Contrôle continu : sujet de la première épreuve

Master de Mathématiques 1ère année - Séries Chronologiques Jeudi 19 avril 2007 - durée 2 heures - documents et calculatrice autorisés

Exercice I. (7 points)

On considère $\{U_t\}_{t\in\mathbb{Z}}$ un processus $AR(1),\ U_t-\phi U_{t-1}=W_t,\ t\in\mathbb{Z},\ avec\ \{W_t\}_{t\in\mathbb{Z}}\sim WN(0,\sigma_w^2)$ et $|\phi|<1$. Soit un autre bruit blanc $\{Z_t\}_{t\in\mathbb{Z}}\sim WN(0,\sigma_z^2)$ tel que pour tous $t,s\in\mathbb{Z},\ Corr(W_tZ_s)=0$. On note $\{V_t\}_{t\in\mathbb{Z}}$ le processus défini par $V_t:=U_t+Z_t,\ t\in\mathbb{Z}$.

- 1. Montrer que $\{V_t\}$ est centré stationnaire et calculer sa fonction d'autocovariance $\gamma_v(\cdot)$.
- 2. On pose $X_t := V_t \phi V_{t-1}$, $t \in \mathbb{Z}$. Montrer que cette série temporelle est centrée et que $\gamma_x(h) = 0$ si |h| > 1. Que valent $\gamma_x(0)$ et $\gamma_x(\pm 1)$?
- 3. Énoncer un résultat à partir duquel on peut déduire que $\{X_t\}$ est une série temporelle de type MA dirigée par un bruit $\{Y_t\}$ de variance σ_y^2 . Préciser l'ordre.
- 4. Conclure que $\{V_t\}$ est une série temporelle remarquable. Exprimer les valeurs des paramètres en fonction de ϕ , σ_w^2 et σ_z^2 . On pourra utiliser deux expressions de l'autocorrélation de $\{X_t\}$.

Application : $\phi = 1/4$ et $\sigma_w^2 = \sigma_z^2 = 4$.

Exercice II. (8 points)

Soit le processus ARMA(1,1), $X_t - \phi_1 X_{t-1} = Z_t + \theta_1 Z_{t-1}, t \in \mathbb{Z}$, avec $\{Z_t\}_{t \in \mathbb{Z}} \sim \text{WN}(0, \sigma^2)$.

- 1. Donner des conditions nécéssaires et suffisantes pour que le processus $\phi(B)X_t = \theta(B)Z_t$ précédent soit causal, respectivement inversible. Sous ces conditions, calculer les coefficients ψ_j et π_j , pour $j \ge 0$, des représentations $X_t = \psi(B)Z_t$ et $Z_t = \pi(B)X_t$, $t \in \mathbb{Z}$.
- 2. Calculer les fonctions d'autocovariance $\gamma_x(\cdot)$ et d'autocorrélation $\rho_x(\cdot)$. Pour l'application ci-dessous donner leur repésentation en bâtons.
- 3. Donner la plus simple expression de la fonction génératrice d'autocovariance $G_x(z)$ du processus $\{X_t\}$. On introduit $f_x(\lambda) = \frac{G_x(e^{-i\lambda})}{2\pi}$, pour $\lambda \in [-\pi, \pi]$. Est-elle bien définie? Montrer que $f_x(\lambda) = \frac{\sigma^2}{2\pi} \frac{|\theta(e^{-i\lambda})|^2}{|\phi(e^{-i\lambda})|^2}$, $\lambda \in [-\pi, \pi]$. Que vaut $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\lambda h} G_x(e^{-i\lambda}) d\lambda$?

<u>Application</u>: $X_t = 0.4X_{t-1} + 0.45X_{t-2} + Z_t + Z_{t-1} + 0.25Z_{t-2}, t \in \mathbb{Z}$, avec $\{Z_t\}_{t \in \mathbb{Z}} \sim WN(0, 4)$.

Exercice III. (5 points)

Soient x_1, x_2, x_4, x_5 les observations d'un processus MA(1), $X_t = Z_t + \theta Z_{t-1}, t \in \mathbb{Z}$, $\{Z_t\}_{t \in \mathbb{Z}} \sim WN(0, \sigma^2)$. Trouver les meilleures estimations de la valeur manquante x_3 à l'aide de : a) x_1 et x_2 ; b) x_4 et x_5 . Calculer l'erreur quadratique dans les deux cas. Application : $\theta = 0.25, \sigma^2 = 4, x_1 = -0.25, x_2 = -0.26, x_4 = 0.19, x_5 = 0.09$.

Exercice IV. (5 points)

Soit $\{X_t\}_{t\in\mathbb{Z}}$ un processus MA(2) ayant la moyenne μ inconnue, les paramètres θ_1, θ_2 connus et construit à l'aide d'un bruit blanc $\{Z_t\}_{t\in\mathbb{Z}} \sim IID(0, \sigma^2)$ avec σ^2 connu. On possède un grand nombre n d'observations de ce processus x_1, \ldots, x_n et on connaît la valeur de $s = x_1 + \ldots + x_n$.

- 1. Donner un estimateur ponctuel de μ Justifier avec un argument mathématique qu'il s'agit d'une bonne estimation de la moyenne.
- 2. Donner la loi asymptotique de l'estimateur proposé au point précédent.
- 3. Utiliser la loi asymptotique précédente pour construire un intervalle de confiance pour μ à coefficient de sécurité $1-\alpha$, $0<\alpha<1$.

Application : n = 250, $\theta_1 = .35$, $\theta_2 = .12$, $\sigma^2 = .09$, $\alpha = .05$.