Contrôle continu # 3

le 13 décembre 2018; durée 2h30; trois feuilles résumé autorisées

Exercice 1 Quand le microprocesseur s'emballe

Soient $\lambda > 0$ et a < b des réels. On suppose que le nombre $N_{a,b}$ d'instructions arrivant au microprocesseur d'un ordinateur pendant l'intervalle de temps [a,b] est une variable aléatoire qui suit la loi de Poisson de paramètre $\lambda(b-a)$: $\mathbb{P}(N_{a,b}=k) = \exp(-\lambda(b-a))(\lambda(b-a))^k/k!$, $k \in \mathbb{N}$.

- a) Donner $\mathbb{E}(N_{a,b})$.
- b) On note X_j (respectivement D_j) le temps utilisé par le microprocesseur pour exécuter la j-ième instruction (respectivement le moment où le microprocesseur commence à exécuter cette j-ième instruction). On note A_j le nombre d'instructions arrivées pendant l'exécution de la j-ième instruction (elles sont placées dans une file d'attente). Quelle est la loi conditionnelle de A_j sachant $(X_j, D_j) = (x, d)$? Quelle est la loi conditionnelle de A_j sachant seulement X_j ? En supposant que X_j est de densité de probabilité f, exprimer $\mathbb{P}(A_j = \ell)$ comme une intégrale faisant intervenir f.
- c) On suppose que X_j suit la loi exponentielle de paramètre $\mu > 0$, $f(x) = \mu e^{-\mu x} \mathbb{1}_{x \geq 0}$. Donner $\mathbb{E}(X_j)$. Calculer $\mathbb{P}(A_j = \ell)$ et $\mathbb{E}(A_j)$. À votre avis, quelle condition faut-il imposer aux paramètres pour que l'ordinateur fonctionne correctement?

Exercice 2 En chaîne sur un cercle

On désigne par Λ un entier strictement supérieur à 2 et on note $\zeta = e^{2i\pi/\Lambda}$. On note par E l'ensemble des racines Λ -ièmes de l'unité $E := \{\zeta^j : j \in \{0, \dots, \Lambda - 1\}\}$. On considère une chaîne de Markov $(X_n)_{n\geq 0}$ sur E, de matrice de transition irréductible $P = (p(x,y))_{x,y\in E}$, telle que pour tout $x,y\in E$, $p(x,y)=p(\zeta x,\zeta y)$.

- a) Justifier le fait que la chaîne admet une unique loi invariante m.
- b) Pour tout $x \in E$ on pose $\nu(x) = m(\zeta x)$. Montrer que ν est aussi une loi invariante pour P. En déduire que m est la loi uniforme sur E.
- c) On suppose que $X_0 = 1$ et soit $\tau_1 = \inf\{n \ge 1 : X_n = 1\}$. Calculer $\mathbb{E}_1(\tau_1)$.
- d) On note $\mathbf{V}_{\zeta}^{[0,\tau_1[}$ le nombre de visites effectuées par la chaîne en ζ avant l'instant τ_1 . Montrer que $\mathbb{E}_1(\mathbf{V}_{\zeta}^{[0,\tau_1[}) = 1$.
- e) On considère une suite $(Z_n)_{n\geq 1}$ de variables aléatoires i.i.d. à valeurs dans \mathbb{N}^* et telles que $\mathbb{P}(Z_1=1)>0$. On note T le premier instant $n\geq 1$ tel que $Z_1+\ldots+Z_n$ est un multiple entier de 13122018. En utilisant les questions précédentes montrer que $T<\infty$ p.s. et déterminer $\mathbb{E}(T)$.

Exercice 3 Franchissement des hauteurs

Soit $(Z_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. intégrables, d'espérance $\gamma>0$. On pose $S_0=0$ et pour $n\geq 1$ entier, $S_n=Z_1+\ldots+Z_n$. On note, pour b>0, $T=\inf\{n\geq 0: S_n>b\}$.

- a) On considère la suite $M_n = S_n n\gamma$. Montrer que $(M_n)_{n\geq 0}$ est une \mathcal{F}_n^Z -martingale. Montrer que si cette martingale est bornée dans L¹ alors les variables Z_n sont presque sûrement constantes.
- b) Montrer que T est un temps d'arrêt. Quelle est la limite p.s. de $(S_n)_{n\geq 0}$? En déduire que T est p.s. fini.

Tournez S.V.P.

- c) On suppose, uniquement dans cette question, qu'il existe $R \in]0, \infty[$ tel que $Z_n \leq R$ pour tout $n \geq 1$ presque sûrement. Montrer que pour tout $n \geq 1$, $\gamma \mathbb{E}(T \wedge n) \leq R + b$. En déduire que T est intégrable.
- d) On revient au cas général où les variables Z_n sont quelconques. On définit, pour R > 0, les variables aléatoires tronquées $Z_n^{(R)} = Z_n \wedge R$. Montrer qu'il existe $R_1 \in]0, \infty[$ tel que $\mathbb{E}(Z_n^{(R_1)}) > 0$. En déduire que T est intégrable.

Exercice 4 S'approcher (vite) des probabilités

Soient π et m deux mesures de probabilité sur E un ensemble au plus dénombrable. On suppose que

$$\exists C \in]0, \infty[\text{ tel que } \pi(x) \ge \frac{\mathtt{m}(x)}{C} > 0, \ \forall x \in E.$$

Nous allons noter

$$\rho(x,y) := \min\left(\frac{\pi(x)\mathbf{m}(y)}{\pi(y)\mathbf{m}(x)}, 1\right), \ x, y \in E.$$

Soient deux suites indépendantes de variables aléatoires $(Z_n)_{n\geq 1}$ i.i.d. à valeurs dans E de loi π et $(U_n)_{n\geq 1}$ i.i.d. de loi $\mathcal{U}_{[0,1]}$. Soit enfin X_0 une variable aléatoire indépendante de ces deux suites. On pose, pour $n\geq 1$,

$$X_n = \begin{cases} Z_n & \text{si } U_n < \rho(X_{n-1}, Z_n), \\ X_{n-1} & \text{sinon.} \end{cases}$$

- a) Montrer que $(X_n)_{n\geq 0}$ est une chaîne de Markov et donner sa matrice de transition $P=(p(x,y))_{x,y\in E}$. Vérifier que la chaîne est irréductible et apériodique.
- b) Montrer que m est une loi invariante pour la chaîne $(X_n)_{n\geq 0}$. Étudier le caractère récurrent ou transitoire de la chaîne.
- c) On suppose, uniquement dans cette question, que $E=\mathbb{N}$ et que $\mathtt{m}=\mathcal{P}(\lambda)$ est la loi de Poisson de paramètre $\lambda>0$ (les autres hypothèses restent en place). Calculer les limites suivantes

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{\{X_k = 2\}}, \quad \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} e^{-2iX_k} \quad \text{et} \quad \lim_{n \to \infty} p^{(n)}(3, 2).$$

d) On revient au cas général et soient μ et ν encore deux probabilités sur E. Montrer que

$$\|\mu P - \nu P\|_1 \le \left(1 - \frac{1}{C}\right) \|\mu - \nu\|_1.$$

Rappel: $\|\mu - \nu\|_1 = \sum_{x \in E} |\mu(x) - \nu(x)|$. On pourra remarquer que $\sum_{x \in E} (\mu(x) - \nu(x)) = 0$ et on pourra montrer que $p(x,y) - \frac{\mathtt{m}(y)}{C} \ge 0$ pour tous $x,y \in E$.

e) En déduire que

$$\sup_{x\in E}\|p^{(n)}(x,\cdot)-\mathbf{m}\|_1\leq \Big(1-\frac{1}{C}\Big)^n \Big(1-\inf_{x\in E}\mathbf{m}(x)\Big).$$