Contrôle continu # 1

le 23 octobre 2015; durée 1 heure; aucun document n'est autorisé.

Exercice 1 Questions de cours (ou presque)

Soit $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n>0}, \mathbb{P})$ un espace de probabilité filtré.

- a) Soient \mathcal{G} une sous-tribu de \mathcal{F} et X une variable aléatoire positive et intégrable. Montrer que presque sûrement $\mathbb{E}(X|\mathcal{G}) = \int_{0}^{\infty} \mathbb{P}(X > t|\mathcal{G}) dt$.
- b) Supposons que $(M_n)_{n\geq 0}$ est une (\mathcal{F}_n) -martingale prévisible. Montrer que presque sûrement $M_n = M_0$.

Exercice 2 Loi du couple et loi conditionnelle

- a) Montrer que la fonction $f(x,y) = 2 \mathbb{1}_{\{x,y \ge 0, x+y \le 1\}}$ est une densité de probabilité d'un couple aléatoire (X,Y).
- b) Trouver les lois marginales, ainsi que la loi conditionnelle de X sachant Y. Que vaut $\mathbb{E}(X/(1-Y)|Y)$?
- c) Déduire que la variable aléatoire X/(1-Y) est de loi uniforme sur [0,1]. Est-elle indépendante de la variable aléatoire Y?

Exercice 3 Un modèle de génétique

Chaque individu d'une population possède un gène sous la forme d'un deux allèles distincts a ou A. La taille de la population reste constante au cours du temps, égale à $N \geq 2$ et les générations ne se chevauchent pas : à chaque instant n la n-ième génération meurt et donne naissance aux Nindividus de la génération n+1. Chacun des enfants choisit son parent uniformément parmi tous les individus de la génération précédente, indépendamment des autres, et hérite le type du parent. On note X_n le nombre d'allèles de type a dans la population au temps n et $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$. On suppose que $X_0 = j$ où j est un entier dans $\{0, \ldots, N\}$.

- a) Justifier soigneusement que la loi conditionnelle de X_{n+1} sachant \mathcal{F}_n est une loi binomiale $\mathcal{B}(N, X_n/N)$.
- b) Montrer que $(X_n)_{n\geqslant 0}$ est une (\mathcal{F}_n) -martingale et qu'elle converge, dans un sens à préciser, vers une variable X_{∞} intégrable. Que valent $\mathbb{E}(X_n)$, $\mathbb{E}(X_{\infty})$?
- c) On note $Y_n = \left(\frac{N}{N-1}\right)^n X_n(N-X_n)$. Montrer que $(Y_n)_{n\geqslant 0}$ est une (\mathcal{F}_n) -martingale. Calculer $\mathbb{E}[X_n(N-X_n)]$, $\operatorname{Var}(X_n)$ et $\mathbb{E}[X_{\infty}(N-X_{\infty})]$.
- d) Trouver la loi de la variable aléatoire X_{∞} . Comment interpréter le résultat obtenu?