. (4.78)

Next we estimate the K-integral given by (4.70). We start by writing 02 ps(2’ — y) —
02 ps(r —y) in terms of a spatial derivative. This yields

/|w —af? /dy/ ops(u = y)du /uy(“t—s(z) — v(x))dW (z)dy,

where we have used the fact that integrals like (4.53) do not depend on the parameter a.
Then we insert +v;(u) in the integral above in order to get the decomposition

K=K+ Ks, (4.79)
where K1 and Ky are defined by

K1 = /|:c " ds/dy/ Bps(u—y du/uy(vts(z) —v(u))dW (z)dy,  (4.80)

Ky = /u " ds/dy/ Bps(u — y)du(vi(u) — v (z) )W (u, y)dy. (4.81)

We now devote our efforts to upper bound Ky and /Cs.

In order to estimate the KCi-integral, we set again y = u + y/sw. We obtain

K = / vy /t - / / u+\/gw(vt_s(z) — vy (w))dW (2)duw.

Along the same lines as for the estimation of Zy in the proof of Lemma 4.9, we bound the
term s~(1/278) by |2’ — z|#~! and we enlarge the s-integral to the interval [0,¢]. We get

e [ 8 [l

We are now able to apply Lemma 4.5 with oy = 8 and we obtain

K1 <C-kOE(a,t)-Qa,t) - |z' — z|?. (4.82)

u++/sw
/ (vi—s(2) — v (w))dW (2)| dw.
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Let us bound the term Ko defined by (4.81). The change of variable y = u + /sw together
with (4.40) yields

K, - / " /|t L / w) — vy (2)) W (0, 1+ /5w)duw. (4.83)

In addition, owing to (3.21) and the fact that v fulfills the assumptions of Definition 3.9, we
have

lve(u) — ve(x)] < E(a,t)0© - a??la’ — z|®  and (W (u,u+ v/sw)| < CrP,(w)aXs*/?.

Plugging this information into (4.83) we get
t

Ky < C-kOFE(a,t) - aX*P2 . |2/ — o FP . / §2/273/2 (s, (4.84)

2/ —al?
Performing the s-integral and resorting to the relation |2/ — z|? < t, we end up with
Ko < C-kOE(a,t) - aX™P2 o) — 2|*™P < C - kOE(a,t) - Q(a,t) - |2 — x|*.

Let us summarize our considerations so far: we plug (4.74) and (4.78) into the decomposition
(4.71) for J. We also gather (4.82) and (4.84) into the decomposition (4.79) for K. Then we
report those estimates into the main decomposition (4.68). This achieves our claim (4.67)
for |2/ — z|* < t.

Case (i1): |v' — z|*> > t. This case is essentially contained in the estimate of the term J
defined by (4.69). That is, going back to the expression (4.63) for RY and using the fact that
the expression (4.53) does not depend on a, one can write we have

ROz, 2') = £:(x) + La(a") + L, (485)
where the quantities £1(£) and L, are given by
L4 = ds o Ds ’ Vi—s(2) — v (£))dW (2)dy, 4.86
© = [a ]2 e =) [ ea(z) ()W )y (1.86)
L, - / s [ Bl =) (0(e)) = ) W' )y (4587)

Then invoking the same kind of arguments as for the term Z; () in (4.72), plus the fact that
|2’ — z|* > t, we obtain

1L,(8)| < C-kOE(a,t)-Qa,t) - t° < C-kOFE(a,t) - Qla,t) - |’ — z|*".

Furthermore, thanks to the space regularity of v and owing to the decay of the heat kernel
p (see (4.76)-(4.77) for similar arguments) we get

t
23] < € kE(a, )00 2’ —aff - [/ 1ds
0

< C - kE(a,t)0aX*P2|g — z|f -t < C - kE(a, )0 - Q(a,t) - |2 — z|*®. (4.88)

Gathering (4.87) and (4.88) into (4.85), we have shown (4.67) for |z — z|> > ¢. Now the
proof of Lemma 4.12 is complete. O
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4.3.5. Estimation of the heat semigroup variation. Remember that we have obtained the de-
composition (4.62) for R*Y. This decomposition involves two main terms, namely RY(z, 2')
and the increment P,W (z') — P,W (x). In this section we handle the latter increment. Our
main result is summarized in the following lemma.

Lemma 4.13. We stick to the notation of Lemma 4.10 and consider the double-sided Brow-
nian motion W of equation (3.1). Then for any t € (0,T] and z,2" € [—a,al, we have

|IPW(2') — PW(2)| < C-r-aX -t o —z?. (4.89)
Proof. As in Lemmas 4.9 and 4.12, we will separate the cases |z' — z|* < t and |2/ — z|* > t.

Case (i): |2 — z|*> < t. We start from the from the very definition of P,WW (z) and write the
increment p; (2’ — y) — pi(x — y) as a spatial derivative in order to get

PW(z') — PW(z) = / (e’ — ) — e — )W (y)dy = / du / Oup(u— )W (y)dy.

Then perform the change of variable y = u + v/fw, invoke relation (4.40) and use the decay
properties of 0,p;. This yields

PW(z') — PW(z) = \// du/@xpl W (u + Viw) dw
= %/x du/Raxpl(w)Wl(u,u—l—\/zw)dw. (4.90)

Note that in (4.90) the variable w is an element of [z, 2] C [—a,a]. Therefore, recalling the
definition (3.21) of x one can bound the increment W' (u,u + v/tw) as

W (u, u 4 Viw)| < k- (a 4+ Vt|w])X - 2% w|* < CkP,(w)aXt™/?,

where we recall that P,(w) designates a generic polynomial in w. Plugging this inequality
in (4.90) and performing the integral with respect to the variable w, we end up with

|PW () — PW(z)] < C- kXt V2 g — x|

/ 2\ 1/2-8
= Cra¥a' — ol — | PO <—|x ;x| )

< C-raXt™ P22 — 2], (4.91)

where we have resorted to the fact that |2/ — z|*> < t for the last step. The estimate (4.91)
proves our claim (4.89) when |2/ — z|* < t.

Case (i): |2/ — x|* > t. In this case, we simply write
PW (2" — PW(x) = /pt(y)Wl(a: —y, ' —y)dy.
R
Then we invoke (3.21) and the change of variable y = u + v/tw again in order to get

|PW (') — PW ()] < sl — o] / (a + ) pely)dy = wlz’ — 2]° / (a -+ VEw])p (w)duw
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Observe that whenever ¢ < |2/ — 2|2, we also have v/t < a. Hence we obtain
|PW(2) — PW(2)| < C - kaX - |2' — 2|* = C - ka* -t PP |2 — 2 825! — g0
<C ka8 — ) 4% <O waX P2 — 2P, (4.92)

We have now proved our claim (4.89) when |2’ — z|*> > t. Hence gathering (4.91) and (4.92)
the desired estimate (4.89) is achieved. O

We now gather the previous lemmas and prove our main estimate for the remainder RV,

Proof of Lemma 4.10. The remainder R™Y has been decomposed in (4.62). Then for an
estimate of the term RY(z,z’) in (4.62), we simply refer to Lemma 4.12. Next we deal with
the other term in (4.62), namely

2

i) (RW (') = BW (2)

To this aim, we combine the fact that according to Definition 3.8 we have

[o]gs " < E*a1),
together with Lemma 4.13. We obtain

lvi(2)] - [PW (2) = PW (z)| < C - kOE(a,t) - aXt™P2 . |x’ — x|,
Gathering this upper bound with our estimate of RY(z, z’), the proof of Lemma 4.10 is now
complete. 0

4.3.6. Putting all the estimates together. Having all the previous variational estimates at
hand, we can now complete the proof of Proposition 4.6.

First of all, Lemma 4.7 gives
|IMV||%ixmea < O kOE(a,t) - A~
Next, Lemma 4.8 and Lemma 4.9 yield
HMVHg/zg ~1 < O kOF(a,t) - AT a2, (4.94)

In addition, since we defined dy (MV) as —2v/0? in (3.29) and V is a controlled process
satisfying Definition 3.8, we get

X —aa X —aa, 2
ﬂaW(MV)]]gJ)g],ﬁ[ ==l ]][@O/g 6[ Sz OFE(a,t). (4.95)

/3

(4.93)

Finally, Lemma 4.10 yields
[RAO 5 < C - kOE(a, 1) - Qla, 1), (4.96)

where the functions E and @) are introduced in (3.26). As a result, plugging (4.93)-(4.96) into
the definition (3.27) of the norm © = ©%*(V) and recalling that we have chosen v = 22,
we end up with

O MY) = sup  B(at) - (IMVISE ) AT o (M)
a>1,t€[0,T]

AATTQ(a, t) M IRM|s) < O+ DA O.
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Therefore, the proof of Proposition 4.6 is complete.

4.4. Estimating the deterministic input functions. Recall that the main fixed point
problem is associated with the transformation M defined by

MV MY 2+ 9?2+ MY,

where

/@%w—lMﬁm and  $2(x l//&%sw—gxmws (4.97)

In order to complete the proof of Theorem 3.11, we now need to show that the functions !, 1)?
can be considered as controlled processes in the space B%* introduced in Definition 3.8. In
order, to achieve this goal, we assume in this section that fo € CZ(R) and g € CZ([0,T] x R).

4.4.1. Estimation of ¥*. In this section we focus on the term ! and prove that this function
can be considered as a controlled process. We summarize our conclusions in the following
lemma.

Lemma 4.14. Let fy be a function in CZ(R), and consider ¢' defined by (4.97). Then !

is an element of B%*, whose norm © (see relation (3.27)) can be bounded as

0" (") < CI7 Il

Proof. We first look at the time variations of ¥!. Namely, let t; < t,. By definition, we have

7vbtlz(l‘) - %11 ([L’) = \/R(ﬁxpm (l’ - y) - aacpm (w - y))f0<y>dy

Therefore writing 0,p;, — 0.py, in terms of a time derivative, resorting to the relation dsps =
%Zaixps and setting y = /sw we get

Wy, () — ¢y, (2 /tz 3/2/ w) fo(x + /sw)dw (4.98)

Furthermore, thanks to the decaying properties of the heat kernel p;, a straightforward
integration by parts procedure shows that

/ o (w)wdw = / el (w)dw = —28t/ ¢ (w)dw = 0,
R

where we have invoked the relation fR pi(w)dw = 1 for the last step. In the same way, we
also have [, &2p;(w)dw = 0 for all ¢ > 0. Hence we can recast (4.98) as

oro) - bl =G [ [ 0tml) (a4 vou) = o) - o)) do. (199

The Taylor expansion in (4.99), together with the fact that f, € CZ(R), allow to get rid of
the singularity s~/ at s = 0. We obtain

WL () — 0 ()] < O F oo (VEz — VE) < Ol floolta — ta] 2. (4.100)



RANDOM WALKS IN RANDOM ENVIRONMENT 53

Next, we consider the space variation of ¢'. Namely, let ¢ € (0,7] and z,2” be elements
of [—a,a]. Then we have

Yy () — o) (x) = /R (Oupe(2’ — y) — Oupe(x — ) foly)dy

Performing the same kind of manipulations as in (4.98) and (4.99), we easily get

1) i@ =+ [ [ ) (st Vi) — o)~ Vi) . (4101

Invoking the C2-regularity of f;, we thus obtain

[ (@) = 1y ()] < C - (15 lloo|2” — 2. (4.102)

Taking limits, notice that the estimate (4.102) is also valid for ¢ = 0. Owing to (4.100)-
(4.102), one can thus take dy1b! = 0 in relation (3.23), and write

Ui (y) — ¥ (z) = RY (z,y),

with a remainder R¥* enjoying a Holder regularity of order 23 (recall that 2/3 < 25 < 1
according to (3.20)). Plugging this information in the definition (3.27) of ©%*(¢!), we thus
get that ¢! € B with dy} = 0. O

4.4.2. Estimation of 1®>. The term 1? can be estimated similarly to ¢! in Section 4.4.1.
We label our results in the following lemma.

Lemma 4.15. Let g be a function in CZ([0,T] x R), and consider ¢* defined by (4.97).
Then 1? sits in the space B given in Definition 3.8, and we have

0" (¥?) < C sup (10:9¢llc + 107,9¢ <) -
0<t<T

Proof. The proof is very similar to the proof of Lemma 4.14, and we omit some details for
the sake of conciseness. Let us start with the time variations of 2. Some easy algebraic
manipulations show that they can be decomposed as

Uiy (x) = U} (z) =T + I, (4.103)
where 7; and Z, are respectively defined by
t1
i = [ s [(Oupnile =) = Opalo — ) .0}y (1104)
0 R
to
I, = / / OuPty—s(T — ) gs(y)dyds. (4.105)
t1 R

we will now treat those two terms separately.

In order to estimate Z; above we proceed as in (4.98). Namely we express 0,pp,—s — OzPt, —s
in terms of a time derivative, invoke the relation dsps = "728§p5, and set y = y/sw. We end

up with
275 du
:_/ ds/ u3/2/ w)gs(r + Vuw)dw
t
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Next we successively set w =t; +r — s and p = t; +r — s in the above integral. We get

0.2 to—t1 t1+r dp
I, = 7/ dr/ 3/2/096;01 W) Gty +r—p(T + /pw)dw (4.106)
0 r

As in (4.99), we now cancel the singularity p=>/? by means of a Taylor expansion for g and
take advantage of the decaying properties of the heat kernel p. We obtain

to— t1 t1+7r d
TI<C s [l [ d <CVT sup [l It = 1. (4.107)
0<s<t1 r 0<s<ts

Let us now turn to the time variations in IQ. That is setting u = t5 — s in the integral
defining 7, and proceeding as in (4.101), we get

2=ty
I, = /0 ui /R a1 (W) (gto—u (@ + V) = go,—u(2)) duw.

It follows that
‘I2| < O sup “azgsHoo : |t2 - t1|‘ (4108)

ISxl2

To summarize, plugging (4.107) and (4.108) into (4.103), we can bound the time variations
of 1? as follows

Vi () =47 ()| SO+ sup [|0egsloo - [ta — ], (4.109)

0<s<t2

We now handle the spatial variations of ¥2. Namely consider ¢ € [0,7] and z,2" € [—a,a).
Then we have

YR / ds / Oupa(e’ — ) — Dupal — 1)) gus(y)dy.

Along the same lines as for (4.99), (4.101) and (4.108), we obtain

V7 (2) / dU/ ds/ 2 D1 (w) (ge—s(u + Vsw) — gi—s(u) — pgi—s(u)V/sw) dw

Owing to the C%—regularity of g, this yields
Wi (2") — ¥i ()] < ¢ sup 10%gs]loc - t - 2" — . (4.110)

<s<t

Gathering (4.109) and (4.110) we can now conclude as in Lemma 4.14 that ¢? € B%* with

4.5. Completing the proof of Theorem 3.11. We will use a classical fixed point argu-
ment. Specifically, we will prove that if A is large enough we have

. . 1
07 (MY, = MV ) < 567 (V2 = W), (4.111)

which is enough to conclude for the existence of a unique V* € B%* such that MY* = V.
In order to achieve (4.111), observe that due to our definition (3.30), we have

MVy — MV, = MVy — MV = MV, — V), (4.112)
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where the second equality stems from the fact that M is linear. Next, owing to inequal-
ity (4.39) in Proposition 4.6 (whose proof is spelled out in Section 4.3.6), we have

1
@9’)\ (M(VQ — V1)) < 5@9’)\ (VQ — V1> R

for A large enough. Together with (4.112), this entails (4.111) and finishes our proof of
Theorem 3.11 item (ii). Item (iii) is then achieved taking into account the fact that we
initiate the Picard iterations from V° = 9! + 12, where we recall that 1! and 1? are defined
by relation (3.31).

Remark 4.16. The above choice of A relies on the rough path norm k,,(W). As a result,
the space (B%*, ©%}) also implicitly relies on k, ,(W). Nonetheless, we have mentioned in
Remark 3.10 that the space B’* is increasing in A. As a result, we have a canonical notion
of existence and uniqueness in the space Uy>;B%* which is independent of the quantity

Koy (W).

5. STRONG APPROXIMATION OF BROWNIAN MOTION UNDER HOLDER METRIC

In this section, we construct a coupling between the discrete and continuous environments
and estimate their (rough path) distance with respect to the type of norm introduced in
(3.21). This is a necessary ingredient for establishing the continuity estimate between Sinai’s
random walk and the Brox diffusion in Section 6.

Recall that Sinai’s random walk is defined through an environment {w; : x € Z} which is
given in Definition 2.1. In order to compare the discrete and continuous environments prop-
erly, we shall first define a continuously interpolated process from the discrete environment.

Notation 5.1. For 6 > 0, the rescaled environment {wf*® . x € §Z} is introduced in (2.15).
We have defined an approximate white noise {U°(z) : « € 0Z} in (2.17). We now introduce
a modified approximate white noise {U°(x) : z € 0Z} by setting

U° = —2U0°, where U’(z) =2w}® —0? = w}® —w . (5.1)

This noise will be mapped into a field with continuous spatial parameter {U ix): 2z € R}
by setting

U° = linear interpolation obtained from U°. (5.2)

More specifically, we set U?(0) = 0 and for = € 6Z we define U%(z) recursively by
Uz —6,2) = U%(x) — Ul(x — 0) = U ().
Then we require that U° is linear on each subinterval [z — 9, z].

With this notation in mind we now emphasize a technical point in our considerations.
Namely, according to Sinai’s assumptions for recurrence, we have that E[log(w; /w})] = 0,
and therefore the random variables U%(z) defined by (5.1) are not necessarily centered.
Nevertheless, we get an asymptotic centering. Let us label this property for further use. Let
o? denote the variance of the variable &, = log(w; /wi).
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Lemma 5.2. For ¢ >0 and x € 0Z, let U°(z) be defined by (5.1). We decompose U°(z) as

U(x) = U7 (2) + Uy (), (5.3)
where UY, U are respectively defined by
U)(z) £ U°(x) —E[U°z)], and Ud(z) = E[U’(2)]. (5.4)

Then the following holds true:

(i) the random variable U (z) is centered with variance Var (U{(z)) = o'o}d + o(9).

(ii) Ul(x) is of order O(6%?).

Proof. We have already argued that (i) holds true in Remark 2.16 (cf. (2.26) and (2.27)).
We will thus focus on item (ii). Next let us recast (2.15) by setting

& = IOg(W;/a/W;/(s)- (5.5)
Thanks to relation (2.13) we get

2 2 5
o2 (VS
Wt = Tt o/~ 2 (1 tanh< 5 (5.6)

Hence owing to expression (5.1) we get
5
Ud(z) = 20°E {tanh <\/5%’>} :

Resorting to a Taylor expansion of the function tanh and an easy dominated convergence
argument, we thus obtain
3
&
2

where we have invoked the recurrence hypothesis E[€2] = 0 for the last identity. This finishes
the proof. 0

B 51/2 53/2
Ul(z) = o? (TE[&S] + TE

+ 0(53/2)> = ¢,0%2 4 0(6%/?), (5.7)

From the above discussion, it is natural to view the centred process Uf as a discrete
approximation of W (which will be coupled to W according to Theorem 5.3 below) and
regard Ug as a remainder. According to Lemma 5.2 (ii), the exact variance of the Brownian
motion W should be given by

£ ot (5.8)
Here we do not want to view U° as an approximation of W (under rough path metric) since
the straight line x — Ug (x) does not have the correct spatial growth aX encoded in the

definition (3.21). With those preliminaries in hand, our main result in this section is stated
as follows.

Theorem 5.3. Let W = {W(x) : x € R} be a given two-sided Brownian motion with
variance T2 defined on some probability space (Q, F,P). Let o, x be given fized parameters
satisfying the constraint (3.20). We denote by F the common distribution of the random
variables &, = log(wy /w}) defined by (2.13). Then for each 6 € (0,1), one can construct
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a stochastic process U = {U{(z) : x € 6Z} on (0, F,P) such that the following properties
hold true.

(i) The random variables {U?(x) : & € §Z} are independent and identically distributed, with
a distribution determined by the following relation:

g2 g (7 o) ith 7R
1) = — 1+e\/52_ Y , wi = F.

(i) Let Uf be the interpolated process constructed from U over the grid 0Z. Recall that
thAe rqugh path lz’fzﬁz’ng W of W is defined by (3.18). Correspondingly, we also deﬁneA UJ =
(U8, U%?) where U2 (x,y) 2 Ud(x,y)%/2. Consider the rough path distance between U and

W defined by
. Ug W g—a,a] 05;2 — W ([l—a,a}
e (0 W) 2 cup (n LWt 0 s\ 59)

a>1 aX azX

Then for any given n € (0,1/2 — a) and ¢ > (1/2 — a — n)~t, there exists a constant
C = Cy g > 0 such that

e (O, W) ||, < Co" (5.10)

for all 6 € (0,1). In particular, by the Borel-Cantelli lemma, for any T € (0,1) we have the
following a.s. estimate:

Po (fj‘{,w) < 267 (5.11)

where Z is some a.s. finite random variable that is independent of o.

The rest of this section is devoted to the proof of Theorem 5.3. The first ingredient is
a classical approximation theorem proved by Komlos-Major-Tusnady [21], which we now
recall.

Theorem 5.4 (Classical KMT Approximation). Let G be a distribution function on R
with mean zero and unit variance. We denote by R the moment generating function of
G, considered as a function of z € C:

R(z) = /R = G(dx),

whenever the right hand side above is properly defined. Then we suppose that G satisfies the
following assumptions.

(i) The function R is well-defined in some neighbourhood (—tg,to) of the origin.
(i1) Either G is lattice-valued or there exists p > 1 such that R verifies

/ |R(t + iu)|Pdu < oo, for all t such that |t| < to. (5.12)
R

Then given a sequence {Y, : n > 1} of i.i.d. standard normal random variables on some
probability space (Q, F,P), there exist a sequence {f, : n > 1} of Borel functions from R*"to
R such that

X, 2 fu(Yi, ..., Yao)

defines an i.1.d. sequence with distribution G and the following estimate holds true:
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P (11(21]?2( |Sk — T| > C'logn + :I;) <Ke™ ¥n>1,2>0. (5.13)

Here the random variables Sy and T, are respectively defined by Sy = X1 + -+ + Xp, T =
Yi+---4+Y, and C, K, X are constants depending only on G.

Remark 5.5. The condition (5.12) is satisfied if G has a C! density function with at most
finitely many algebraic singularities. It should be seen as a mere technical assumption.
The coupling between the two sequences {X,},{Y,,} still exists without this assumption.
However, the price to pay is that both sequences need to be constructed together in this case
(one can no longer first fix Y and then construct X from Y to satisfy the estimate (5.13)).
Correspondingly, without Condition (iii) in Definition 2.1 of the discrete environment, one
cannot fix W in advance; the coupling between W and U{s (in particular, W itself) will
also depend on 0. This will only lead to the sacrifice of an arbitrarily small power of 9 in
the final result. To reduce technicalities, we therefore decide to impose Condition (iii) in
Definition 2.1.

Our next ingredient is a rough path convergence result based on a Kolmogorov type
estimate. Although it will be applied to a (trivial) R-valued rough path, we state the result
in a general finite dimensional vector space V. This does not affect the difficulty of our proof
and might be interesting in its own right. Let X be a V-valued path, whose increments are
written as XJ,. We assume that X can be enhanced as a second order rough path

Xeo= (X, X2)eVaV® —a<s<t<a (5.14)

s,t)
where the rough path notation is borrowed from [11]. For a € (1/3,1/2) we define
165 X

@ —a<s<t<a |t - S|2a'

X = (1 X220 = (5.15)

—a<s<t<a ’t - 5|
Recall that the rough path property also means that X satisfies Chen’s relation. Namely,
for —a < s <u <t < awehave

Xs2,t X - X{it - Xsl,u ® let,t- (5.16)

S,U

We now state our main rough path convergence theorem based on Kolmogorov type esti-
mates.

Theorem 5.6. Let X,, = (X;,,X2,) and Yy, = (Y}, Y2) be two random second-order

s,t) s,t) T st

rough paths over the time horizon |—a, a] in some finite dimensional vector space V' as defined
in (5.14)-(5.15). Let C, p, e, a, v, q be given positive parameters such that ¢ > 2, v > 1/q and
a € (0,v—1/q). Suppose that the following moment bounds hold true:

1Xsallze < Cplt = sl [V yllze < Cplt — 5] (5.17)

and
1Xs, =Y lloe < Cpelt —s|”, X2, = Y2 || Lo < Cplelt — s (5.18)

Then there exist positive random variables K' € L1, K* € LY/?, such that
X' =Y. <K' | X?2 =Y < K2 (5.19)
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and
IK e < C'pa” e, ||K?|pa2 < C'p%a®¥ Ve,

where C' is a constant depending only on C, o, v,q.

Proof. We divide this proof in several steps. Here we use the notation < to denote an
estimate up to a multiplicative constant depending only on C, a, v, q.

Step 1: Inequality on successive dyadic points. Let D, = {ka/2" : —2" < k < 2"} be the
n—th order dyadic partition of [—a,a] and D = U2 (D,,. For i = 1,2, we define

K= max |[Xi. , =Y\, 4 (5.20)
—2n41<k2n an Gigm an %@
Then for i = 1,2 we trivially have
2’71
. . . q
L B O (A
ke 211 2 2 2 2
Owing to assumption (5.18) we get
E[|Kﬁb|q] < gn+1 C9pe (%)m _ Qqungaqu—n(Vq—l)'
This yields the following inequality:
K | 2o < epar2—m=1/a), (5.21)
Similarly, for the second level component we also have
| K2l S cptav-2ne=1/a), (5.22)

Step 2: Decomposition of dyadic intervals. Let s < t be two dyadic points. There is a unique
m > —1 such that
2-mHlg <t — 5 < 27™a. (5.23)

We claim that there exists a finite partition s =79 < 77 < --- < 71, = t, such that:

(i) For each i, [1;, 7i11] is a dyadic sub-interval of order n for some n > m.

(ii) For each n > m, there are at most two intervals among the collection {[7;, 7;41]; 0 < i <
L — 1} that belong to the dyadic partition D,,.

To prove the claim, we start from the point s. Denote py £ s. By uniquely writing s = Q%a

with k being an odd number, we set p; = %a . We then reduce p; to the unique form of
k/

7@ Where k" is odd, and iterate this construction. In this way we produce a family (p;) such
that if we write p; — p;_1 = 27™a, then we have n;,; < n;. Denote by M the last index such
that pyr < t. Since ng =n, njp1 < ny, pi — pi—1 = 27 "a and we are working on the interval
[0, 1], the quantity M is clearly finite. Therefore we have obtained a family {p1,..., paps1}

such that

S<pL<pe<- - <ppy<t<pptr
As mentioned above, the indices n; satisfy n;.; < n;. Thus the intervals [p;, p;1+1] correspond
to different orders of dyadic partitions D,,,. In addition, [p;_1, p;] is always a dyadic interval
of some order n > m since

—m

pi— pi-1 S t—s< 2 "a.
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If pps happens to be equal to t, the p;’s give the desired partition and we are done. If py; < t,
we start from the t-end and propagate towards the left direction in exactly the same way as
above to obtain

N1 < par S N < vt < e < g < g =t
where py is the last point that is not smaller than py;. We claim that py; = pn. Indeed,
suppose on the contrary that py; # pux. Then

N1 < pm < pn S T< Pra-

Let us write

k k+1 [—1
lons prr1] = »® o @ and  [punt1, un] = 5 @574

Since un € (par, pars1) and par, par+1 are adjacent dyadic points, py has to be a finer dyadic
point, i.e. ¢ > p. Similarly, since py; € (un+1, tn) we must also have p > ¢. This clearly
gives a contradiction. As a result, we have p); = pun. Summarizing our considerations for
this step, the partition

{P0s P1,- s PM = NS IN—1, - -+ U1, Ho }

satisfies our two claims (i) and (ii), with L = M + N.
Step 3: Proof for the first level of the rough path. We now take the results of Step 2 for
granted and turn to the proof of (5.19) for X' — Y1, We start by introducing another piece
of notation. Namely, for i = 1,2 and —a < s <t < a we write

Zé,t = X;t - th (5.24)
As in Step 2, consider s, t satisfying (5.23) for a given m > —1. From the properties of the
partition {7y, ..., 7.} established in Step 2, we get

M+N

Z' Tj— 1,7']’\2ZK1

where we recall that K! is defined by (5.20). Thus, thanks to the fact that ¢ —s > 27(m+lq,
we obtain

s — K}
Zud Z = K (5.25)

|t— s|O‘ |t—3|a S a2

Note that we have established (5.25) for dyadic pomts only. However, due to the fact that we
have assumed Z' to be continuous, one can easily extend (5.25) to any couple —a < s <t < a
by taking limits over dyadic points. Hence we proved that

12|l < K. (5.26)

Moreover, due to the constraint o € (0,v — 1/q), the random variable K' has finite ¢-
moments. Indeed, owing to (5.21) one has

K e <a™® Z 2" K} || e < pea” ™ 22’”(”’1/(1’”) < pea” ™. (5.27)

n=1 n=1

Gathering (5.26) and (5.27), we have thus proved (5.19) for the first component X! — Y.
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Step 4. Proof for the second level of the rough path. Recall that Z? is defined by (5.24).
Then invoking Chen'’s relation (5.16), it is readily checked that for s < u < t we have

Zs2,t - Zs2,u + Zg,t + X;,u ® (Xi,t - Yul,t) + (Xsl,u - }/sl,u) ® Yul,t (528>
Considering two dyadic points s < ¢ such that (5.23) holds true and iterating relation (5.28)
over the partition {7'0, ..., T} constructed in Step 2, we end up with

2 1 1
Zst_z TI—1,Ti Z T0,TI— 1®X7'z 1,71 Z T0,TI— 1®Zﬂ 1,7 <5'29>

Therefore we will bound Z 2t in the followmg way:

Z’ T — 1Tl‘+2| T0,T]— 1 ' Tl 1Tl|+z‘ T0,T]— 1 Tl 1Tl| (530>

Next we recall that K} K2 are deﬁned by (5.20), and that we have obtained their moment
estimates in (5.21) and (5.22) respectively. In addition to the random variables K}, K2, we
define two more random quantities M, and N,, as follows:

Xk 1 k a

on Ggm

1
kala k

an~ Yaon

M, = max , and N, = max

—2n41<k2n

Similarly to (5.21), it is easily seen that
IMllzo V([ Nullza S pa27 =14, (5.31)
Plugging this information into (5.30) we get that
<2 ) K§+4< > Ki) : ( > (Mn+Nn)>,
n=m+1 n=m-+1 n=m-+1
from which we obtain

= M, + N,

2 nogo :

|25 ) N s
—— <SL+K'-R,  where L% szaza R2

32
= P (5.32)

n=1

We can now estimate the terms L and R in (5.32). Indeed, the inequality (5.22) yields

HLHL‘1/2 < a2 Z 22na||K2||Lq/2 5 CL2(l/704)p2g Z 22na272n(ufl/q) 5 a2(ufa)p2€. (533>
n=1 n=1
Similarly, the inequality (5.31) yields
[1R]|za < pa”™. (5.34)

Reporting these relations into (5.32) and using an approximation procedure along dyadics
as we did in Step 3, we end up with

12200 < L+ K'R = K2
Gathering the estimates (5.27), (5.33) and (5.34), we arrive at
[ are < 1Ll arz + 1 Rl a2 < Ll pare + K| ol | Rl 2o

This gives the desired estimate for the second level difference X2 — Y2 and finishes the
proof. O

< €p2a2(ufa).

Y
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Now we are in a position to prove Theorem 5.3.

Proof of Theorem 5.3. Recall that U? is defined by (5.4). Before introducing the coupling,
we make one more technical observation on the structure of this random field. In view of
the Taylor expansion (5.7), let us further write

O3 (w) = U, (@) + U7 (x), (5.35)
where we recall that £ is defined by (5.5) and
O} 1(w) £Vo0%€],  Uiy(x) £ U (x) - Véo®e]. (5.36)

In the decomposition (5.36), the term U7 ,(x) is easily handled. Indeed, notice that {U7 () :
x € 0Z} is a sequence of i.i.d. centered random variables. Next the ellipticity assumption
(i) in Definition 2.1 together with our definition (5.5) imply that £ is uniformly bounded in
(x,0). Owing to the Taylor expansion (5.7), we thus get

‘Uf72(x)| < c6®?, (5.37)

for a universal constant ¢. The term U7 ,(x) in (5.36) can thus be treated as asymptotically
null, and we will mostly focus our attention on U7 ().

Let us now describe the coupling between W and U?. Namely let W be a two-sided
Brownian motion with variance 72 £ ¢4Var(F') defined on some probability space (€2, F, P),
where we recall that F' is the common distribution of the random variables &,. For each fixed
§ € (0,1), we set W2 = §=1/2IWy,. Note that W? is again a two-sided Brownian motion with
variance 72. With obvious adaptation of constants, one can apply Theorem 5.4 to construct
an ii.d. family {X? :m € Z} on the same probability space (€2, F,P), such that

X0 52100 (”—i) = %, (5.38)
“o

where the second identity stems from (2.13), and the following estimate holds true:

P ( max |57, — WP,| > Clogk + a:> <Ke™ Vk>1,2>0, (5.39)
—k<l<m<k ' " ’

where Sl‘fm =5 f+1 + -+ + X and C, K, \ are constants depending only on the distribution
of (5.38).

We now proceed to define an approximate white noise Uf . Namely, in view of (5.6), we
define

o? 2
2 14 VN
With (5.4) and (5.36) in mind, we then set

U7 (@) & —4 (0’ = Elwf?]), U7(2) £ VoX]s Uiale) £07(2) = U7y (x)  (5.40)

+6 A&
2=

w T € 0.

and define the linearly interpolated processes [715 , Ufyl, Uﬁz accordingly. We also introduce
the trivial rough path lifting

é UE(ZL’, y)2

U} £ (07,0%%),  where  U}"(z,y) )

(5.41)
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as required in the theorem (and recall the lifting W of W defined by (3.18)). Note that all
these processes have the correct distributions associated with the a priori distribution of the
discrete environment and they are all defined on the same probability space (2, F,P) where
the Brownian motion W is given.

For now we fix a > 1 and we want to apply Theorem 5.6 to the random rough paths
X = U and Y = W over [—a, a]. To this end, we need to first establish moment estimates
in the form of (5.17) and (5.18). Recall that «, x are given fixed parameters satisfying (3.20)
and we also fix 77,q to be such that n € (0,1/2 — ) and ¢ > (1/2 —a —n)"' V 2. Set

v 2 1/2 —n. Tt is easily checked that the parameters a,q,v satisfy the constraints in
Theorem 5.6. Moreover, we will prove in Lemma 5.7 below that for all x,y € [—a, a] we have
10 (2, 9)l|e < Ca'ly —al” (5.42)
Wz, y)llee < Ca’ly —xf” (5.43)
103 (2, y) = W(a,y)||ee < Ca”- 3" (1+log(ad™)) - |y — |, (5.44)
1072, y) = W@ y)l| e < Ca® 87 (1+log(ad™)) -y —af*, (5.45)

Applying the above inequalities and Theorem 5.6 with

p=a’, ¢=79" (1 + logaé_l) ,
we conclude that

107 = WEe < K'a), 072 = W2 |laa < K(a), (5.46)

where K'(a) € L7, K?(a) € L%? are random variables such that
1K (a)|| e < Ca**5" (1 + log ad™ "), [IK*(a)] pare < Ca' 26" (1 +logad™"), (5.47)

with some constant C' depending only on «,n,q. Our goal is to estimate the distance
Pax (U3, W) defined by (5.9). Now plugging (5.46) into the definition (5.9) we easily get
Pax (U, W) < K* + K2,
where the random constants K', K? are respectively given by
K! K?
K' £ sup (a)’ and K2 £ sup (a)'

a>1  aX a>1 a?x

Since «, y satisfy the constraint (3.20), by slightly adjusting 7 if necessary, we can rewrite
the bound (5.47) by

K'(a)

|, K(a)
ax LP

Nl < Ca™7,

< Ca 0", and H

where ( is any fixed number in (0, x — 1/2 + «) and C depends on ¢, «,n,p. Note that we
have used a different index p (instead of ¢ in (5.47)) here.

To proceed further, we first estimate

K! = _[(K! -
P (Kl > y) =P (8211) aia) > y) < ZIP’ ( a)((a) > y) < Cpy Por Za’pc.
az a=1 a=1
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We fix a large p such that the last series is finite. It follows that

o0

51
E[(K")Y = C]/ Yy 'P (K" > y) dy + q/ y P (K' > y) dy
0 on

< 69 + Cp7c5pnq/6 yq—p—ldy < Cp7q’<5qn‘
n

Therefore, we arrive at
||K1||Lq < Cp,q,C(Sny

and a similar estimate is proved along the same lines for K2. This yields the desired inequality
(5.10) and thus completes the proof of Theorem 5.3. O

We close this section by giving the technical lemma which is used in the proof of Theo-
rem 95.3.

Lemma 5.7. Recall that the coefficients o, B,m, x,q satisfy 1/3 < f < a < 1/2,0<n <
1/2—a<x<pB/2andq> (1/2—a—n)"t. We have also set 1/2 — a = v. The processes
(U8, U%?) have been introduced in (5.41). Then the following moment estimates hold true,
for all x,y € [—a,al:

107 (@, )| < Cally — ] (5.48)

W (@, 9)llee < Caly —xf” (5.49)

TP (2,y) = W (2, y)lle < Ca”-6" (1+1log(as ™)) - [y — |, (5.50)
1072 (2, y) — W2, 9) || o < Ca® - 67 (1 +log(ad™h)) - |y — xf*, (5.51)

where C' is a constant depending only on q and 7.

Proof. Consider the partition P? = [—a,a] N dZ. Let x < y € [—a,a]. We divide this proof
in several steps.

Step 1: Proof of (5.48) when x,y belong to the same interval. We assume for this step that
both = and y sit in I°, = [(m — 1)6, md] with some m € Z. In this case, by the definition of
Uf,l we have

2 Y- T =5 y—x s
U (2,y) = == - U (md) = - X
1,1( y) 5 1,1( ) \/5
where X? has been defined in (5.38) and where we recall from (5.40) that U? is obtained
through the relation Uﬂl(x) = \/SX;S J5- Since X? has a given fixed distribution and since 7
satisfies 1/2+n+v =1+mn—a < 1 we obtain that

N —x — z|1/?
109 s )lae = 2= xs ) < o =2

Vo V6

where the last inequality follows from the fact that |y — x| < § < 1. As far as the process
U}, defined by (5.36) is concerned, we invoke the almost sure uniform bound (5.37) to write

ly — 2" < Coly — xl”, (5.52)

|z — |
5

107 2 (2, 9) 20 = 1075 (md)|z0 < CV6ly — 2] < Cly — " (5.53)
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Gathering (5.52) and (5.53), we have thus proved (5.48) for x,y in a generic interval I .
In order to check (5.49) in this interval, we just use the Brownian distribution of W. we
trivially get

_ )2 1/q
e R W

= Coly — a|"ly — =" < Cy2"a"y — x|, (5.54)

which proves (5.49). Eventually let us check (5.50) on the interval I9, (inequality (5.51) is
left to the patient reader). To this aim we put together (5.48) and (5.49). This yields

107 (,y) = Wz, y)lla < 07 (@ 9) e + [IW (2, 9) |20 < Conv/y =2 < Coydly — l”,
from which we conclude (5.50).
Step 2: Proof of (5.48) when x,y belong to different subintervals. For simplicity, in what
follows we just assume that z = [J and y = md for some [ < m (otherwise we just add an
extra error term that falls into the first case). Therefore the quantities of the form U % will
be equal to the terms U°. As in Step 1, we will divide the estimates into an estimate for Uf,l

and U}, separately, according to (5.35). Now in order to prove (5.48) for Uﬂl we go back
to (5.36) and (5.40). This allows to write

: d S X S X
US,(z,y) = V9 X0 =\/S(m—1) x ZZE0 = fy— g x =200 5.55
1,1(x y) j;l 7 (m ) \/m Yy z \/m ( )

Moreover, since {X;S : j € Z} are i.i.d. with a fixed distribution, according to the central
limit theorem we know that

"o X0
% <G, foralll <m.
m— 1
La
As a result, we have
1071 (2, 9) oa < Coly — 2|y — x| < Cypaly — al”. (5.56)

Let us turn now to the process Ufg in (5.36) and (5.40). Here the main observation is the
following: by writing

0?,2(%3/) = Z Uf,Q(ﬂS) (5.57)

j=i+1

it is easily deduced from (5.40) that the right hand side above above is a sum of i.i.d. centered
random variables. Owing to (5.37) we end up with

E [(UiQ(x,y))Z] < C(m— 1§ = C8(y — z).

Considering the L?>-norm and recalling that z,y € [—a, a] this yields
107 5(. )l < CoVy = < Cydaly — ). (5.58)
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In addition, as easy BDG type argument in the martingale increment (5.57) enables to
improve (5.58) into a L? bound of the form

107 5(z, y) || 1o < Cpgda’ly — z|". (5.59)

Now combining (5.56) and (5.59) into (5.36), we have proved inequality (5.48).

Step 3: Proof of (5.50). For the sake of conciseness, we will only treat the case x = [4 and
y = mo for [ < m as in Step 2. Let us separate again the study of Uﬂl and U7,. For the

term 0{571 we recast relation (5.55) as

01 (,y) = VoSim,  with Sy = Y X7,
J=l+1
Then adopting the notation of (5.39) we have
U (z,y) — W(z,y) = V6 (S}, —W},).

Therefore with k £ |I| vV |m| we see that

U2 (2,y) — W, y)| < V6 max |82, — W0 | = VGL(k).

—k<i<j<k

We now estimate L(k) in the following way. First write

E [(L°(K)7] = ¢ / Ty (LK) > y) dy

Clogk
= q/ Yy 'P (LO(k) > y) dy + q/ (Clogk + )" 'P (L’ (k) > Clogk + z) dz..
0 0

In the first integral above we trivially bound the probability by 1. For the second integral
we invoke the tail estimate (5.39). We obtain

E [(L°(k))"] < (Clogk)? + q/ (Clogk + x)1 ' Kedx < Cy(1 4 log k)4
0

It follows that

Upy(2,y) = W(z,y)]],, < CyVologhk < Co" (1+logad™) |y — ", (5.60)

where we have used our assumption that |x —y| > § for the second inequality. It remains to
estimate the term U} ,, which is easily done as in (5.57)-(5.59). We get

107 5(z, y) || e < COly — 2|y — 2| < Cydaly — |”. (5.61)

Combining (5.60) and (5.61), we obtain the inequality (5.50).
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Step 4. Proof of (5.51). Here we will limit our analysis to the term (A]f;z, the other term
being easily handled. Now, for (5.51) we simply observe that

162 5) — W2 e = Il (08 0) = W) (O )+ W, 9)) ]

1, ~
<508, ) = Wi, (10790 + W w)]),.)
< Cy-a"" (1+1logad™) |y — x| - aly — z|”
= Cya®6" (1 +logad™") |y — x|

This gives the estimate (5.51) and completes the proof of the lemma. U

6. CONVERGENCE ESTIMATES

This section is devoted to the main steps towards a convergence of the discrete martingale
problems related to Sinai’s random walk to those related to the Brox diffusion. We will first
explain our global strategy in Section 6.1 and then delve into the details of computations.

6.1. The main convergence estimates and global strategy. Recall that in Proposition
2.24 we have obtained a discrete PDE for v? := V? f. With this notation in hand, it is readily
checked that the discrete PDE in Proposition 2.24 can be spelled out as

v, () = - —53 Z > VIR (x =9I, (wy), (6.1)

7=0 yedzZ

where the quantity 7¢ () is defined by

m(x) =06 VYR (x—y)foly +53zsz — g -, (y).  (6.2)

yeSZ j=0 yedZ

In (6.1)-(6.2), recall that the kernel p° is given by (2.72). Namely, we have
. 1 Ty
Pz —y) = 5??/52 (T) ; (6.3)

where p? is introduced in Remark 2.22. We have also used the notation

Y

Tz, y) = Z% () 4oz — 8) T%(z), with T°(z) & —20%(2),  (6.4)

Z=T

where U? and U° have been expressed in (5.1) and where the expression 1 (v9(2) +v{(z — )

stems from our formula (2.3) for Vf. Indeed, notice that (2.3) can be read as Vf(z) =
$(Vf(z) + Vf(z — 1)). Also observe again that the change from U’ to U° is for matching
the (—1/2)-factor in the continuous equation (3.1).
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Next recall that in Section 4 we have analyzed the corresponding continuous space-time
equation (3.14), which can be recast similarly to (6.1) as

w(r) = - / / 2 (z —y ( / yvts(z)dW(z)) dyds

= n(z) — —(MV)t(fB), (6.5)
where the function MV is defined by (3.17) in the rough path sense and 7 is given by

/ Oepi(z —y) foly)dy +/ / Ds(T — ) g1—s(y)dyds. (6.6)
In this section in order to ease notations we will also write
Wi(z) = (MV)i(2). (6.7)

Our global aim is to quantify the convergence of v’ to v as & — 0, provided that U° in
(6.1)-(6.4) converges to W in (6.5). More specifically, the result we wish to achieve is the
following.

Proposition 6.1. [Preliminary version| Let T be a fized positive time horizon. Recall that

we consider some exponents «, B, x, 0 fulfilling condition (3.20) and we have chosen v = 0‘4;5.
We consider the norms k., as in (3.21) and ©%* as in (5.27). Pick X such that
. 1
AT ( sup "‘fomx(Ui) + "‘foa,x(w)) =71 (6.8)
0€(0,1] 4

Then for the processes v°,v defined respectively by (6.1) and (6.5) we have
d(°,v) < oY17

for all sufficiently small §. Here ©° denotes a proper linear interpolation of v° and d(%°,v)
is a suitable rough path distance between ©° and v.

Notice that Proposition 6.1 is stated here rather informally. The definitions of #°, d(%°,v)
as well as a more precise formulation of this proposition will be given in Proposition 6.5
below. We now elaborate on the global strategy employed to prove this basic result.

Step 0: Setting. Let us start with the discrete process v° defined by the equation (6.1). In
order to compare it with the continuous rough path v, we shall consider a suitable linear
interpolation of v°, which is denoted as ©#° and is defined precisely in the following way.

Definition 6.2. For ¢ € §°N, and z € R, we set
xQ — X E) xr — xl k)

5 U (z1) + 5 Y (z2), (6.9)

where x1, 25 are the adjacent grid points in 0Z such that x € (xy, z5|. For general t > 0, we
further set

0 (z) =

tzQU ()—{—tQtl'Ué(fE) t>52,
CR o

where t1,t, are adjacent grid points in §°N such that ¢ € (¢, t5].
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We also recall our Notation 5.1 for the linearly interpolated discrete environment, in par-
ticular, the decomposition U =0 5+U ¢ where U 9 is coupled with the Brownian environment
W according to Theorem 5.3 and U ¢ is merely a deterministic straight line x — csx where
cs = O(6%?) as 6 — 0 (see Lemma 5.2). With this notation and decomposition in hand,

the path #9(-) should now be viewed as a continuous rough path controlled by U?. Since
Owv; = —2v; in the continuous case, in order to expect a suitable convergence estimate one
should naturally define the Gubinelli derivative of 79 as

~5 A ~8
aU(SUt — 21}t.

In addition, let us define kq., (U$) and ©%*(#%) in exactly the same way as in the Brownian
case by replacing W with U¢ and v with #° in relevant places. We also recall that the rough

path distance between IAJ‘{ and W is defined by (5.9). The controlled distance between #°
and v is then defined by the following function:

. ~6 A 6,1 _ 10t]x[—a,a] 5 B [0,t]x[~a,a]
dogw (00 2 sup E"a,t) x ([ = o571+ X7 10g0" - o

A 7Qa, ) IR — R[5, ) - (6.11)

The estimation of dﬁg’w(ﬁ‘s ,v) is the main goal of Proposition 6.1.

To describe the next few steps, let us introduce a slightly nonstandard notation for integer
parts. This notation will be useful to analyze the discretization procedure.

Notation 6.3. Let t € Ry and z € R. We denote by |t] the largest grid point in 62N such
that |t] < ¢. In the same way, |x] is the largest point in 6Z such that |z| < x. Writing
||y and ||z for the usual integer parts, we have

t

mzbJNa‘a and LxJ:szé.

We now Somewhat artificially transform the discrete equation (2.39) for v into a contin-
uous equation for #°. That is we write

i) = 3w) — 3 [ [vtyte - ([ o a0 ) dyas. 612

where we recall that p is given by (6.3), and where J?(z) is defined by the difference of the
two sides of the above equation. Also notice that the quantities |-| in (6.12) are introduced
in Notation 6.3. We obtain the following decomposition

7 () = vilx) = (T () = me()) — % (W, (z) = Wi(z)) (6.13)

where W W are processes given by (recall our notation (6.7))

Wi) - / [ vzt Lw—yJ)( [ it ) dus, (6.14)

/ / Ds(T — (/x V—s(2 )dW(z)) dyds = (MV)(x). (6.15)

Wi (x)
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Notice that W?, W will be controlled rough paths thanks to our a priori estimates from
Theorem 3.11 and Step 1 below. In the sequel we will also use the following notation for the
stochastic integrals in (6.13)-(6.14):

Tz, y) & / TB (N0 (2), and Tu(,y) 2 / " ()W (2). (6.16)

With those notational preliminaries in hand, our strategy in order to get the convergence
of (6.12) to (6.5) can be summarized as follows.

Step 1: A priori estimates for the discrete equation. Based on the discrete equation (6.1),
we shall obtain a uniform estimate on the discrete path vfk(a:) under a discrete rough path
metric. This will be summarized in Proposition 6.13 below. This result shall allow us to
write down a corresponding uniform estimate on ©%* () with respect to §. More specifically,
one expects that

sup ©* (8°) < M (6.17)

§>0
where M is a constant depending on r,, (W) as well as the initial data fo, g
Step 2: Estimate dﬁ?’W(j %.m). Our next task will be reduced to an analysis of the difference

J?® —n°, where n° is introduced in (6.2). Since n?(z) and 7;(z) are close to each other, it is
reasonable to expect that

or w(T0,m) < Cud?, (6.18)
with some exponent v > 0, where C); is a constant depending on M arising from (6.17).
Step 3: FEstimate dﬂ-a (W3, W). For the processes W and W respectively defined by (6.14)
and (6.15), we will express this distance in terms of dyys w(@,0), p(US, W) as well as errors

coming from the local CLT and U2. In this step, it is important to obtain a contraction
factor (which can be made < 1) in front of the quantity dfj(ls,w(ffé, v).

We are now in a position to formulate our main convergence estimate for the distance
dﬂ(ls W(175, v). Since the fixed point problems also involve an initial data fy and an inhomo-
geneous term g, we first introduce the suitable spaces where these functions are assumed to
live.

Definition 6.4. Let L > 0 and » € N. We say that a function fy of the spatial variable x
is an element of Cj if

||f0||cg = Sli}i) al sup }Dl;fo(:c)| < 00.

k<r,z€[—a,a]

Similarly, we say that a function g of the space-time parameter (t,r) is an element of Cj if,

denoting by Dy, g the derivative gtz 5.7, We have
Iglle; £supa™  sup  |Dig(t, )| < cc.
a>1 i+j<r

te[0,T), z€[—a,a]

Our main convergence estimate for dgs w (0°,v) is stated as follows.
19



RANDOM WALKS IN RANDOM ENVIRONMENT 71

Proposition 6.5. Let fo,g € C; be given functions. Let o, 3,x,0 be given parameters
satisfying (3.20) and let ' € (B, «) be also given fized. Recall that the distance dﬁtls’w(f)é,v)

is defined by (6.11) with respect to the parameters «, 3,6 and any given \ > 1. We introduce
two additional quenched variables related to the paths US and W, for a given constant Cs:

K(w) £ ézl(lopl]"ia,x(ﬂg)"f”fa,x(W) (6.19)
F(w) 2 min{(4Cs)™2, (4Cs) 57 - Blw) =7 ). (6.20)

Then there exist positive constants C1,Csy, C3 depending only on these parameters and T,
such that the following quenched estimate holds true for all § € (0, (w)]:

dogw(7,0) < C1e® (Ifolley + gl ) =
/( /

{5/3 + (1 + Koy (U9) + HQ,X(W)>2 (MX(IT{, W) + 51#”)} . (6.21)

where A = A\, is chosen by the relation below:
a—p' 1

Cad™" T Rlw) = . (6.22)

Finally, we give the precise formulation of Theorem 1.3 that was stated in the introduction.

Theorem 6.6. Let X° be the Sinai type random walk whose law is described by (1.1), properly
rescaled as in Section 2.2. Respectively, consider the weak solution X€ to the equation (1.4).
Let o, 8, x,0, 3" be given fized exponents as in Proposition 6.5. Then there exists a coupling
(X%, X ss0, such that X3 = X§ =0 and for all t € [0,T], § € (0,F'(w)], h € C} we have

B (1(X0)) — B [h(XD)]| < Crexp (Co@)™7 ) [1hlley

x (1+RE(w))? x (pmx(ﬂf, W) 44 éﬁ%ﬁ)) . (6.23)

where Cy,Cy are constants depending only on the exponents o, B, x, 0,8, T and k(w), &' (w)
are defined by (6.19), (6.20) respectively.
The corollary below completes the link between Theorem 1.3 and Theorem 6.6.

Corollary 6.7. Under the conditions of Theorem 6.6, Theorem 1.3 holds true. Namely for
h € C3 (with C3 given in Definition 6.4) we have

B [(X0)] — Bu[h(X)]| < Chrlw) &,

with ¢ = 2257 o~ L

~ (0.06.

Proof. To see how Theorem 6.6 implies Theorem 1.3, we first recall from (5.11) that
pax(U3, W) <E(w)d7 V3 € (0,1]

for any given fixed 7 € (0,1/2 — «), where =(w) is an a.s. finite random variable depending
on a,,T. As a result, the convergence rate in (6.23) is given by ¢¢ with

(
¢ = sup { min (7', Q(B, 5’)); (1,5,0,a) € D} , (6.24)
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where the quantity Q(f, ') is given by

A )
Q(ﬂuﬁ)_ ﬁl‘i_ﬂ )

and where the domain D is defined by

1 1 1
D:{(T,B,ﬂl,a)ER4:O<T<§—04, §<6<ﬁ’<a<§}.
The elementary and tedious procedure leading to the computation of (6.24) can be sum-
marized as follows. We first optimize the function @), for which we start with a change of
variables ' = a — k, f = a — k — {. This leads to slightly simpler maximisation problem.
Namely we wish to find

A(a) = sup{Q(k,0) : k,l € D,},
where Q and D, are respectively defined by

A (o — k)l . 9 1

P S, Da:{k,é R2 :k40< ——}.
Now an analysis of VQ reveals that the supremum of Q is attained on the boundary of D..
Looking at the values of () on the boundary, we deduce that the supremum is in fact reached

at (k,¢) = (0, —1/3). hence

1

Ala) = Q(O,a — §) =

a(a—3)
oz—i-% .

Plugging this information back into (6.24), we thus get

C:max{min(T,A(a)):O<T<%—a,%<&<%}. (6.25)

Then one can easily see that the maximum in (6.25) is obtained for o* such that 1/2 —a* =
A(a*). This is given by o* = (3 + v/57)/24 ~ 0.42. The corresponding value of ( is

_9— /57
24

¢ ~ 0.06.

This finishes the proof. O

Proof of Theorem 6.6. This is a rather straightforward corollary of Proposition 6.5. Indeed,
it is enough to consider t = T". Then with fy = h and g = 0 we have

E“[h(X7)] = v(0), and E*[h(X7)] =7°(0).
According to the definition of the controlled distance dﬁ§7W(65, v), we have
[E[A(XF)] — B [0(X)]| = [0°(0) = v(0)] < E*a,T) x dgg w(?°, ).

Note that the above estimate holds for all @ > 0 (since 0 € [—a, a]) and we can essentially
take a = 0. This makes E%*(a,T) = . With the choice of A given by (6.22), it follows
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from Proposition 6.5 that

N "(8'=B)
EX[h(X5)] — E*[h(XE)]] < & x CreC (Hhucgéﬁ (14 R(W)) (pa,x<Uf,w> 5 ))

o NanE . 8'(8'—B)
< e (1 7(0) + ly) (o (05, W) + 8755 )
This completes the proof of Theorem 6.6. 0

6.2. Preliminary notions: discrete controlled rough paths. In this section we intro-

duce some notation on discrete rough paths which will be useful in order to handle the

convergence results outlined in Section 6.1. We start by introducing some space-time parti-

tions. Namely for a given time horizon T, a generic partition P, will be of the form
Pt:{0:t0<t1 < - <tn-a <tN:T}.

Similarly, if a € R a generic partition of [—a,a] can be written as

Po={-a=zg<z1 < <zxNy=a0a}.

Define AT 2 {(s,t) : s < t, s,t € P} and AF accordingly. Given (s,t) € AF, we set

[s,t] £ [s,t] NP. Given the above partitions, we will define discrete Holder norms similarly

to (3.19) or (3.25). As an example we set

Pt Pa |f5/(l‘/) — f8($)| . / / 1o
Ifllas = sup{|8,_8|a+ o —ap € Pi, w7 € Py, (s,2) # (s,2") p. (6.26)
Of course the quantity above is always finite, since P is a finite set. We will omit the

superscript P if the context is clearly discrete. One of our main tasks will be to bound
quantities like (6.26) uniformly over a sequence of partitions whose mesh goes to 0.

Assumption 6.8. As in Section 2.2, we are working here on uniform grids constructed
according to a parabolic scaling. Namely for a discretization parameter § we consider t; = j6*
and x, € 07.

We now recall some notation concerning discrete rough paths. In the sequel we consider
two Holder exponents «a, 8 such that 1/3 < f < a < 1/2. Next we introduce a discrete
augmented path taking values in R.

Definition 6.9. Let X be a path defined on P,. For s,t € A”= we set
1

X' (z,y) = X(y) = X(2), and X*(z,y) := 5 (X(y) — X(x))*.

The norms || X5 and || X2||5.>") are defined similarly to (3.19). Then the 1D discrete
rough path above X is given by
X(z,y) = (L X' (2,9), X*(2,y), for (z,y) € A7,

We also mimic expression (3.23) for controlled paths. Namely for a path ), = (V,9,Y)
defined on P,, we set

R =Y (y) - Y(z) — 0,Y (z) X (w,y). (6.27)
Then quantities of interest in order to describe ) as a discrete controlled path will be [|9,Y || 3*
and HR%HQ[;”
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Next, we turn to a definition of discrete spatial rough integrals suited to our context.

Definition 6.10. Let ), = (Y,0,Y) be a discrete controlled path defined on a grid P,.
Consider a,b € R with a < b. The discrete rough integral of ) with respect to X is a
discrete rough path Z = (Z,0,Z), where for (x,y) in A}, we have

v
Z(w,y) 2 / YdX(w) = S (V@)X (w,0) +8,Y () X2(u,0)) , 2,y € Ps. (6.28)
* [u.v]€lz,y]
and 0,7 (x) =Y (x). Observe that in (6.28) the notation [u,v] € [z, y] stands for

{(trs trr) € Plro <ty <y} (6.29)

In order to bound discrete integrals like (6.28) we will resort to a discrete sewing lemma
borrowed from |26, Lemma 2.5]. This lemma is recalled here for the sake of completeness.

Lemma 6.11. Let R(x,y) be an increment defined on the grid P, = {xo < x1 < --- < xp}.
We assume that R(x;, zi41) = 0 for alli =0,...,n — 1. We also suppose that ||6R||7* < oo
for a given ;> 1. Then there exists a constant c,, such that

Px Pz
IRl < culloRIL,
We now state a basic upper bound for discrete spatial integrals which will be used in

subsequent computations.

Proposition 6.12. Let X be a discrete rough path as introduced in Definition 6.9. Consider
a controlled path Y whose remainder is given by (6.27). The corresponding integral [ YdX
is expressed in Definition 6.10. We assume that for 1/3 < f < a < 1/2 we have

X o+ 1 X7 |20 + 110:Y (|5 + 1R (|25 < M,

where we drop the superscripts [—a,a] in the norms above for notational sake. Then for
(x,y) € AP the following estimate holds true:

| [ Y aX) - ¥ @)X @) - 0xY (0)X0)

< Cap (10xY Nl - I1IX 120 - |y — 27 + IR a5+ | X la - |y — 2]*F*7) . (6.30)

where the constant C, g depends only on o, 5 only.

Proof. We define two increments = and Z= on P, in the following way:
=(z,y) £ Y ()X (2,y) + OxY () X*(x,y),
y
T2y 2 S (V)X (u0) + 0xY (u)X2(0, ) = / Y()dX (u).

[u,v]€lzy]

Then the left hand side of (6.30) can be written as a remainder increment R of the form
R(ma y) = IE(.%’, y) - E(l‘, y)
In this context, recall that 0R is defined as a function of three variables, by

(SR(I‘,U,y)éR(ZL',y)—R(l',U)—R(U,y), x<u<y€API'
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Using (6.27), it is plain algebra to check that
[0R (@, u, ) = 0 (2, u, )l < IR lag - 1 X a - Iy — 2 + [V [l5 - 1X2]|2a - [y — 2***7.

In addition, note that R(z,y) = 0 when x,y are adjacent partition points. Hence a direct
application of Lemma 6.11 yields

[R(2,y)| < Karzs|RY asl X la - (y = )7 + Kaasl|Y 61X [l2a - (y — 2)***7
Our claim (6.30) thus follows. O

In the random walk setting, rough integrals will be approximated by weighted sums of
trapezoidal type. Below we state a proposition bounding this kind of sum.

Proposition 6.13. Under the same conditions as in Proposition 6.12, for (z,y) € Af’b we

set
I(zr,y) 2 )

[u.v]€lz.y]

(Y (1) + Y (0)) - X (u,0). (6.31)

N | —

Then I(z,y) enjoys the same property as [ Y(u)dX(u) in Proposition 6.12. Namely we have
Z(z,y) — Y ()X (2, y) — OxY (2) X (2, )]
< Cop (10xY [ls - 11X [|2a - [y — 2> + 1R [lag - [ X Hla - [y — 2|*F) . (6.32)

Proof. Starting from the expression (6.31) for Z(z,y), some elementary algebraic manipula-
tions show that

I(z,y) = Z Y (u) X (u,v) + %5Y(u, v) X (u,v).
[u,v]€lx.y]

Hence plugging the decomposition (6.27) in the expression above, we get

I(z,y) = Z Y (u) X (u,v) + % (OxY (u) X" (u,v) + RY* (u,v)) X" (u,v).

[u,vl€lz,y]

Recalling the definition (6.28) of [” V(u)dX(u) it is thus readily seen that

T(r,y) = / " V(w)dX ) + T (). (6.33)

where the term J(x,y) is given by

1
J(x,y) = ) Z RY* (u, v) X (u,v).
[u.v]€lz.y]
Now the term [” Y(u)dX(u) in (6.33) is upper bounded thanks to (6.30). Moreover, since
R |a5 + || X o < 00 and 28 + o > 1, we easily get the following estimate for the term J
in (6.33):
| T (2,9)] < Cag IR [|25 - X7 o - Iy — 2.

Plugging this estimate and (6.30) into (6.33), we have proved our claim (6.32). O
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6.3. Developing Step 1: uniform estimate on #°. In this section, we will give a
bound on #° uniformly in §. Otherwise stated we will achieve (6.17) in Step 1 as described in
Section 6.1. The key ingredient for this step is the following uniform estimate on the discrete
rough path v with respect to the discrete metric on the grid.

Proposition 6.14. Consider a finite time horizon T' and 0 > 1. The exponents a3, x
satisfy (3.20) and we set y = aT_ﬁ. Recall that U? is defined in Theorem 5.3 and the quantity

Kanx(US) is defined similarly to (3.21), albeit on a discrete grid. The norm 0% given in
(5.27) is also assumed to be restricted to a discrete setting. The norm || - ||z is defined in
Definition 6.4. Let us also set

F(w) £ sup e, (U9), (6.34)
0€(0,1]

which is an a.s. finite quenched random variable. Then there exist universal constants Cy, Cy
depending only on the exponents and T, such that the discrete controlled process v° defined
by (6.1) satisfies

0" (%) < C1 (lfolley + llglley )
provided that X\ is chosen to satisfy

a—p 1

CoA™ 7 R(w) = 1 (6.35)
and 6 € (0, (w)] where
R (w) £ min { (4C5) 72, (4C,) ™57 - k(w) 57 ). (6.36)
Proof. From the U’-decomposition (5.3), we can write the discrete equation (6.1) for vs as
1
vg, (@) = g, (2) = 5 (M1 + Mo)’), (x), (6.37)
where
k-1 '
(MP0°)y, (2) £ 6° VIR (x = )Ty (wy) (0= 1,2) (6.38)
=0 yedz.
and
6 sx~l; 5 7
T @) 23 5 01 +4iz — 9) - U2, (6.39)

As we explained in Lemma 5.2, Uf is regarded as a discrete rough path approximation of W
and Ug is a remainder. Correspondingly, the estimation of MSv? is a discrete equivalent of
Proposition 4.6. Most of the computations are adaptations of what we did in Section 4.3 for
the proof of Proposition 4.6 and we will not repeat all of them for the sake of conciseness.
We will thus focus on proper adaptations of Lemmas 4.2, 4.3 and 4.7 (the uniform estimate).
As far as the term M3v° is concerned, let us mention at this point that its estimation relies
on rather trivial arguments. They hinge on the fact that

sup |US(2)] = ¢5 < 6%/2. (6.40)

2EZ
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Therefore the quantities Iti,lftj (x,y) have to be considered as mere discrete Lebesgue inte-
grals. In the sequel we will also consider a family of constants c§ given by

’ C,
65;:ow®, (6.41)

where the last identity stems from (6.40). We now divide our proof in several steps.

Step 1: Extension of Lemma 4.2. Notice that we are considering here discrete equivalents
of the quantities ©%* given in Definition 3.9. The corresponding weighted space of discrete
controlled path will be denoted by B%**. Let us now consider an element v° in B%%* and set

k2 ke, (U), ©20% 0%, E2 E ().

Also recall that the quantity D is defined by (4.3) and Z;"°(x, y) is given by (6.39). Then we
claim that

I (x,y) — vl (2) X Y(x, y)‘ < CskOFE XN D(a,t,y —x) and

T(0,9)| < CskOEN (a¥ly—al” + Dlaty ). (642)

With Proposition 6.13 in hand, the proof of (6.42) is identical to the proof of (4.4)-(4.5) and
omitted here for the sake of conciseness.

Step 2: Extension of Lemmas 4.3 and 4.7. To estimate MSv°, we divide the summation
(6.38) into the two parts: 7 > 0 and j = 0.

(i) The 7 > 0 part is defined by

(M1(5 6 _5322v25 ) tlkﬁl t](x y)

j=1 yedZ
By applying the discrete heat kernel estimate (2.80) together with a change of variables

y=x+06" l/zwj, we have

??‘

—1
(M), ()] < Co2 Y (012 YT ate A, (6.43)

1 we(st; %)z

[
Il

where
1,6 _
Ai,tj,w,tk é ‘Itkfl—tj (l’, x + 5L5 1\/EwJ)‘
The right hand side of (6.43) resembles its continuous counterpart (4.7). As a result, we
consider a stochastic integral term similar to (4.7) in our discrete context. For z € [—a, a]
and our time horizon T, set p = a + T/?|w|. Then along the same lines as for (4.13) and
invoking Proposition 6.13, we get
A < cgRONVE(a, ty,) Py (w)elTH DT el g=Ot00)ts gy (1 1),

Tt ,w, ity Y

where we recall that P,(w) designates an arbitrary polynomial in w and where the function
¢i, i = 1,2, is defined by (4.14) (in the current estimate we simply take 7, = 7 = 0 and
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thus ¢; = ¢2). By substituting the above inequality into (6.43), we obtain that

k—1
(M0, ()] < CskONE(a,ty) - 82 ot ST e Glulem Ot (5 1)), (6.44)

=1 we(st; %)z

Due to the explicit form of ¢1(p,t;), a simple monotonicity consideration (replacing each
grid point w = ((515]71/2) -1 with a generic point in the interval [(5t;1/2) -1, (5t;1/2) ~(l+1)))
shows that the discrete spatial w-integral in (6.44) is uniformly bounded by its continuous
counterpart, namely we have

Y e g (1)) < O [ O g (5,1
R

we(st 71/2)Z
It follows that
k-1
(M09, (2)] < C5hONE(aty) - / e~ O dw x 87 3 e g1 (p, 1)
R j=1

Note that the discrete ¢;-integral on the right hand side is the discrete counterpart of the
quantity (4.17) (with 7 = t;). Now we can perform and estimate the discrete ¢;-integral in
exactly the same way as in the proof of (4.19) to conclude that

k—1

62 e (p 1) < CoA '

7j=1

Therefore, we arrive at the following estimate:
[(M}P00),, (2)] < CrROEAT". (6.45)
(ii) The 7 = 0 part in the summation (6.38) is defined by

(MP0),, (2) £ 6 V2P — y) L0 (2, ).

yESZL

This is essentially the quantity A} (z) defined in (6.78) below. By using the discrete heat
kernel estimate (2.81), exactly the same argument leading to the estimate (6.87) gives that

[(M3200), (2)] < CskOE(a, ty) x AT 6%, (6.46)
Gathering the estimates (6.45) and (6.46), one can thus conclude that

(M), (2)] < (Jﬁ@E(A—* T 2><) (6.47)

Step 3: Estimating M3v°. By the definition (6.38) of M3v°, we can write it as

v ! 2) +0? z—
(M%), () = 532 Z V2P () - (52 T )+2tk1—tj( 6)> -5, (6.48)

j=0 yedZ z=x
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where we recall that ¢ is defined by (6.41), and that ¢; = O(6'/2). Here we view M3v® as

a discrete controlled path with respect to ﬂ‘f with zero Gubinelli derivative. Viewed as a
discrete Lebesgue integral it is easily seen that

52% 1t +gtk (2= 0) <y — | - [[of| oIX(lalVighlaVIsh], (6.49)

We now estimate (M3v?); (z) (for ¢, € [0,7] and z € [—a,a]) by decomposing the j-
summation (6.48) into j =0 and 1 < j < k — 1 as before (smce the two parts have different
heat kernel estimates). Firstly, according to the estimate (2.81) for V2958 as well as (6.49),
the “7 = 0” term in (6.48) is magnified by

c /
&y <5 X 00E(a, te) x ¢ < C3%?OE(a, ty).

YyEOL:|ly—x|<d

Similarly, by applying (2.80) together with a change of variables y = = + (5L(5‘1t;/ *w], the
“7 > 07 term is estimated as

1 4] 2
Ccs x 62 Z — | —= Z ]w]e’CQ“"' e“ vl | % ©F(a, ty).
SVE\VE A
J
The normalised w-summation inside the bracket, resembled as a discrete approximation of
the continuous integral Je lw|e=C2lwP+Cslwl gy is uniformly bounded. The normalised j-

summation §2 Z 1 1/,/%;, resembled as a discrete approximation of fo , is also uniformly
bounded. As a consequence, we arrive at the estimate
[(M32°),, (z)| < CVIOE(a,ty). (6.50)

Step 4: Conclusion. As mentioned above, we have focused on proper generalizations of
Lemmas 4.2, 4.3 and 4.7 for the sake of conciseness. The estimations on the time variation,
space variation and remainder terms for M%? (i = 1,2) can be established in the same lines
as Lemmas 4.8, 4.9, 4.10 in the continuous case with the aid of the uniform discrete heat
kernel estimates (2.80). Note that the j = 0 part is always handled separately as before by

using (2.81) instead. This will result in a factor of AT goB (cf. (6.116), the second last
term of (6.137) and (6.165) below, respectively). The main estimates, which are similar to
(6.47)-(6.50) are summarised as follows:

(ii) Time variation estimate:

{\(Mmm — (M), (x)

|<C < -3 4 )\aTiﬁ&"_B) - KOE(a,ty)a’? - [ty — t,|P/%
‘(Mgvé)h (l’) - (Mgvé)h (ZE){ < C

V6 - OE(a,ty) - [ts — ]/,
(ili) Space variation estimate:

{\wzvé)t(aﬂ) — (M), (x)

C </\_7 + AT 5) -kOE(a,t)a?? - |2’ — x|P;
|(M30)(2') — (M§¥),(z)| < C

Vo -OFE(a,t) - |2 — z|°,
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(iv) Remainder estimate:
R ()| < € (14X 6°°8) - kOE(a,0)Q(a, ) - |2/ — 2]

RN (@, /)] = [(MEP)e(a') — (M) () — 0- U%(x, )|
< CV6-OFE(a, )t P2 |2/ — x| < CV§-OFE(a,t)Q(a,t) - |2' — x|

As a consequence, we arrive at the desired contraction estimate:
O M + M) < C (A—“T’% F AT gas \/S) 0% (v?).

Now we can choose A to satisfy

a—p 1
A_ 1 K = -
C R(w) 1

where £(w) is defined by (6.34) and then require that
2
, 1\ (1\*7?
0 < 6 < min { (E) ’(E) Fw) a7}

CN Tk + N T 62 1 OV < Z

This ensures that

which gives the desired contraction property of M? and thus concludes our proof. O

The result of Proposition 6.14 easily leads to the following uniform estimate on the linearly
interpolated path @ (cf. (6.10)).

Lemma 6.15. Let «, 3, x,0 be given as in Proposition 6.14, with 6 > 2. Recall that Uf 18
defined in (5.3) and Theorem 5.3, and that k., (U3) is the a-Hélder continuous rough path
norm of US. In addition, ©%*(%°) is the B-Hélder continuous rough path norm of ©° with

respect to [AJ"ls Then there exist universal constants C1,Cy depending only on the exponents
and T, such that

0" (") < 1 (Ifolles + llglles )
for all 6 € (0, (w)], where A > 0 is chosen to satisfy (6.35) and &' (w) is defined by (6.36).

Proof. According to the definition of ©%*, we need to estimate four terms: uniform norm,
space-variation, time-variation and the remainder. Let ¢ be a universal upper bound of the
discrete rough path norm ©%2*(v%) given by Proposition 6.14.

We first consider the uniform norm estimate. Consider ¢ € [0,T] and = € [—a,a]. We
assume that
th <t <ty, and x; <z <9, (6.51)

for t,,t, and x;, 25 adjacent points on the grid 2N x §Z. Since we have chosen 6 > 2, one
can apply Proposition 6.14 with 6 := 6/2. This yields

57 ()| < max {Juf ()] 6,7 = 1,2} < e (Ifolleg + lglley ) - E”* a+0,2). (6.52)
Furthermore, since we are working with a small § < 1, it is readily checked from (3.26) that

EO/2X(q 4 §,1,) = eMa+olats)/2H0ata/2 COQMZEW(@, t). (6.53)
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Reporting (6.53) into (6.52) we end up with the following uniform bound, valid for ¢ € [0, T
and = € [—a,al:
—1|~ 2
B (a, )i (@)] < eCoe®™ (11 folley + lglley ) -
Next, we consider the space variation estimate. To this aim, we pick ¢ € [0,7] and
x,x € [—a,a]. Similarly to (6.51), we assume for now that
ti<t<ty, and z; <z, 7 <29,
where ¢,,t, and x1, 7, are adjacent grid points. By the definition (6.10) of #° it is clear that
/
T—z

@?(xl) - 6f(x) = Ty — 11 ((1 - H)Ufl (21, 22) + lwfz ($17$2)) )

where y = % and vfz_ (z1, 1) = vfi(:vz) — vfi(xl). Along the same lines as for the uniform

bound above, we invoke Proposition 6.14 with 6 := 0/2. We get
a=f
o (o) < (foley + lloley ) - B2+ 8,6)A°T 0|z, — .

It follows from (6.53) that

- N > o x—a a8
[57(a") = 2@)| £ (Ifolley +Nalley) - || BN (@t) - A0 oy — 1
< (Molleg + llgle ) € - E™a, 1) - A*" a2 - |’ — o, (6.54)

which is the desired estimate. For general x < 2/, let x; (respectively, z5) be the smallest
(respectively, largest) grid point that is larger than = (respectively, smaller than 2’). By
considering the decomposition
7 (@) = 0} (2) = 0 (a') — T (22) + T (wa) — T} (21) + T (1) — T (),

we easily obtain the same type of estimate as in (6.54).

The time variation and remainder estimates are treated in a similar way. For the remain-
der, the extra point to note is that for ¢ € (¢1,t,], we have tl—ﬁ/2 < t7B2if t > 62, while in
the case of t < §? we do not need the term tfﬁm due to our definition of @ (cf. (6.10)). O

6.4. Developing Step 3: comparing /° and W. Recall that W’ and W are respectively
defined by (6.14) and (6.15). This section is devoted to establish an estimate for the distance

between W? and W, as announced at the end of the Section 6.1. First in view of the Uo-
decomposition introduced in (5.3)-(5.4), we write

We (x) = W (2) + WP (),

where, for : = 1,2 we have set

witte) 2 [ [ w2ty le—o) (ot a0t ) das. 659

From earlier discussions, it is natural to compare W'° with W and view W?? as a remainder.
Let us first handle this remainder term in the decomposition (6.55). We label this preliminary
step in a lemma.
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Lemma 6.16. For § > 0 let W be the process defined by (6.55), where we recall that U2
is defined by (5.4) and Ug is the linear interpolation of UJ. We consider a set of parameters
a,,x,0,\,0 as in Proposition 6.14. Then there exists a constant C' = Cy 5011 Such that
the norm of Uf as a process controlled by Uf satisfies

O W) < C (Ifolleg + llglley ) V. (6.56)
where the subscript Uf above means that we consider W?*° as a process controlled by Uf

Proof. The term W29 is very similar to M3v° in (6.48). Hence its analysis ressembles what
we did in Steps 4 and 5 for the proof of Proposition 6.14. Namely we consider W29 as a
controlled path with respect to Uf , with zero Gubinelli derivative. All the integrals have to
be treated as discrete Lebesgue integrals. With the aid of the uniform discrete heat kernel
bounds (2.80)-(2.81), we let the reader check the details leading to (6.56). O

With Lemma 6.16 in hand, in what follows we focus on developing the comparison between
W9 and W. Similar to the strategies for Proposition 4.6 and Proposition 6.14, and recalling
that dﬁ?w (W W) is defined similarly to (6.11), we will split the study of this quantity into
four parts: the uniform distance, the time variation distance, the space variation distance,
and the remainder distance. In what follows, to simplify notation we will omit all the
super /subscripts when writing the norms and distances. For instance, x(US) = kq, (U9).
From time to time, we will use “<” to denote an inequality up to a multiplicative constant
C' that does not depend on §, a,t,z,y. The value of the notation C' (sometimes denoted as
C;) may also differ from line to line.

6.4.1. The uniform distance estimate. In this subsection we mimic Lemma 4.7 and get a
uniform estimate for Wh9 — W.

Lemma 6.17. Recall that the exponents o, B, x, 0, \ satisfy (3.20) and we set v = an5. For
§ > 0, WY and W are respectively defined by (6.14) and (6.15). Then, for any a > 1,
x € [—a,a] and t € (0,T], we have
’th’é(x) - Wt(x)}
< CB(a X (s(0})dgy w (7. 0) + O)p(UL W) + (U)O()) . (6.57)

where E(a,t) is defined by (3.26), p(US, W) is defined by (5.9), v is an arbitrary number
that s less than o — 2x and C' is a positive constant depending only on o, 5,1, r.

Before we prove Lemma 6.17, we will state some convergence estimates for the discrete
and continuous heat kernels p. We start with a uniform bound.

Lemma 6.18. Consider § > 0, s > 6 and w € R. Let p° be the rescaled kernel from (2.72)
and p be the Gaussian kernel in (2.73). For notational sake we set (see Notation 6.3 for our
conventions on integer parts):

pa bvsel V&UJZ, and na PJN. (6.58)

) )
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Then the following uniform upper bound holds true for w € R:

Cl —Czw2

. 1
V23 00| V| )] < Se (659

In (6.59), V29 stands for the rescaled gradient given by (2.75) and V2p,(k) denotes the
second discrete gradient applied to the heat kernel p, in (2.73), that is

Vipn(k) = pp(k 4+ 1) + po(k — 1) — 2p, (k). (6.60)

Remark 6.19. We are stating and proving Lemma 6.18 with the second order derivatives in
order to handle the most challenging context of interest for us. However, one can prove non
gradient estimates in the same way. Let us label the following one, which holds true under
the same conditions as for Lemma 6.18:

P, (0k) < e (6.61)

where k and n are given in (6.58).

Proof of Lemma 6.18. We start with the following elementary observation, valid for s > §2
and w € R:
Cis < |s] < Cys,

<
CheCin? < o=Callvaul/V/BI? ¢ (rpe-Crut (6.62)

s>0weR = {

where the C;’s are universal constants whose exact values are irrelevant. With (6.62) in hand,
plus recalling that |\/sw| = dk and [s] = 0?n, we get that the estimate on V2p%, (k)
in (6.59) follows directly from Proposition 2.26. Next we observe that according to (2.73)
we have

(k) = 1 k?
e8] = (2mo2n)1/? P\ 202 )
Furthermore, owing to (6.58) and setting

= Lvsw] and 72 0 L (6.63)
[s] [s] v
we have
ke Wsw 8,
n 52 5] '
Hence for the quantity Vip, (k) defined by (6.60) it is readily checked that
2
%Vipn(k:) = —W . % (6_2012(u+n)2 + 6_%%(“_")2 — 26_2722) . (6.64)

We now bound the right hand side of (6.64). To this aim, observe that n < 1 since we have

w2
assumed s > §2. Hence using a second order Taylor approximation of the function e 207 it

is easily seen that

i? (e—;z(u-&-n)Z + e—%%(u—nﬁ - 26_21;22> ‘ < 016_021‘2' (665)
n

Plugging this estimate in (6.64) and invoking (6.62) our claim (6.59) is easily checked. [
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The next lemma quantifies the convergence of derivatives of the heat kernel.

Lemma 6.20. As in Lemma 6.18, we consider the Gaussian kernel given by (2.73) and the
discrete derivative Vi in (6.60). The notation k and n in (6.58) prevails. Then the following
bound holds true for all s > 6% and w € R:

) ewaQ

1 2 1 2
gvkpn(k) - @@c;p}?l(w) S % T2

Proof. We start from the expression (6.64) for Vip, (k), and we substract 9%, p; (u) (recall that
u is introduced in (6.63)). Similarly to (6.65), we introduce a third order taylor expansion
(as opposed to the second order expansion alluded to in Lemma 6.18). We get that

1_, 1, L § e
gvkpn(k) - Wampl(u) SV (6.66)
where we have used the relations in (6.62). Next, we evaluate the difference
L L
Qs,w = maxa:pl (w) - Waxa:pl (u)7 (667>

where we recall again that u = |y/sw|/+/|s]. To this aim we define two interpolating paths
of the form

s(r)2 (1—r)s+rls], and a(r)=(1-7) Lv/sw) +rw = (1—r)u+rw.

V]

Differentiating along those paths we have
Quw=—91,+ 2, (6.68)

where the two terms in (6.68) are respectively defined by

3

0l = 5 [ stV la(r)dr - (s L)

o, = / S(r)208py (2 (r))dr - (w — ).

For the term Q! , above, we bound s(r)~%/2 by s~°/2, the kernel 92p (w) by e~¢*" and s— ||
by §2. This yields

52
Ql < e—CwQ'
S, W ~v 85/2

For the term Q2 in (6.68), we first note that
‘L\/ij_ L) = Veul | fwl-|vs — V5]l
5] 5] 5]

< %Hw«‘(wjﬂlﬂ)m_l

| <
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As a result, bounding s(r)~%2 and 3%p; as for Q! , we get

S,w?

_Cw?
Q. S e C i .
Combining the estimates for Q; ,, and Q2 , and recalling the decomposition (6.68), we have
thus obtained

) e*Cw2

< -
Qsw S N
Eventually combining (6.66), (6.67) and (6.69), this finishes the proof of our lemma. O

(6.69)

We now proceed to prove Lemma 6.17.

Proof of Lemma 6.17. For t € [0,T] and z € [—,a,a] decompose the difference W}’ (z) —
Wi(z) as

Wi (@) = Wilz) = K () + Ki (), (6.70)
where K} (z) and K?(x) are given by
/ | (Tt (la =) = O =) T s, (671

/ / 02.ps(x — y) (T (2, y) — It_s(x,y)> dyds, (6.72)

and where we recall that
y R y
10 (2, y) & / 0 L(dUN(),  Tu(ey) / vrs(2)dWV(2).

With this decomposition in hand, we now divide our estimate (6.57) in several steps.

Step 1: estimate for K2(x). For the term KZ(z) in (6.72) we easily get that, for a > 1,
€ (0,7] and = € [—, a, a] we have

K2 (@)] < CE(a, A% (5(09)dggw (8%, ) + ©(0)p(U5, W) ) (6.73)

Indeed, the patient reader can check that (6.73) is an easy variation of Lemma 4.3 and
Lemma 4.7.

Step2 : decomposition for K}(z). In order to estimate K} (z) we will decompose this integral
into small and large time domain. Namely, we write

Ki(z) = Kt (2) + K2 (2), (6.74)
where
tAS2 s
Ko = [ [ (Pl = o) = Eaple =) T hdyds, (679
and

K / 5 / (V2B (o = y)) = Oops(w = ) T, y)dyds. (6.76)
tAS2
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We now bound K'' and K!? in two different ways. More specifically, for the small time
regime we shall rely on the fact that p° and p average to small quantities, while in the large
time regime we will invoke the local central limit theorem for §°.

Step 3: Small time estimates. For small times, that is when s < §2%, we will not use the
difference p° — p. Therefore we simply decompose K (z) into

KH(z) = Al(2) + A% (), (6.77)
with

tAS2
/ / V2908l ))| - |22 (2, = + )| dyds, (6.78)

tAS?
/ [ [+ s, (67

where for A?(z) we have invoked our usual change of variable y = /sw.

We first estimate A} (x). This is based on the same kind of decomposition as in the proof of
Lemma 4.3 but requires different estimates since the spatial integral is no longer of Gaussian
type. More specifically, note that V2°py(|y|) is supported on {y : |y| < §}, and replace the
Gaussian bounds on the kernel p° by the simplified version (2.81) of (2.80):

R 1
‘Vi’apg(tym S 5 Tyju<sy- (6.80)

We now bound the term Z;° (z,z + y) in the right hand side of (6.78). Namely one gets,
similarly to (6.42),
T+y

I +y)| =| [ #(2)d03)

xT

< CR(UDO@ AT E(a, t)e” NN s (0 + [y])¥]y|” + (a + [y])>|yl*
Ha+ [yl P 4 (@ [y Py 4 (o )P - s) TPy L (6.81)

Applying this inequality to (6.78), we obtain a relation of the form
5

Al(z) < s(UDOEINT Bla,1) Y AL, (6.82)
i=1
and the terms A}* have to be estimated separately. For the sake of conciseness we will just
focus on A} and A}® in the sequel.

With (6.81) in hand, the expression we have obtained for A}! is

tAS2
Al = / / V2958 (Ly )| - e OO0 (¢t |y ]\ |y | dyds.

Hence owing to (6.80), the fact that p is supported in [—4, §] and the assumption ¢t < §2, we
get

1 o
A5 [ iy [ e O (6:83
0% Jyiyi<s) 0



RANDOM WALKS IN RANDOM ENVIRONMENT 87

Next in order to eliminate the factor (a + |y|)X above, we apply Holder’s inequality with
p=x""'and ¢ = (1—x)""! to the time integral. This yields

5 52 1/p 52 1/a 520-x)
/ e~ OHo(atlyD)s gg < / e POHOatlysgg | / lds | S :
0 i ; (A +0(a + [y])x

It follows that

1 (a+ [y)Xy|*0>! ) 1 )
AH S _/ d < . 52(1 X) . (501+1 — 5 2X. 6.84
C S s O+ 0t ghx (6.84)

Referring to our decomposition (6.82), let us now analyze the term A;°. According to (6.81)
we have

tAS?
A= [ 192 e e ok [l e 5) g Py
0

We can thus resort to inequality (4.26) and (6.80) in order to write

1 tAG? e e B N
aps s [ [ e ) s (o ) e ) Pdyds.
0 {y:lyl<d}

By choosing ¢ £ 2y above, we obtain

tAS2
Y L A
0% Sy i<y 0

Therefore the elementary change of variables s = (¢ A §?)v yields

1 oy atf—
< 5 gat28+1 | §2(0-2x—=0/2) _ gsat+f—4x (6.85)
The estimates for the space-time integral of the other summands in (6.81) is similar to the
one for A}'. We let the patient reader check that we obtain

A%2 S 52(01—2)()7 At13 S 52(04—2)()’ Agél 5 5a+,3—4x’ (686)

1 1
AP [ ey sy [ oy
{y:lyl<d} 0

respectively. Summarizing our considerations on the terms A}, we have obtained rela-
tions (6.84), (6.85), (6.86). Comparing the exponents of § in those inequalities and recalling
that (3.20) imposes x < (3/2, it is clear that the dominant term is given by §*2X. Plugging
this information back into (6.82), we end up with

Al(z) < k(UDHOEINT E(a,t) - 622X, (6.87)

We now turn to the term A? defined by (6.79). This quantity is given by an integral
involving the continuous kernel p;, and we will thus argue similarly to Lemma 4.3. Also
recall that our main goal here is to extract a factor 0" with a strictly positive r. With this
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objective in mind, recall that (as in the proof of Lemma 4.3) the quantity P,(w) designates
an arbitrary polynomial in w and that T is our time horizon. Similarly to (4.10) we thus get

A (@) £ w(0DOE)NT Ea, 1
) tAS2
X / TV T wl=Cuw Pu(w)dw/ e~ WHP)s g, (s)ds, (6.88)
R 0
where p £ a + v/T|w| and the function ¢, is given by
(pp(s) — pXSa/271 +p2xsa71 +p2x+5/28a+ﬁ/271

5
n p2X+5/28a/2+ﬁ71 i pQX(t . S)*B/2Sa/2+b’fl — Z gpfg(s). (6.89)
i=1

Plugging (6.89) into (6.88), let us call A? the term corresponding to the time integral

fot no? e’(”ep)sgol;(s)ds. All those quantities are treated very similarly and we only show how
to handle A}" below. Namely using the expression for ¢} in (6.89), one can write A7' as

tAS2
A — _
ape g [ o,
0

We now apply Holder’s inequality with two conjugate exponents p, ¢ in order to get

tA&2 L/p tA&2 1/a
A?l < /)X / 6fp()\+9p)sds . / S(a/271)qd8
0 0
00 1/p 52 1/q
< pX (/ ep(AJr@p)st) . (/ 8((1/21)qu>
0 0

We can easily integrate the two terms in the right hand side above. We then choose p £
x 1 q¢= (1—x)!in order to get

X
21 <« P 6a—2+2/q < 50{—2)(' 6.90
In a similar way, the other summands are estimated as
ARy A 0 and ATy 4B < getioix, (6.91)
Therefore gathering (6.91) and (6.90) into (6.88) we arrive at
A%(z) < (U)OE)NT E(a, t) - 572X, (6.92)

We can conclude our small time estimate by plugging (6.92) and (6.87) into (6.77). This
yields the following uper bound, valid for ¢ < §%:

K (z) < k(UHO()N"T E(a,t) - §°2X, (6.93)

Step 4: Large time estimates. This step is dedicated to handle the integral over s > 42
defining KC}*(z) in (6.76). More specifically, resorting to our usual change of variable y =
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T + /sw, one can recast K?(z) as

K2 / (T (50)) = 0 w) T o 4+ vw) -5 duds,
tAG2

We now insert the quantity V2p,(x) defined by (6.60) in the right hand side above (with
k,n defined in (6.58)) to get a decomposition of the form

K2(@)| < Bl(2) + Bi(@), (6.04)

with B} (x) and B?(z) respectively defined by
/W / V2080, ([V5w]) — s Vip(®)| - |2, + Vow)| - Vaduds,  (6.95)
/ / |53 Vipn(k) — 3_3/28§$p1(w)| : ‘I,}i(x, x+ \/gw)} Vs dwds. (6.96)
tAS2

Let us proceed to bound the term B} (x) in (6.95). To this aim, we start by recalling the
definition (2.72) of p¢ and (2.75) for V2°. This gives

1 x
276 ~6 _ 2 d
V2 bls (@) = ﬁvxpLsJ/(SQ(g) 5 (6.97)

where V2 in the right hand side above stands for the discrete derivative. In addition,
Theorem 2.25 states that for s > 62

2,6,.d z 2 x & 6°
‘Vz D552 (3) — ViDis)/s2 <g> ‘ < (LSJ/52)5/2 S L5J5/2‘

Plugging this information into (6.97) we get

1 T 5?2
2,0 4 2
‘V sz( T) — 53Vx29[sj/52 <§> ’ N

[s]572"
In particular, for z = [/sw] and k,n defined in (6.58) we end up with
1 52
V25, (LVswl) = 5 Vipa(R)| S e (6.98)

Next we improve our upper bound (6.98) by introducing an extra interpolating parameter
b € [0,1]. Whenever s > 6% , combining (6.98) and the uniform bounds in Lemma 6.18, we
get the following inequality for all w € R:

V238, (1u)) — i h)

N e

9 1-b 2(1-b)
< (0 . Le—Cle <0 ( 6—02w2
~ L5J5/2 $3/2 ~ ¢5/2-b :

Reporting this inequality in (6.95), it follows that

521 b) 2
/ / o e ¢ -|IM($ z + /sw)|dwds. (6.99)
R
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It remains to handle the term Z;°,(x, 2 + y/sw) in the right hand side of (6.99). Now recall

that Z;%, is the stochastic integral defined by (6.16). As in the proof of Lemma 4.3 (see also
the estimates after (6.43)), we shall upper bound bound this quantity by five terms:

17 (2, 2 + Vsw)| S k(OO T E(a,t) - Py(w)(B? + - - + BY), (6.100)
where P,(w) is some polynomial in |w|. For simplicity, we only discuss the first term
B = OO0 50/2 )X where  p £ a4 VTwl.
Reporting this definition in (6.100) and then (6.99), we get that the corresponding term in

B!(z) is
. 52(1 b) )
B, // — Pulw)e Bl dwds,
R

To extract a factor of 6" from this term, we use the fact that s > 2 to write

. §52(1=b)=2m1+2m
B;l = / Pu(w)e_CMQdew/ - e WHp)s g2l
R 0

s1=b—m

t
< o -/Pu(w)e_cwszdw/ e~ TR . g2l g,
R 0

where ; > 0 is some constant to be specified. According to Holder’s inequality with p = 1/
(1/g =1 — x), we obtain that

t t 1/p t 1/q
/ e—()\—‘r@p)s . 8a/2—1—v1d8 < </ e—p()\—i-@p)st) . (/ Sq(a/Q—l—yl)d8>
0 0 0

S ()\ + gp)fx LT 2= X"

Note that +; needs to be less than «/2 — x so that the second time integral in the above

inequality is finite. As a consequence, the Bi "term produces an upper estimate of the form
11

B,' < Copr oy i(UDOINT Ea,t) - 57

The other terms B'2,. .., B' are discussed in a similar way and the resulting factors of §"
are all of higher order (i.e. 7’ > 2v;). Therefore, we arrive at

BY(x) < Coprri(U)OE)NT E(ayt) - 6"
where 7 is any given constant that is less than o — 2.

In order to complete the large time estimates, according to our decomposition (6.94), it
remains to upper bound the term BZ(z) given by (6.96). This will be an easy consequence
of Lemma 6.20. Namely a direct application of this lemma yields

|
2(x) < / / 7 ge’cwzﬂtlfs(x, z + /sw)|dwds.
o Jr

Hence by the same kind of analysis as in the B!-case, we arrive at
B2(z) < Coprei(U)O@)AT E(a,t) - 6"

where r is any constant that is less than o — 2. This is exactly the same estimate as the
one for B!
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By putting (6.73) and the estimates of A', A% B!, B? together, we have thus completed
the proof of Lemma 6.17. 0

6.4.2. The time variation estimate. In order to state the main result of this section, let us
introduce some more notation.

Notation 6.21. Let 6 > 2, a > 1 and [ be coefficients satisfying the assumptions of Defini-
tion 3.8 and Definition 3.9. We consider some additional parameters 6’ < 6 and ' > 3 still
satisfying the same assumptions. The norm © in Definition 3.9 with parameters ¢, 5" will
be denoted ©7%" while the usual norm is written as ©. In the sequel for a function h defined
on [0, T}, the time increments of h will be denoted by

ht17t2 = th — ht17 fOI' 0 < tl < tQ § T.

As a slight elaboration of Proposition 6.14, we state a lemma about the controlled norms
of W and W', Its proof is similar to that of Proposition 6.14 and omitted for the sake of
conciseness.

Lemma 6.22. For § > 0, let W, W' be the processes defined by (6.14)-(6.15). Let (¢, 3")
be given fized parameters satisfying the constraints specified in Notation 6.21. Let R(w) be
defined by (6.19). Then there exist positive constants Cy, Cy depending only on the underlying
exponents, such that

AYB = sup @glﬁf(WLé) \Vi @G'ﬁ/(w) < Cl,‘?;(W)eCHA <Hf0HCi + Hchi) (6.101)
520
provided that A\ = )\, is chosen to satisfy

a—p' 1
— R(w) = it

Ca\

We now turn to the announced estimate for the time variations of W% — W.

Lemma 6.23. Let the notation of Lemma 6.22, as well as Notation 6.21, prevail. In par-
ticular the processes W, W' are introduced in (6.14)-(6.15) and the exponents a, 3 satisfy
relation (3.20). Then for any a > 1, x € [—a,a] and 0 < t; <ty < T, we have

W (@) = Wi ()] < CB(a,12)a" 2ty = 172 (A5 (5(0F)digg w (5%, 0)
+O(0)p(U2, w>) AT R(U8O(%)5 P + AG"B'W‘B> , (6.102)

where we recall that thl’i2 (z) 2 W () — W) () and similarly for W, 4, (x). We also recall
that in (6.102) the quantity E is given by (3.26), p is defined by (5.9) and dyys v s introduced
in (6.11).

Proof of Lemma 6.23. We divide this proof again into several steps. Some technical consid-
erations are similar to previous results and will only be sketched.

Step 1: Decomposition of the time increments. We begin by decomposing the time increment
into

thf,iz ("L‘) - th,h (JZ) - ti,tz (l‘) + 7;?,132 (l')7 (6103)
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where the increments 71, 7?2 are defined by

7;1 t2 / / t27$ y Qg(thmay)) dde, t1 t2 / /Q tg,l‘ Yy dde

(6.104)
and where we have used the notation

QUt,x,y) £ VIR, ([ —y]) - Tz, y) — O2pr—s(z — y) - Lu(,y),

with Z2, Z, given by (6.16). Also recall that in the sequel we keep on using our Notation 6.3
for the d-integer parts |x| and [t]. The remainder of the proof is dedicated to upper bound
terms 7', 72 in (6.104).

Step 2: Bounding T?. In order to bound 72 in (6.104), we further decompose this term as
7;?,752 (l‘) = 7;?32 (':C) + 7;?72?52 ('Z')7 (6105)
where 72!, T2 are respectively defined by

ot ( / / (V28— (L2 = y]) = Oupry—s(z — y)) - I3 (z, y)dyds, (6.106)

= o / / opss( —y) - (T(2,y) — Tl ) dyds. (6.107)

The estimate of 7;?3 (z) above follows the same lines as in the proof of Lemma 4.8 (see
(4.50)). For sake of conciseness, we just state the result here:

T2 (@) < O Bla,12)a”P |t = 172 (5(0})dgg w (0, 0) + O()p(U3, W) . (6.108)

To estimate 721,5 ,(7), we set T £ t, — t; and resort to the decomposition

(@) =T (@) + T (), (6.109)
where
TA2
T = [ [ (T80, (1)~ 2 (0) o+ ) (6.110)
Tl (@) /5/ (V>80 (L)) = 22,pr(v)) - Iy, (x, = + y)dyds. (6.111)
TNS2

Now the arguments in order to estimate (6.110) and (6.111) are essentially similar to what
we did in Lemma 6.17 for the terms K'' and K'? (see (6.75)-(6.76)). In order to abbreviate
our computations, we will only detail the bound for the small time integral 7—. As in
Lemma 6.17, the large time integral ﬁftz(x) is treated by using the local CLT and the
Taylor approximation of the Gaussian kernel.

In order to handle the small time increment 7.~ (z), we proceed exactly as in (6.77). That
is, recalling that 7 = t5 — t1, we write

T (2) < Ala) + A2(2), (6.112)
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where A' and A? are respectively given by
TAS2
aw = [ [I95 ] [7 e )] duds (6.113)

TAS?
A(z) = / /|8§xpr I [z, +y)| dyds. (6.114)

Here again, for the sake of conciseness we shall only upper bound the term Al(z) above.
Namely recall that V* ‘SpLO is supported in {y € R;|y] < §}. Moreover we have estab-

lished (6.80) above (which is a consequence of (2.81)), that is

. 1
V2 Bo(Lw))| < 55 for [y] < 6. (6.115)
In addition, we know from (6.81) that the rough integral Z _,(z,z + y) is bounded above

by five basic terms. The first term appearing on the right hand side of (6.81) together
with (6.115) yield the following integral in A!(z):

TAS2
Al (z) 2 l a + [yX|y|ce= OHoaHs gy g
! . y)Xy y
0 {v:lyl<5)

Owing to condition (3.20), we have x < (/2. Therefore, for all a > 1 we get

. aB/? TAG?
(A ()] S =5 / ly|*dyds
{y:lyl<d}
9 2
S a;- 0Ot (7 A §2)BIAB2 L ag?f‘ Cgetl L B2 L5278 — (B2 B/ 5a—B,

In the inequality above, notice that we have extracted a power 7%/2 = (ty — t,)%/2, which
is our expected time regularity for v. This explains the appearance of the factor 6 in
Lemma 6.23. The other four terms on the right hand side of (6.81) lead to four corresponding
integrals in A!(x), all of which having order §" with some r > o — 8. As a result, we obtain
that

AL (2)] < k(UDOEINT E(a, ta)a® 2|ty — t|P/2 - 5275, (6.116)
A similar argument leads to exactly the same upper bound for A2(x). Hence reporting (6.116)
into (6.112), then back into (6.109) and (6.105), we have proved that 7., () satisfies an
inequality of the form (6.102). This completes the estimate for 7s.

Step 3: Bounding T'. We now consider the term 7' defined in (6.103). The analysis is in
fact similar to what we performed in (4.44), and we only point out the main ingredients. In
the first place we write

ti,tQ (I) = t},ltz (IL‘) + t}?tz (:L‘)7 (6117)
where we define
t1
() = / / (thb(s, T —y) — Juw(s,x —y)) I (z, y)dyds, (6.118)
0o JR
t1
T 2 [ [ Dl =) @) - Tasy) duds. (6.119)
o JR
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and where to ease notation we have set:

Ty ea(851) 2 V2B, gy ([u]) = V2B, _y ([u)), (6.120)
Jtl,t2<87 u) £ 3§Ipt2,s(u) - amptlﬁs»(lb)- (6121)

We now handle the terms 7', 7" above. The estimate of 7,15, (z) follows the same lines
as in the proof of Lemma 4.8. We end up with

T2, (@) < OX5 Bla, t)a 2|t = 172« (1(0F)dgg w (57, 0) + ©(0) (U5, W) ) . (6.122)

For the integral 7,1, (x), we invoke the discrete heat equation (2.78) to write, for s; < s, in

5?N and u € §Z,

s9—082 s9—82
P2, (w) = 5, (w) = > (ﬁfm(U) — iy, (u > 2o VR (u) (6.123)
tj=s1 tj=s1

In addition, the sum in the right hand side above can be written as a continuous time integral.
We get
2

) -t = [V, (6.124)

S1

Now recall that the fourth discrete derivative V2 is defined by (2.77). Moreover, it is readily
checked that V29(V29f) = V49 f for f defined on the grid §Z. Therefore applying V2° on
both sides of (6.124) it follows that

2 LtQ SJ —62

Jt‘slb(s u) Z V“ ul).

tj= =[t1—s]

Applying the same kind of manipulations to the continuous difference .J;, 4,(s,u) in (6.121)
and then reporting those expressions in (6.118) we end up with

LtQ—SJ to—s
=5 ( [ v a;w—y)dr) T3 (e, )dyds.
t1 s t1—s

(6.125)

Similarly to what we did for Lemma 6.17 we need to deal with the cases |ty — t;| < 6 and
|ty — t1| > 0° separately in (6.125). Indeed, analyzing 7,1, () in the former case will not
produce a useful time-variation estimate and we will adopt a more generic argument instead.
We first discuss the case when |t — t1] > 62

Case I: |ty — t1]| > 6%. For [ty — t1] > 62 the following holds true for all s € [0, ¢;]:
Ltl—SJ <t —s< LtQ_SJ <ty — s.
According to this elementary fact we decompose T into

t11152<x) = tiltlg(x) - t11t22< ) + 7211532( ) (6.126)
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where 7M1 712 TH3 are respectively defined by
111 o? [ s 4,8 A5 5
=5/ /L e ) Ty drdys, (6.127)
t1—s

to—s
/ / /L VA (& — y)) T2z, y)drdyds, (6.128)

to— SJ
to—s

T8 () / / / (VY5 (L — y)) — Ope(x — y)) Ti(x,y) drdyds.  (6.129)
t

The analysis of these terms is an adaptation of the calculations developed in the proof of

Lemma 4.8. For the sake of simplicity, we only give a brief discussion on 7;!}?(z) and point

out the main extra ingredients. The final estimate for 7}, (z) is stated in (6.134) below.

Let us handle the term 7,2 in (6.128). We first resort to our usual change of variable
y = = + /rw, which yields

0,2 t1 to—s .
@ =T [ [ [ ) T+ Vidrduds.
0 R J|ta—s]
Moreover, since ty —t; > 6% and 0 < s < t;, we have

ty—s=ty—t > 6 = [ta—s] > 6%

According to the uniform Gaussian estimate (2.80), we get the following upper bound for all
r € [|ta — s|,ta — s] and w € R:
4.6 Cl —02w2
A PLT(L\/FUJJ)‘éme :

Plugging this estimate into (6.128) and setting v = |ta — s| + 7, it follows that
) t1 to—s
tilé(x) N / e dw/ dS/ u_2‘I§(x,x—|— \/ﬂw)‘du
R 0 [ta—s]

t1 (tz S |_t2 SJ
— / ecw2dw/ ds/ ([t2 — 5] + )2 | (2,2 + /[t — s] + rw)]|dr.
R 0 0

We now invoke the relation (ty — s) — [t2 — s] < §% again and apply Fubini’ s theorem plus
the change of variable v = t5 — s. This yields

52 t1 d
112\ < d —Cu? / s 9 o
s [ ar [eta [t [T+ sl )
52 ) to d
SJ/ dr/e_cw dw/ v ‘ o _o(@,x+/[v] +rw)|. (6.130)
0 R to—t1 U

As we have seen several times (cf. (6.80)), the estimate of the rough integral Z, _ (z,z +
V/|v] + rw) involves five basic terms. With the observation that

o] +r <v+ 62 <vtty —t; < 2,
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the first term among the five leads us to the consideration of the integral

¢ oo
px/ 2 e—(/\+9p)vva/2—2dv < ;06/2/ Ua/Q—QdU 5 p5/2’t2 — t1|a/2—1
t

2—t1 ta—t1

where p £ a 4+ v/T|w|. By including the outer two integrals in (6.130), this term is further
estimated as

G,B/2|t2 — t1|a/2_152 = G’B/262|t2 — t1|a776_1 . |t2 — t1|ﬁ/2 < aﬁ/Qéo‘_ﬂ . |t2 — t1|ﬁ/2, (6131)

where we have used the relation ¢y — t; > 6% for the last inequality. Notice that (6.131) is
compatible with our claim (6.102). Next in the five terms decomposition alluded to above,
one can check (as in the proof of Lemma 6.17 ) that the other four terms yield higher powers
of the form " with r > o — 5. Gathering those estimates we have obtained

T2 (2)] S Ela.ta)a??|ty — 122X 5(05)0(5°)0° . (6.132)

The term 7,'%} (x) is treated along the same lines, with a small difference. Namely one should
separate the cases t; < 62 and t; > 6%. For the case t; > §2, one can follow exactly the
same arguments as for (6.132). Whenever ¢; < 6% one should rely on the fact that V2253
is compactly supported, similarly to (6.79) and (6.83). We leave the details to the patient
reader.

In order to handle the term 7, (z) in (6.129), we gather Theorem 2.25 with uniform
Gaussian estimates. This enables to write, for all r > 6 and w € R,

—Cw?

(VA5 (Vrw]) — 7520 kp, (w ¢

()’N\/_ R Vr > 6% w e R.

Then arguing similarly to 7, (z) and 7,2 (z) we get

TR (@)| S Bla, 1)ty — 6] PN k(00 (5)5° 7. (6.133)

Eventually, putting together (6.132) and (6.133) and recalling the decomposition (6.126), we
arrive at the following bound for the case t, — t; > §%

T, (0)] S Ba,ta)a” 2|ty — 6205 k(0] O(°)5°7. (6.134)

Case II: |ty —t,| < 6%.  The argument for this case is generic. Recall that ' < 6 and 5’ > 3
are parameters (3’ satisfies the same constraints as [ does) such that

o0/ —=0)a+(0'

, forall a>1. (6.135)

The notation ©?# for the controlled path norm indicates that the exponents (6,3) are
replaced by (#', 8') whenever applicable. We also denote E? (a,t,) as the exponential weight
function E(-,-) defined in Definition 3.8 with @ being replaced by ¢'. By treating w®, w as
controlled paths with respect to the % -norm, we directly apply the triangle inequality to
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get
(WS (&) = Wiy (2)] < WE, (@) + Wy ()]

1,t2

< B (0, )™ (67 (wf) + 77 (w) ) |tz — 11|
< E%a,ty)a?? (@9’76/(11;5) + @9’75’(10)) 07 Pty — 14]%%,  (6.136)

where the last inequality follows from the assumption that |t, —¢;| < §%. This yields the last
term appearing on the right hand side of (6.102).

Step 4: Conclusion. The proof of Lemma 6.23 is now complete by reporting (6.122), (6.134)
and (6.136) into the decompositions (6.117) and (6.103). O

6.4.3. The space variation estimate. The analysis for this part follows the same steps as in
Section 4.3.3, with the discussion of multiple cases (small time versus large time, that is
t < |2/ — z|? versus t > |2/ — z|?). The separation small versus large time is also largely
similar to the time variation case in Section 6.4.2. We only state the final result below and
leave the details to the patient reader. Notice that below we use the notation (4.51) for
spatial increments.

Lemma 6.24. As in Lemma 6.23 we consider some parameters 0, 5',0,0" according to No-
tation 6.21 as well as the processes W, W0 in (6.14)-(6.15). Following our notation (4.51),
set

Wi(z,2") £ Wi(@') = Wi(x), and W} (z,2") 2 W) — W ().
Also recall that o, B, x fulfill condition (3.20) and that the quantities A are introduced in (6.101).
Then, for any a > 1, z,2’ € [—a,a] and t € [0,T], we have
_a=8 ~ N
’th’é(x,x’) — Wt(x,x')’ < C’E(a,t)aﬂ/2|a:’ — |’ </\ 1 (ﬁ(U‘f)dﬁgjw(vé,v)
+O(0)p(U°, W)) AT (U0 ()5 + Ae’ﬂ’(sﬁ’—ﬁ) .
(6.137)

6.4.4. The remainder estimate. In Proposition 6.14 we have bounded the rough path norm
of v® without referring explicitly to its rough path decomposition. We will now give a more
specific formula in this direction. Namely, going back to relation (6.14) and since W = MV,
equation (3.29) asserts that the derivative OwW;(z) is
2
OwWi(z) = Owur(x) = —;Ut(x). (6.138)

As in relation (4.60) we thus introduce a remainder term for W, seen as a process controlled
by W:

2
Ry (x, ') = Wi(z, x') + ;vt(m)Wl(x, z'). (6.139)
Analogously, we shall define similar quantities for W9 seen as a process controlled by fJ‘f:
2
Dps Wi () = —;vf (z), (6.140)

1,6 2 ~
R (0,0) = W (w,a') + 55 ()00, 2) (6.141)
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Notice that in (6.139) and (6.141) we have used the notation (4.51) for spatial increments.
Notice also that (6.141) gives a controlled path for the stochastic integral term W° only.
Taking into account the fact that one expects the deterministic terms in (6.1)-(6.2) to have
a null Gubinelli derivative, relation (6.141) can also be translated into a decomposition for
the process v°. We label this decomposition for further use:

2 ~ &
5 (@,0) =~ 0 @0 () + RUa (z,2"). (6.142)

We will go back to this decomposition in Section 6.5. For now, the main task in this section

. . 1,8 . . .
is to compare the remainder terms R™ and R":" above. Our result is summarized in the
lemma below.

Lemma 6.25. We use the same notation as in Lemma 6.24. Let R and RV be the
remainders respectively defined by (6.139) and (6.141). Then for every a > 1, x,2' € [—a, d]
and t € 0,7, we have
1,8
Rg; (v.2') = Ry (,2')|

< CB(a,)aX(@*? + )]0’ = af* | (5(Ud)dgg (7, 0) + O(0) (UL, W) )

a—p

AT (K(W)@(U)(sa—M (Ae’ﬂ’m(ﬂi)@(@ﬁ)) 5ﬁ<ﬁ’—ﬁ>)] (6.143)

Let us prepare for the proof of Lemma 6.25. As in Sections 6.4.2 and 6.4.3, we only provide
the details for those estimates that do not follow from a simple adaptation of the analysis
in Section 4.3. We begin by recalling that according to (6.7) we have set W = MV and
the remainder for W is spelled out in (6.139). Otherwise stated the remainder of W as a
controlled process is given by (4.62), that is

2
R (2,2') = Rz, ') + —gvila) W (2", (6.144)
ag

where RY(z, z') is defined by (4.63) and P, is the heat semigroup on R with generator %QA.
To compare (6.144) with the discrete remainder, we shall make use of a similar decomposition

1,6
of Rgg given in the lemma below.
1

Lemma 6.26. Let W' be the process introduced in (6.55), and recall that its remainder
RﬂW5 is defined by (6.141). Then for allt € [0,T] and x,x' € Z, the following decomposition

holclis true:

1,0
Wt

2 PN
Rox (@,2) = RY (v,2') + (@) (P00 (@, @) + Qi(w,0') = Ki(@,a')) . (6.145)

o2

In (6.145) we have set

RO (2, o) & / / (V2058 (12! — ] — V2200, (1 — )

X / ’ (00_,(2) — ¥ (x)) dUS(2)dyds, (6.146)
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and for € € R we also define

BIO(€) 2 / P (1€ — y)) U w)d, (6.147)
0i(e) 2 Y [ (#yen(le — D)~ #y(l€ — ) FE ) (6,143
K2(€) £ RUL (&) — TP (&). (6.149)

Also recall our convention (4.51) for increments of the form Q(x,z'), Ko (x,a").

Proof. The proof is purely algebraic and reproduces some of the steps in Lemma 4.11. Start-
ing from (6.14), some elementary manipulations yield

Wi (2,') = R (@, 2') + 37 (2) - I (,27), (6.150)
where RY?(z, 2') is defined by (6.146) and

/ [ Va1~ u) O yas. (6.151)

Slmllarly to what we have done in (6.123), one can switch from space to time gradients of
p° in (6.151) thanks to the discrete heat equation (2.78). Namely write

N A 2
Por (“()52 Pelw) _ TVERw),  forall (s,u) € N x OZ.

Then we can recast (6.151) as

)
t Ho — — —
3/0 /RPLSJM2<K yl) pLsJ(Lg yJ)Uf(y)dyds.

]156(5) — 0_2 52

LtJ

By further expressing the above time integral as fot = + f I the first integral yields

%(ﬁt‘sﬁf — PJU?)(€) by expressing the time integral as a dlscrete sum, while the other one
yields % Q7 (€). Summarizing, we have obtained the relation

2 A oA A
ﬁ@z;@ﬁ@—%@%ﬂ@%ﬂ. (6.152)
Plugging (6.152) into (6.150) we thus obtain

L, 200(x) ([ ssrs pervs / S 0.5,
W, (z,2") = o2 ((PtUl_PoUl)($=$)+Qt(I7x)>+Rt (z,2).

Now add and subtract the term @Uf(w, 2') to the above expression. This yields

2 209 o
Wity = 203 oty 4 2D (S0, f) 4 Qi) — K a)) + R (o),
where K¢ is defined by (6.149). This proves our claim (6.145). O

Remark 6.27. The appearance of the K°-term is a special feature in the interpolated discrete
equation which does not arise in the continuous case. Indeed, it is due to the fact that
x + py(|x]) is not the Dirac delta function on R.

We now turn our attention to the proof of our main estimate for the remainder.
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Proof of Lemma 6.25. We have seen that R’ and Ry t are respectively given by (6.139)

and (6.141), with decompositions (6.144) and (6.145). Therefore our global strategy will be
based on the following estimates:

(i) compare R’ (z, z') versus RY(z, z');
(ii) compare ¥ (z )(P5U1( "y — P2UY (z)) versus v (z)(PBW (2') — P,W (2));
(iii) show that both Q¢(x,z’), K%(x,2') are small terms.

Below we divide this task into several steps.

Step 1: Caset < 2. Like in the proof of Lemma 6.23 (see (6.136)), we will prove that all the
terms in (i)-(iii) above are small individually. We summarize the basic analysis as follows.

(A) |Estimating R°] By adapting the proof of Lemma 4.12, it is seen easily that
IRV (x,2)| < K(W)O(v)E(a, t)aX+P/?|z" — x> . 597F, (6.153)

(B) |Estimating P,JV| As a consequence of Lemma 4.13 (cf. (4.91) and (4.92)), as well as
the estimate on V' in Theorem 3.11, we have

o) - (PW (') = BW(2))| < w(W)OW)E(a, t)a¥t 2z’ — of*0 - 75
< w(W)O()E(a, t)aXt P2z’ — x> - 5278, (6.154)

(C) [Estimating R%] We start from the expression (6.146) and we set u = x —y. This yields
t
R Gea) = [ (T2’ = u)) - 92 Lu)
0 Jr
X / (00, (2) — 3 (x)) dU? (2)duds. (6.155)

The above expression can be estimated in the usual way as in the continuous case (see
relation (4.85)) by writing out V2959 explicitly and splitting

Oo(2) = 0 (2) = 0, (2) = 0_(2) + 0_(2) — % ().

For simplicity, We only consider the integral corresponding to 9 (z) — @0 () (the other
one is in fact easier), and call this integral N (z, 2’). Specifically, we consider

(2. 2) //v (|2 — 2 +u)) = V25(|u)))

x / U0 (2) — 00 (@)) dUP(2)duds . (6.156)

With the exact expression of po(z) = 6 1 (,—0), a simple explicit calculation shows that

R 1 1 1 1
V3 ho(u) = —2—(531{u=o} - Wl{u:ié} + @huzﬂzs} + Wl{u:i%}- (6.157)

As a result, the u-integral in (6.155)-(6.156) is supported on finitely many intervals of order
0. Those regions will be paired in order to take advantage of some cancellations due to our
expression (6.157).
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As an example, set 7 = 2’—x and consider the term corresponding to the regions [n+u| = 0
versus |u| = 0. This yields a term

t
N, ) 2 / ( /{ V) - /{ y O}Vi%gqmun)
u: | ntul= u|u|=

x/w_u (37_,(2) — 0)_()) AU duds

- (/_W /)/ (#.(2) — 8. (x)) dUYduds.  (6.158)

We first consider the case when 0 < 7 < 4. Then (6.158) becomes

N af) = 253 ( / /_ W) / (@ ,(2) — 30 (2)) d0%uds.  (6.159)

In order to estimate this term, we proceed as in Proposition 6.14 and Lemma 4.2. Namely,
we bound the integral with respect to U by four terms like in (4.6). For notational sake, we
will just focus on the fourth term which will be called M14’5(9c, x'). It reads

NM9 (0 o) = 2 (09)0(°) (g, t)a?¥ )5

53
t s 0 5
x/ (/ —/ )6_(’\+9“)s|t— s| 782 u|* P duds . (6.160)
0 —n —n+d

The above integral is handled by elementary methods. Since 0 < 1 < 9, the quantity /\/t14’5
can be upper bounded as

-/\/;1476 ([E, J]/)

1 . t
ﬁ/‘&(Ué)@( \E (a,t)aQX)\AIB// e~ A8 _ | =A%y |t 2B duds . (6.161)
n,0]U[—n+3,0

Then an explicit computation reveals that

1 t 0
— [ (t— s)_ﬂ/zds/ |u| TP du

0% Jo —n+o
1 1
St Tl = T8 T < Il 67 (6.162)

where we have used the assumptions ¢ < 6% and |n| < ¢ to reach the last inequality. More-
over, the same kind of inequality holds true for the integral on [—n,0]. Hence plugging
relation (6.162) into (6.161) we get

A 2| S OO Ela, AT e OH0 a5
< R(UDOF)E(a, )N T aXHB/2|g! — |28 . g, (6.163)

where we have used the relation x < /2, a > 1 and where we recall that n = 2’ — x for the
last inequality. We now gather (6.161) Wlth sumlar estimates coming from the integral with
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respect to [7{5, and we plug those into (6.159). We end up with
N (2, 2)| S R(05)O() Ba, AT a2z — 2?57, (6.164)
whenever |2/ — x| < 4.

In order to bound the term N0 in (6.159) when || = |z — 2’| > §, we can directly apply
the triangle inequality to the u-integral in (6.158) and the resulting estimate is the same as
in (6.164). Regions corresponding to other cases in (6.157) lead to the same estimate as well.
To conclude, we arrive at the following estimate:

IR (z,2)| < k(UDO@)NT E(a, t)a* 2|z’ — z|* - 5o, (6.165)
(D) We estimate the quantity
Ri’(z,2') £ PO (x,2)) + Q) (w,2') — K'(w,2") (6.166)

appearing in (6.145), in one go. First observe that we are dealing with the case ¢t < 62, for
which |¢] = 0. Hence the expressions in (6.147)-(6.148)-(6.149) can be reduced to

REana!) = 55 [ 0016 = u)) = 801~ o) B + e )
= % /R (B3 (12]) = 85(12])) U (x — 2,2 — 2) dz + U} (. 2). (6.167)

To proceed further, we shall divide our discussion into two cases: |2/ —z|? > t or |2/ —z|? < .
The second case will be treated by a generic argument later on (see Step 2 below). Here we
only consider the first case. Note that integrating against pj or ﬁ§2 is essentially averaging
over regions of order d. By applying the triangle inequality to (6.167) in the obvious way and
simply using the a-Holder estimate for ﬁf, we see that

Ry (2,2")] S w(UDaX|2" — 2| = w(U])aXt=2 - 90! — 20720 ol — 2.
In addition, recall from (3.20) that 5 > 1/3 and a < 1/2. In particular we have o < 20.
Hence owing to the fact that |z — 2/|* > t we get
IR (2, 2")| < k(U aXt P12 472 40278 g — |28
= k(U aXt =02 427812 ! — 2% < k(U aXt P22 — x|?P - 697P,

where we have invoked our standing assumption ¢ < §2 for the last inequality. With Propo-
sition 6.14 in mind, we thus obtain the following estimate:

1200 () - Ry (2, 2')| £ k(U)O(°)E(a,t) - aXt /2|2’ — x| . 5275, (6.168)
Summarizing our considerations so far, we report our bounds (6.153), (6.154), (6.165) and
(6.168) into (6.139) and (6.141), we have achieved the following inequality for the case t < 6%
wi? ;
‘Rfj? (z,2") — ’R% (, x')‘

< (f;mi)@(@ﬁ) + H(W)@(v)) E(a, )2 T aX(a® + tP12) |z’ — x|? - 528, (6.169)

Step 2: Case |z’ — x|* < t A §*1. Here we consider a parameter 1 € (0,1) to be chosen later
on, and we assume |2/ — x|? <t A §?". In this case, we adopt a generic argument as in Case
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IT of the time-variation estimate. Under the same notation leading to (6.136) in that part,

we have
1,6

‘RIVJV% (z,2') — Ryt (2, 2')| < }R (z,2')| + | R (z,2)]
< AG’,B’EH’,B’(OL7 t))\o‘% caX (PP — 2

where A?*#" is the uniform upper bound on 0% (w?) v %% (w) introduced in (6.101). In

view of the constraint (6.135) on the parameters, we can further write

1,6

}; géﬁ (z,2") — R)\/;vvt(l',xlﬂ < A@’”ng(a’t))\anB caX|z — JJ|2B
1
: <a5/2|x/ -

Under the current case, we assume |z’ — x| < ¢". Hence

o — x|2(ﬂ'—ﬁ)> _

|z’ — I|2(ﬂ’fﬂ) < 52 =P

and since we also assume ¢t > |2/ — z|? we get

T — OB = I |y B o — P < 1),

As a result, we arrive at the following estimate whenever |2/ — x|* < t A §7:
1,6 /ar a— /

‘7231; (z,2") = R (z,2")| S AP E(a,t))\TﬁaX(aﬂ/2 + 7822 — 2?8 5" P (6.170)
Step 3: Case t > 6% and |v' — x| > 6. The following estimate is obtained in the same
way leading to the time-variation estimate in Lemma 6.17 and space-variation estimates in
Lemma 6.24, based on the local central limit theorem. We only state the final result here.
Namely we obtain that

RO (@,2/) — RO, a")| £ Elat) (#(0)dgyg e 0.0) + O()o(05, W)

aX(aP? + 7P — 2)?P . (6.171)

As far as the terms involving P; in (6.145) are concerned, we first have

3 ()PS0 (&, 2') — vi(2) W (x, x/)‘ < A+B, (6.172)
where A and B are respectively defined by
= |5(2)| - | BT (2, 2') — P (a, x')‘ (6.173)
= |0} (z) — ve(x)| - |[PW (z,2)). (6.174)
According to Lemma 4.13, the quantity B is bounded as
B < E(a,t)dﬁiw(f)‘s, v) - K(W)aXt P2z — 2|8, (6.175)

To estimate A, we further write

A~

PO} (@, 2') = BW (x,2')|
<|(P = P)UP (z, )| + | P(UF = W)(z,2)| =: Ay + As. (6.176)
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As in Lemma 4.13, the As-term is easily estimated as
|Pt((7f —W)(z,2")| S p(US, W) aXt P2z’ — o2, (6.177)

To estimate the A;-term, for simplicity we only consider the case when |2/ — z|? > ¢ (the
other case is treated in the same way as Case (i) in the proof of Lemma 4.13). Now for
|z' — z|* > t, we write

(B} — P)U(z,2') = /R B (L)) = pew)) (U (&' —y) = U (z — y))dy. (6.178)

Recall from the local CLT (cf. Theorem 2.25) and the uniform Gaussian estimates (cf.
Proposition 2.26) for the heat kernels that

R 5 . 1 .,
‘pftJ(LyD -y S B and |p‘EtJ(LyJ)| V()| S %e Cy?/t

Plugging those inequalities into (6.178), it follows that

Av < [ 1) = )] 1)) = )| [0 = ) = O = )t

Sgiﬂ.tl/‘l./ie
t r Vit

A(s(x/ y) — U1 r—Yy ‘dy

_ 0 / RO (o — Viw) - Uf (e = Viw)|dw
\/T_f R
) A

5 — Xk (U | — e 6.179
7 (Uy) | | (6.179)

Similar to the analysis leading to (4.92), we write
2’ — x| =t a" — x|? P22 — a|o 2P,
Noting that o — 23 < 0 and |2’ — z|> > ¢ in the current case, simple algebra shows that
920 — 2| < 2" and t PR — 2?8 < P12 < TP
Therefore we get
|z — z|* < Cr 2"
Plugging this inequality in (6.179) we obtain
4]

) o s R o 5 1—(a—8) ) .
A; < aXk(U9) - %t > = a¥k(UI) - 5277 (%> < k(U9 - 6977, (6.180)

where the last inequality holds since ¢ > §? in the current scenario. To summarise, we report
(6.180) and (6.177) into (6.176). This yields

A <O (K(ﬂi)aa—ﬁ + (00, W)> CE(a,t)a¥t 2|z — x|,
Together with (6.175) and recalling (6.172), we thus arrive at the following estimate:
|57 ( (2)POU (x, ') — vy (z) W (z, ") (6.181)
< {@@) (K(U‘{)m—ﬁ + (08 W)) + 1 (W)dgyg (8, v)} . E(a, t)aXt—#2| — z]?6.

~Y



RANDOM WALKS IN RANDOM ENVIRONMENT 105

Now it remains to estimate the quantities Qf(x, '), KJ(z,2’) defined by (6.148), (6.149)
respectively. We will divide those estimates in two substeps.

Step 3-1: estimate for Q2. Our claim here is that whenever ¢ > 6% and |2’ — z| > § we have:
190, 2")| < k(U)X P! — 2P - 5. (6.182)

In order to prove (6.182), we return to the expression of Q%(z,2’) in terms of V2. Namely
invoking the discrete heat equation (2.78) in (6.148) we get

(t—[t])o?
2

Qi (z,2) = / V2, (1€ — y))O? ()| (6.183)

We now split the discussion in two cases.
Case A: |2 — x|> > t. In this case, set y = & — v/tw in (6.183). We obtain

Oi(r.a) = T [ 208, (V) (03 = Vi) = 03 — Viw)) Vi,

We resort to the fact that ¢ — |¢] < 6% and to the Holder continuity of Uf . Taking into
account the upper bound (2.80), which reads

V25 ( ([Vtw])] < t3/2 Cw*  forall t>0%weR,

we end up with
Q3w 4/) S 8 - w(TDa¥ - e’ — o

= /ﬁ(ﬂ?)ax . t*5/2|x/ . :L"QB e .tﬁ/Zflyx/ . $|a72’3,

’

Moreover, since we assume |r — 2/|> > ¢ and we have o < 23, we discover that

Qf(a:, x') < H({ji)ax . t—ﬁ/2|x/ _ 93|2/3 .02 . B2 1a/2—0
_ m(ﬂ‘f)ax . t‘ﬁ/zla:’ _ x‘% L 02 .L p/2=B/2-1
Eventually recall that ¢t > 62 in this step, and o — 3 — 2 < 0. This yields
Q(x,2') < w(UaXt P2z’ — x|? . 5277, (6.184)
which is compatible with our claim (6.143).

Case B: |a' — x|* < t. Since [, V2B, (y)dy = 0, we can insert this quantity in the expres-
sion (6.183) for QJ(z,’). This yields

L [ o2 apu (1 = y)) = V25 (l2 = o)) (02(0) = O3 () dy
Ht =/ A y 58, 1=)) (080) — 03(e)) (6.185)

Q;(,2') =

where the discrete gradient V39 is given by (2.76):

(V2= +6) = (V2 f)(x)
; .

(V32 £) ()
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Moreover, the third order difference @3’5]5‘& 1([2]) also satisfies the uniform Gaussian estimate
in Proposition 2.26. Namely we have

1

VO ([2)] S e O forall 287 zeR. (6.186)

Suppose that [z —y] and |2’ — y] have the same sign, say
lz—y] > [2" —y| >0
Since |2’ — x| > § under the current discussion, it is easily seen that

lz—y] 9 ’ 2
/ e=CP 1ty < |2 — gleC@ PN, (6.187)
L

x'—y]

Plugging (6.186) and (6.187) into (6.185), we obtain

Q2 (2, 2")| S 8%72)2’ — x| - / e~ C@ VT (y) — U} ()| dy
R

= 627322 — x| - / e‘CwQ‘Uf(ac/ —Vitw) — Uf(x)|dw, (6.188)
R
where we have set y = z' —+/tw for the second identity. Next, owing to the Holder regularity
of U? and invoking |2’ — z| < v/t again (also noting z, 2’ € [~a,a] and @ > 1), we have
|07 (@' = Viw) = U ()] < &(O)(|'] + || + Vijw])* - (|2 — 2] + Vtw])*
< K(09)(2a+ VT|w|)X - (VE + ViE|w])®
< KU aXtY2(2 + 2VT|w|)X (1 + |w])®. (6.189)
Reporting this inequality into (6.188), we can write
Q7 (,a")| S w(U)ax - 624222 — a
_ I{(ﬂ?)axt_ﬁ/2|l’/ i x|26 . 52ta/2+ﬁ/2—3/2|x/ o ZL’|1_2’B.
Now recall once more that |2' — x| < v/t and ¢ > §2. We thus obtain
Q7 (,a")| S w(OaXt 2| — . g20/270127
< k(U aXt P2 — |28 . 5976, (6.190)

This fits our claim (6.171) when |x — y| and |2’ — y| have the same sign. If | — y| and
|2’ — y| have different signs, say

/

r-y<0<a —y <= r<y<7,
then we simply bound (owing to (6.186)) the quantity @3’5]5‘6” by t72. Plugging this crude
estimate in (6.185) we get
Qi) S 2’ ~al [ [U3(w) - O (a)dy

x
<4722 — 2 - k(U aX|2! — x|

= m(ﬂ‘f)axt’ﬁ/ﬂx’ — |28 §2 2Oy — 228,
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Thanks to the assumption |2/ — x| < v/t and t > §2, we get
Q(x,2') < w(UHaXt— 2|z’ — x| . 5o, (6.191)

Gathering (6.190), (6.191) and (6.184), we have thus obtained an inequality for Q?(x,z’)
which is compatible with (6.171).

Step 8-2: Estimate for K°. Let us focus our attention on the term K°(z,z’) defined
by (6.149). Here under the current case, if |2’ — x| > v/f, we assert that

Ko (z, )| < k(US)aXt P22 — x)?P . 5276, (6.192)
If 2" — x| > §7 where 7 € (0,1) is a given number to be chosen later on, we will see that
Ko (2, 2] < k(US)aXt P22 — )28 . 597207, (6.193)

The proof of those claims goes as follows: by the definition of K°(x,z’), we can write

) = [ (L)) (030! =) = Ol = ) dy

1 5 . 5
=5</ Uf(w’,x—y)dy—/ Uf(rv,x—y)dy)
0 0

/ 1 ’ 3 o 3
Kl <5 [ (1006 = I+ 103 = )] dy

As a result, we have

By using the standard a-Hélder estimate for U{S, we obtain that
K (, )| S K(0F)aXs”.
If |2' — z| > /1, since t > 62 we can further write
0% = 6%’ — |22’ — |?® < 6P|’ — 2P <t — 2P 5P,
which leads to (6.192). If |2/ — x| > 7, we have
5 = §a—267 §28748/24=B/2 < C’T|x’ _ x|2/3t—6/2 . 50[—267’

which leads to (6.193).

Step 4: Conclusion. We first remark that Steps 1, 2 and 3 above cover all possibilities.
Indeed, the complement of Steps 1, 3 is the case when ¢ > 6% and |2/ — z| < §. But this
situation is contained in Step 2:

t>0% |2 —x|<§ = |2/ —z|? <t A&

since 7 € (0,1). In view of the estimates (6.170) and (6.193), we now choose 7 to be such
that

T8 —B)=a—-201 <= 7= ﬁ’j-ﬂ'
The resulting rate is §" with r = B,ﬁ‘rﬁ(ﬂ’ — (). Combining all the ingredients obtained so
far, the desired estimate (6.143) follows. O
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6.5. Developing Step 2: comparing [7° and 7. In Section 6.1 we mentioned that the
convergence of 7 to v also relied on the convergence of a series of deterministic type terms.
Specifically, consider the path 7 defined by (6.6). This path is approximated by the discrete
process J; introduced in (6.12). The second step of the strategy recalled in Section 6.1 leads
to inequality (6.18). We will detail this step now. Our estimate on the controlled distance
between J° and 7 is summarized in the proposition below.

Proposition 6.28. Let «, 3, x, 0 be exponents satisfying condition (3.20). We consider fixed
coefficients 0’ < 0 and B’ € (B,a). The upper bound AP on the rough path norms of YW
and W is given by (6.101). Recall that J° is introduced in (6.12), while n is the path given
by (6.6). Then we have

B (8" -B)

A aB g ' B co—
dgs w(T°,m) < C ((Ilfollcg +lgllez )87 + (1 + w(UD)A T (AT 755 4 ATI572)
(6.194)

The rest of this subsection is devoted to the proof of Proposition 6.28, for which we now
outline a strategy. In view of the definition of dm,w(j 3.m), the comparison between J° and
71 boils down to estimating four types of differences: uniform, time-variation, space-variation
and remainder. Since a substantial part of the analysis here is a technical repetition of the
previous section (indeed it is simpler than Step 3 except for the estimation of one term
which we will point out later on), for most of the time we will only consider uniform distance
estimates. In addition, we will only consider J2(z) — n;(z) on grid points (,z) € §°N x §Z.
The adaptation to non-grid points is easy since #(z) is defined through piecewise linear
interpolation (cf. Definition 6.2).

6.5.1. A decomposition of J?(x). Recall that in (6.12), the quantity J? was implicit. As
a starting point, we shall first compute J(x) explicitly. This is the content of the lemma
below.

Lemma 6.29. Recall that v} () is the discrete process defined by (6.1), in which n), (z) and
I} (x,y) are given by (6.2) and (6.4) respectively. For each (tx,x) € 6*°N X 6Z, we have

1

Th@) =5 (@) + i, (@) + 5 () — ol () + &L @) (6.195)

The function &) (x) in the above equation is an error term defined by
5 1,6 2,
gtk (f]f) = Stk (i[f) + gtk (x)7

where £ and £%° are respectively given by

1 R
(@) & 20 VIR (lr — ) T(, 2) (6.196)

2E07L

& ly)+6 )
—% /0 /R V2Bl (e = y)) ( /y ﬁfks(z)dUé(z)> dyds.  (6.197)

[I>

& ()



RANDOM WALKS IN RANDOM ENVIRONMENT 109

Proof. Using the definition (6.12) of J¢ (), we first write

lyl+6 .
T () / / V2, (L —y)) ( / @g(z)dm(z)) dyds + £, (6.198)

where Ei’é(:c) is defined by (6.197). Next, due to the fact that both ¢ and z are on the grid
6°N x §7Z, the integral on the right hand side of (6.198) can further be expressed as

G (z) = / / v (| —yJ)( / Lywﬁi(z)dm(z)) dyds

_ _ZZ/ VIR, (o )(/ g(w)dfﬁ(w)> ds.  (6.199)

j=1 2€6Z

Since s — ©(z) is linear on [t;_1,t;] by definition, it is easily seen that

/t tjl  (w)ds = 522 (5, (w) + % (w)

j—

As a result, the term G in (6.199) satisfies

gtk Z Z V”Afk g — z)/ 622 <Ut (w) + 27fj (w)) AU (w). (6.200)

J 1 zeZ

By using the piecewise linear construction of 17?]_71 (w) and U%(w), given respectively in (6.9)
and (5.2), it is easily checked that

[ it w) -

/u (u— w)vfj_l(u —0) 4+ (w—u+ 5)vfj_1(u) y U‘S(u)
u—34

5 dw

u€z+4,z]

v} (u—06)+v] _ (u) -
= Z il ;+ : ()U(s(u):Ifj_l(x,z).

u€z+4,z]

where the last equality is a direct consequence of (6.4). By substituting this into the expres-
sion (6.200), we obtain that

) (z,2) —i—Ifj(x,z)

th = ZZV”ptkt:&—z)x it 5

7=1 2€dZ

Hence going back to (6.199) and (6.198), we end up with

53 k I‘S_fl(a:,z)+I5,(a:,z)
Ta(@) = v} (@) + 5 DD VB, (o —2) x = s & (@), (6:201)

7j=1 2€8Z

where we note that @), (z) = v} () since (t, x) is assumed to be a grid point.
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On the other hand, by using the discrete equation (6.1) for v (), it is seen that

I (2,2) + 1) (2, 2)

ZZVQéptkt [B—Z)X j—1\ >

j=1 2€0Z
1 1
=5 (M@ + 0, @) =5 (V@) + i, @) + @), (6.202)
where Etlf(x) is defined by (6.196). By substituting (6.202) into (6.201), the desired decom-
position (6.195) thus follows. O

In view of Lemma 6.29, in order to compare J° with 7, it is clear that there are three
main ingredients to be developed:

(i) compare 3 (m( ) + 152 () with ne(2);
(ii) show that 09, 2 () — vf () is small;
(iii) show that the error term & (x) is small.

We now implement these three steps separately.

6.5.2. Comparing 3 (n}(x) + 10,5 (2)) with m(x). We begin our comparison procedure by
looking at the difference between £ (19 () + 17, 52(x)) and n,(z). Notice that the analysis of
this term is easy, since it only involves the input functions fo(x), g:(x) as well as the heat
kernels. The resulting estimate is summarised in the lemma below.

Lemma 6.30. Let fy,g € C; be given functions with some L > 0. Recall that n and n° are
respectively defined by (6.6) and (6.2). The distance dg; v is introduced in (6.11). Then we
have

Tt w (é(n%) + n?+52<~>>,n) <C- (Il folleg + llglleg ) - 9°. (6.203)

Proof. For simplicity, we only discuss the remainder estimate for the fy-part. Estimates of
all other parts are routine repetitions of the same kind of analysis. More specifically, let us

define

Aézvléptx— Vfoly), and n(z /aa:ptl‘_ ) fo(y)dy

YEOZL

respectively. We want to estimate the difference 0}’ (z,2’) — n}(z, z') where t € (0,7] N 62N
and z, 2’ € [—a,a] N0Z. For this purpose, we first resort to a discrete integration by parts
like in Proposition 2.24. Hence n'° can be recast as

) =03 VY fol — )i y) = / VI foll — y))ELy))dy. (6.204)

YEOL

In the same way, due to our regularity assumption on f, a simple integration by parts yields

z) = /R Oufolw — v)p()dy. (6.205)



RANDOM WALKS IN RANDOM ENVIRONMENT 111

We now express the increments 7, (x, 2), Thanks to (6.204) and a change of variable y =
\/fw, we get

(o) = [ ) (7ol = ) = V" follz = ) dy
/ (Vi) (V1 fol [ = Viw]) = ' fo(|o = Viw])) dy - (6.206)

Similarly, by using (6.205) we also have

Mz, o) = / P() Befola’ — ) — Oufolx — y)) dy

:/ </ 92 folz — )dz) dy-/pl (/ mfoz—\/_w)dz> dw. (6.207)

Putting together (6.206) and (6.207), we thus obtain the identity
7715176(*1'7 xl> - ntl<x> ml) = At('r? Q?I) + Bt(ma xl>7
where A;(z,2’) and By(z,x’) are respectively defined by

Az, ') = / (\/_pt(L\/_w (/ 2 folz — \/_w)dz> (6.208)

(z,7) /\/ ([VEw]) My oo (Vew)du (6.209)

where for a € R we define

x/

M, o(a) = V¥ fo(|2’ — a)) — V9 fo(|z — a) — / 02, folz — a)d=.

We will now estimate the terms A;(z,2") and Bi(z,2). Let us start by estimating the term
Ai(z, ") introduced in (6.208). In order to bound this term, we proceed as in Section 6.4.1.
Namely we write p° in terms of the discrete kernel p? and we invoke Theorem 2.25. We let
the patient reader check that

0 2
Vi, —pi(w)] < Gy e,

Vit

for all t > 6% and w € R. Plugging this inequality into (6.208), it follows that

|Ay(z,2)| < Cl\%/Re_C?w2 (/ |02, fo(z — Vtw) |dz> dw.

In addition, the right hand side above can be bounded invoking the fact that f € C3 and
Definition 6.4 we obtain

0
}At(l',.]?,)‘ § 03% . |

z -l GL”foucg-
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Whenever t > 6% and z € [—a, a] we thus get
Ao, 2] < ot =207 ol — a2 a2 o
< Cillfolleg Ba, t)aXt™ 22" — af* - 67, (6.210)
where we have absorbed some power of a into F(a,t) term for the last step.
Next, we estimate B;(z,2') in (6.209). By the definition of V1, it is easily seen that

VR fo(la" = Viw]) = VI fo(lz — Viw])

_ fol@’ +6 = Viw]) — folw +0 — [Viw])  fol@' — [Viw]) — folz — [Viw])
o J
_ / Oufolz +6 = Vi) = Oufolz = |Viw))
. J

= [ ([ tute+ 05— | Viw)yan) =

Using again Definition 6.4 and our assumption fy € C3, it follows that

‘Mx,x/(\/iw)‘ = )Vl"sfo(tfc' —Viw|) = V¥ fo(lz — Viw]) - /x Orefolz — \/Z’w)dZ‘

T

/ / 2 folz 4606 — [Viw]) — Qxfo(z—\/gw))dedz

< Cllfollega” - o — @] -6 (1+ [w])". (6.211)
In addition, recall from (6.61) that
VR (|[Viw])| < Ce 2, (6.212)

By substituting (6.211) and (6.212) into the expression (6.209) of B;(x,z’), we can bound it
as

| Bi(z,2)| < Cll follega™la’ — ] - 0.
Now one can perform the same kind of manipulation as for (6.210) in order to get
| Bu(w, )| < Cllfollega™™ =" = o 6

< Clifolles Ea, t)aX 72 |a’ — z[*? - 6. (6.213)

By putting (6.210) and (6.213) together, we obtain the remainder estimate for n'? — n!,
which contributes to one term in the rough path distance. All other terms (uniform distance,
spatial and time variations) and also the ¢(t¢,x)-part are dealt with in a similar way. The
resulting estimate is given by (6.203). U
6.5.3. Estimating v} 52 () — v?(x). This part requires some care since we do not view t

v?(-) as a Holder-continuous path taking values in spatial rough paths. As opposed to that,
we shall consider the path G} = v/, 5 (2) — vf () as an element of the (discrete) space B
which is introduced in Definition 3.9, and we will prove that the norm of G° is small. Our
estimate is summarized in the following lemma.
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Lemma 6.31. In the decomposition (6.195), let G° be the path given by
Gi(w) = vl o (@) — vl (@), (6.214)
defined for (t,x) € 6*°N x 6Z. We consider G as a discrete path controlled by Ij‘f, with a null

derivative. Pick o, B, x satisfying (3.20), as well as ¢ < 0 and 5 € (B, «), so that for all
a>1andte|0,T] we have

EY(a,t)a?"* < E%(a,t)a’?, (6.215)

where we recall that E%(a,t) = eM+0a+0l = As usual we choose v = (o — B)/4 and X is such
that (6.8) is fulfilled. The controlled norms © are introduced in (3.27). Then we have

a—8 )

O/ NG < CAYP (1 + k(UDAT .6 #98 . (6.216)

Proof. As usual, based on the definition of our rough path metric, we need to develop four
types of estimates. We again use the trick of adjusting exponents based on the uniform
boundedness of v (x) proved in Proposition 6.14.

Step 1: uniform estimate. Let ¢ < 0 and B’ € (5, ) be fixed parameters such that (6.215)
is verified. In particular for all @ > 1 and ¢ € [0, 7] we have

E%(a,t)a”* < E%a,t) VYa>1,t€[0,T).
It follows from Proposition 6.14 that
G2 (2)| < A" E (a,t)a” 267 < AV EY(a,t)8”, (6.217)

where A?#" denotes a uniform upper bound of ©*(v?). This gives the uniform estimate in
the definition of the rough path norm of (¢, z) — G?(x).

Step 2: time wvariation estimate. We simply decompose the time variation as follows for
s,t € 0°N and z € §Z:

|G1 () = Ga@)] < [vfpe(2) — 0] (2)| + |00 (2) — vi(@)].

Next we recall that (¢, 3") are chosen as in (6.215). Invoking the J-uniform bound on v
obtained in Proposition 6.14, we get

|G2(2) — G3(x)| < 2A" P E’(a,t)a’?6% = 2077 E%(a, t)a”/?676% 7.

1)

Since s,t on the grid §°N, satisfy t — s > 02, we discover that
G (z) — G(z)| < 20”7 EP(a,t)a’ Pt — 5|2 - 7P, (6.218)

Step 3: the space variation estimate. This term is handled exactly like the time increment
in Step 2. We let the reader check that for all z,2” € [—a, a] and t € 6°N we have

G2 (2, 2")| < 2077 EP(a, t)aP? o’ — x)? - 675, (6.219)

Step 4: remainder term and conclusion. Since our term ansatz stipulates that the derivative
Ops vanishes, we are now left with an estimate of the remainder for G°. This is achieved by
elaborating on the upper bound (6.219) in order to get a second order estimate in ' — x.
This step is detailed in Lemma 6.32 below for the sake of clarity. Gathering this lemma and
(6.217)-(6.218)-(6.219), this finishes the proof of our claim (6.216). O



114 X. GENG, M. GRADINARU, AND S. TINDEL

We now state and prove the announced estimate of the remainder for the controlled process
G? defined above.

Lemma 6.32. Under the same conditions as for Lemma 6.22, let t € (0,T] and z,2’ €
[—a,a]. Also recall that the path G° is defined by (6.214). Then we have

/ /

/ ! kel o— )
|G (w,2')| < O (1 + 5(U2) E (0, )A"T aX (a2 4+ 1=0/2) |2/ — 2P - 67775 . (6.220)

Proof. We divide the discussion into three (not necessarily disjoint) cases. Note that such
type of consideration already appears in the proof of Lemma 6.25. In the sequel 7 is a
parameter in [0, 1] which will be chosen appropriately.

Case I: |v' — x| > 67. In this case we decompose G?(z,2') as

|G§/s z,1')| < }Gf z)| + |G‘f ). (6.221)
Then for z, 2" € [—a, a]] one can apply the uniform estimate (6.217) and obtain
G2 (z,2')| < CA"P'E(a,t)a?6". (6.222)

One can then conclude by invoking the fact that 6™ < |2’ — z|. That is we get
‘Gf(x,x’)‘ < C’Ael’ﬁ/Ee(a,t)aﬁ/%zTﬁ N
< CAN" P E(a,t)a??|a’ — z|? - 657278, (6.223)
Case II: |2 — x| > +/t. We choose 3,0 such that (6.215) is verified. Then we start our

estimation procedure like in (6.221), which yields inequality (6.222). Now one can decompose
the right hand side of (6.222) in order to get

G2 (z,2')] < CA” P E(a,t)aXt 7|2’ — 2P - 67 |2/ — 2| PP/,
Next we resort to the fact that |2’ — z| > v/ to write
|G} (2, 2)] SCAY P E%(a,t)aXt™ P22’ — x)?P . 67 t7P/2
=CAN"P B (a,t)aXt™ P22’ — 2?69 . 551772,
Eventually, thanks to the relation ¢ > §% we obtain a relation which is similar to (6.223):
G2 (z,2')] < CA" P E(a,t)aXt 7|2’ — P - 67 F. (6.224)

Case III: |x' — x| < v/t A 9. Recall that in (6.142) we have written a decomposition for the
process 7. Specialized on the grid 6°N x §Z this can be read as

0o (m,2) — 0 (,27) = =2 (0], 52 () — 0] (7)) U (x,2) Rk (x,2) —RY (z,2), (6.225)
where we have written RY instead R oh in order to alleviate our notation. We now bound

the two terms in the right hand side of (6 225).

In order to bound the derivative term in the right hand side of (6.225), consider again

0 < 0 and ' € (8, ). Then invoking Proposition 6.14 and the fact that x(U¢) is uniformly
bounded in §, we get

[ (0, 2(2) = 0f(2)) O3 ()| < CA" (OB (0, )0 267 |o! —afe. (6.226)
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Recall that we are now dealing with the case |z — 2| < 0™ and z,2" € [—a, a]]. However, we
also have |2/ — z| > ¢, due to the fact that both x and 2’ belong to the grid 6Z. Therefore
one is enabled to write

/ ! 6
67 |2 — x| = 67 P2 — x| (

2" — x|

B
) 2/ — 2P <67 P! — 2PPaP

Reporting this inequality in the right hand side of (6.226) yields
| (0f,2(2) — 0f(2)) D3 (2, 2)| < OA (T EY (0, a1+’ — 29675, (6.227)
In addition, we have assumed that (6.215) is verified. Hence we obtain
EY (a,t)aXtF/2e=8 < CE(a,t)aX /2.
Plugging this information into (6.227), it follows that
| (0] 52 () = 0) () UF (2, )| < CA"F (U B (a, )X P20 — 2P - 6777 (6.228)

We now turn to an estimate of the remainder terms in (6.225). We shall bound each term
in the difference individually, namely write

09 s 9 s
|R tho? (') — RY (:U,a:’)} < |7€ t+62 (a:,:c’)] - |th (x,a:’)! .
Then we resort to Proposition 6.14 and the definition of % in (3.27) in order to obtain
R (2, 0') = R, 2')| < CA”F B (a, )X aX (@2 + 4792’ — 2. (6.229)

r A a—pB
- 4

. Since |2’ — z| < 67, we have
‘x/ . l_’QB’ _ ’23’ o $|2,8 . |$/ _ $‘2,8’—2B < ’l’/ _ .213‘2’8 . 527’(,8’—,8).
In addition, since |2’ — z| < v/, we also have
t‘ﬁ/ﬂ]a:’ _ x’w’ - t‘ﬁ/Q\a:’ —xz|?. t—(ﬁ’—ﬁ)/2’x/ — $|2(/B’—B)
< t*5/2|x’ — 2/ |2 — x|ﬁl*5 < t’ﬁ/ﬂx’ — x| 5T =B)

Reporting those values into (6.229) and recalling that (6.215) holds true we end up with

|R“f+52 (z,2) — R% (x, )| < CAY N E (a,t)aX(a?? + 1P|z — 2?8 . 670 =F) . (6.230)
Hence gathering (6.228) and (6.230) into (6.225), we have obtained

0] g2 (2, 2') — 0] (z,27)] < CA”F k(UHN E (a,t)aX(aP/? +17P/%) |z — 2?2 .67 =F) . (6.231)
Combining cases I to III, it is not hard to see that the optimal choice of 7 is such that

/8/

RN

g =2r8=7(0'—-p8) < 1

The resulting é-factors is then found to be § 3 . This completes the proof of the lemma.

O
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6.5.4. Estimating £ (x). The last term we have to estimate in order to quantify the conver-
gence of J° in (6.194) is &) . We label another lemma in that direction

Lemma 6.33. In the decomposition (6.195), consider the term
E(x) = & (x) + & (), (6.232)

which is defined for (t,z) € 6°N x 07 and where £°,E° are introduced in (6.196)- (6.197).
We pick «, 5, x satisfying (3.20) as well as ' < 6 such that

EY(a,t)a®* %% < E%(a,t) VYa>1,t€0,T). (6.233)
Then we have

O7NEY) < O(1+ K(UF)) AT AT g2, (6.234)

Proof. Unlike for Lemma 6.31, we will not give details for all four terms defining the norm
©. For the sake of conciseness, we just focus here on estimating

S(E%) =sup {&2 r € [0,t],z € [—a,d]}, (6.235)

which is a part of [£9]I0xI=al in (3.27). Details are left to the reader for the other terms.

Let us first give an estimate for the term £ in (6.196). To this aim, we write the discrete
integral in the right hand side of (6.196) as continuous one:

52 . Ly] . R
&) == [ Ve =) [ )l w)dy,

Thanks to this expression and the U _decomposition (5.4), one can perform the same kind of
analysis as in Section 6.4.1 (for the U part) and Proposition 6.14 (for the UJ). This yields

1£1°(2)] < C(k(0Y) + V6)E(a,t)O(°) - 6% (6.236)
Next, we handle the term £7° in (6.197). Again the Ul-part is (trivially) controlled by
CVGSE(a,t)0(@°).

We therefore focus on the Uf-part and further decompose it as K} () + K2°(x), where

tnG? lz—y]+d

Kio(z) & ——/ /v“ (ly]) (/_ o0 (2)dU? (= )) dyds (6.237)
¢ ly]+

K(x) 2 —% /M /R V20l ([x —y)) ( /y 7 (2)dU? (= )) dyds.  (6.238)

We now upper bound the two terms K;°(z) and K°(z). The term K}°(x) is handled as
follows: according to (2.81) or (6.80) we have

) 1
V2 56(LD)| < L mi<o)- (6.239)
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In addition the rough integral estimate (4.5), properly extended to a discrete setting as in
the proof of Lemma 6.17, entails that

[z—y]+6 5 N,
[ @)

-y

< Ch(UDOFINT E(a, t)e AHEHs . (g 4 [y[)X5°

+H(a+ [y)Xe* + (a + |y|) T2 (620F8 4 52T28) 4 (a + |y|)>X(t — 5)7F/26°T2) . (6.240)
By substituting (6.239) and (6.240) into the expression (6.237) of K}°(x), we obtain that
KK ()] < CR(TDOE)AT E(a, t) - 5°72X. (6.241)

To estimate K°(z), we assume that ¢ > 62 (for otherwise K2°(z) = 0). We first apply the
change of variable © — y = /sw to write it as

t lz—/5w]+6 R
K3 (z) £ —% /5 2 /]R VsV2 ([Vsw)) ( / 6f_s(z)de(z)> dwds.  (6.242)

T—+/sw
Next recall from (6.59) that

C 2
V25, (Vsw))| < S5e @, Vs> 0% weR. (6.243)

e
§3/2

In addition, invoking again a discrete version of the rough integral estimate (4.5), we have
lz—+/sw]+d / / /
‘/ ) (2)dU7 (= )‘ < Cr(THAY AT BY (g, 1)~ (W0 (VT )s

X ((a + VT w|)6% + (a + VT w|)™X6** + (a + VT |w|)>X /2 (527 + 5420)
+ (a+ VTw]) (¢ - s)—ﬁ/zda“ﬁ), (6.244)

where we recall that ¢ < 6 and A?# denotes a uniform upper bound of ©%*(v9). As
before, the role of ¢ is to absorb the extra polynomial factors in a, i.e. we choose 8’ < 6 so
that (6.233) holds. By substituting (6.243) and (6.244) into the expression (6.238) of K2’ (x),
there are four individual terms coming out (corresponding to the four terms in (6.244)). The
first three terms lead to an s-integral

/ L s —10g L = O(log 8)
s=1lo = O(logd).
52 S &5 52 &
The last term leads to an s-integral
t 1
/ sTHt — 5) TP 2ds = t_ﬂ/2/ p~ 1 = p) P 2dp < 670(log b).
52 52/t
To summarize, we obtain that
|12 ()] < CR(ODA”PAT B (a, )5 log 6. (6.245)

Combining the above estimates (also noting that o — 2y < o < 1/2 and A%® < A”F), we
can now conclude our £*%-estimate as

€2 ()] < C(r(T3) + DAY PNT E¥ (a, 1) - 62X, (6.246)
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Eventually putting together (6.236) and (6.246) into the decomposition (6.232) we obtain
the desired estimate (6.234). O

We finish this section by proving our main result.

Proof of Proposition 6.28. Gathering our estimates in Sections 6.5.2 to 6.5.4 the proof of
relation (6.194) is achieved. O

6.6. Completing the proof of Proposition 6.5. We now put together all estimates ob-
tained so far to establish our main estimate (6.21). To ease notation, we will write

rs = Fan(U9), 5 2 Koy (W), ps £ pax (U], W), 0 £ 67 (v), 05 £ 6°4(1"),
and also
A1) 2 dggwlc ).
In addition, C; will denote constants depending on all underlying exponents but not on 9, A.

With all exponents «, 3, x, 0, ' given fixed, it follows from Lemmas 6.16, 6.17, 6.23, 6.24,
6.25 and Proposition 6.28 that

d(0°,v) < AW, W) + O (W) +d(T° 1)

_a=p -
< Cy (A7 wd(@,0) + ([ folleg + lglles )0
ﬂ 6/ 5/ ﬁ,(€/75>
AT (14 ks +£)(O5 +O + A" (ps+6 775 )| . (6.247)
We now fix a choice of A = )\, which satisfies

AT R (W) <

|

so that (cf. Lemma 6.15 and Lemma 6.22)

sup ©5V O VA" < Coe (Il + gl ) )
0€(0,1

where we recall that 7(w) is defined by (6.19). It follows from (6.247) that

o 8 (8'-p)
(B, v) < X5 Curd (i, v) + Cpe (Ilfollcg + ||g||cg> (65 + (14 R(w)*(ps +0 775 ))

(6.248)

By enlarging A if necessary to ensure that )\7¥01K, < 1/2, one can then move the first term
on the right hand side of (6.248) to the left and the desired estimate (6.21) thus follows.
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