Probabilités de base : contrôle continu no. 2

mercredi 1er avril 2009 - durée 1 heure - résumé autorisé

Exercice I.

Soient X et Y deux variables aléatoires réelles indépendantes à densité. À une fonction borélienne positive $\Psi: \mathbb{R}^2 \to \mathbb{R}_+$ on associe deux fonctions

$$\psi(x) = \mathbb{E}[\Psi(x, Y)]$$
 et $\tilde{\psi}(y) = \mathbb{E}[\Psi(X, y)], \quad x, y \in \mathbb{R}.$

Vérifier que $E[\Psi(X,Y)] = E[\psi(X)] = E[\tilde{\psi}(Y)].$

Application : supposons que les lois des variables aléatoires indépendantes sont $X \sim \mathcal{E}(\lambda)$ et $Y \sim \mathcal{E}(\mu)$ $(\lambda, \mu > 0)$. Calculer $P(X \leq Y)$.

Exercice II.

Soient Z_1, \ldots, Z_r , r variables aléatoires strictement positives indépendantes et de même loi. Calculer, pour $k \in \{1, \ldots, r\}$, $\operatorname{E}\left[\frac{Z_1 + \ldots + Z_k}{Z_1 + \ldots + Z_r}\right]$. On pourra d'abord justifier que les variables $\frac{Z_j}{Z_1 + \ldots + Z_r}$, $j = 1, \ldots, r$ ont la même loi.

Exercice III.

Montrer que la fonction $t \mapsto \cos^n t$ $(t \in \mathbb{R}, n \ge 1 \text{ entier})$ est une fonction caractéristique.

Exercice IV.

Soit $f: \mathbb{R}_+^* \to \mathbb{R}_+$ la densité de probabilité d'une variable aléatoire réelle W. On définit $p(u,v) := \left\{ \begin{array}{l} \frac{f(u+v)}{u+v}, & \text{si } u>0, v>0 \\ 0, & \text{sinon} \end{array} \right.$. Montrer qu'il existe un couple aléatoire (U,V) ayant p pour densité de probabilité. On pourra utiliser le changement de variable $(u,v) \mapsto (u+v,\frac{u}{u+v})$. Trouver la loi du couple $(U+V,\frac{U}{U+V})$. Si on suppose que $W \in \mathcal{L}^2$ et si on note $m:=\mathcal{E}(W)$ et $\sigma^2:=\mathrm{Var}(W)$, calculer la matrice de covariance de (U,V).