Contrôle continu # 3

le 14 décembre 2017; durée 2h30; trois feuilles résumés autorisées

Exercice 1 Parties entière et fractionnaire d'une variable aléatoire exponentielle Pour t > 0, on note $\lfloor t \rfloor$ la partie entière et $\{t\}$ la partie fractionnaire de t:

$$|t| \in \mathbb{N}, |t| \le t < |t| + 1, \text{ et } \{t\} = t - |t| \in [0, 1].$$

Soit T une variable aléatoire de loi exponentielle de paramètre 1, c'est-à-dire que T admet la densité $t \mapsto e^{-t}$ par rapport à la mesure de Lebesgue sur \mathbb{R}^+ . On note $S := \lfloor T \rfloor$ et $V := \{T\}$, de sorte que T = S + V.

- 1. En calculant $\mathbb{P}(S = \ell, V \in [u, v])$ pour $\ell \in \mathbb{N}$ et $u, v \in [0, 1[$, déterminer la loi du couple (S, V). Les variables S et V sont-elles indépendantes?
- 2. Déterminer, avec un minimum de calculs, les espérances conditionnelles suivantes :

$$\mathbb{E}(S|V)$$
, $\mathbb{E}(V|S)$, $\mathbb{E}(S|T)$, $\mathbb{E}(V|T)$, $\mathbb{E}(T|S)$, $\mathbb{E}(T|V)$.

Exercice 2 Transitions poissoniennes

On considère $P = (p(x,y))_{x,y \in \mathbb{N}}$ une matrice (infinie) donnée par

$$p(0,0) = 1, p(0,y) = 0, y \in \mathbb{N}^* \text{ et } p(x,y) = e^{-x} \frac{x^y}{y!}, x \in \mathbb{N}^*, y \in \mathbb{N},$$

- 1. Montrer que P est une matrice stochastique.
- 2. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov sur $\mathbb N$ ayant la matrice de transition P. Classifier les états de cette chaîne.
- 3. Montrer que la fonction identité sur \mathbb{N} , f(x) = x, est une fonction harmonique pour P.
- 4. Fournir une démonstration du fait que, pour tout $x \in \mathbb{N}$, la suite $(X_n)_{n\geq 0}$ est une \mathbb{P}_x martingale. En déduire que, pour tout $x \in \mathbb{N}$, la suite $(X_n)_{n\geq 0}$ converge \mathbb{P}_x -p.s. vers 0.

Exercice 3 Martingale multiplicative : régularité

Soit $(Y_n)_{n\geq 1}$ une suite de variables aléatoires positives indépendants d'espérance 1. On note $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et, pour $n\geq 1$, $\mathcal{F}_n = \sigma(Y_k: k\leq n)$. On pose $X_0=1$ et, pour $n\geq 1$, $X_n=Y_1\ldots Y_n$.

- 1. Montrer que $(X_n)_{n\geq 0}$ est une \mathcal{F}_n -martingale et déduire que $(\sqrt{X_n})_{n\geq 0}$ est une \mathcal{F}_n -surmartingale.
- 2. On suppose que $\prod_{k=1}^{\infty} \mathbb{E}(\sqrt{Y_k}) = 0$. Étudier la convergence et la limite de $(\sqrt{X_n})_{n \geq 0}$ puis de $(X_n)_{n \geq 0}$. La martingale $(X_n)_{n \geq 0}$ est-elle régulière?
- 3. On suppose que $\prod_{k=1}^{\infty} \mathbb{E}(\sqrt{Y_k}) > 0$. Montrer que $\lim_{n \to \infty} \prod_{k=n}^{\infty} \mathbb{E}(\sqrt{Y_k}) = 1$.

Pour $n \ge m$, calculer $\mathbb{E}(\sqrt{X_n X_m})$ et ensuite montrer que $(\sqrt{X_n})_{n \ge 0}$ est une suite de Cauchy dans L². Déduire que la martingale $(X_n)_{n \ge 0}$ est régulière.

Tournez S.V.P.

Exercice 4 Comment voyager avec des saumons (à contre-courant)

Soit $(q(x): x \in \mathbb{N})$ une probabilité sur \mathbb{N} telle que q(x) > 0 pour tout x > 0. On considère la chaîne de Markov $(X_n)_{n \geq 0}$ sur \mathbb{N} de matrice de transition P telle que

$$p(0,y) = q(y), \ y \geq 0, \quad \text{ et lorsque } x \geq 1, \quad p(x,y) = \left\{ \begin{array}{ll} 1/x & \text{ si } y < x, \\ 0 & \text{ sinon.} \end{array} \right.$$

- 1. Décrire avec vos mots une situation concrète modélisée par cette chaîne (5 lignes maximum).
- 2. Tracer le graphe de cette chaîne de Markov. Montrer que la chaîne est irréductible récurrente.
- 3. Soit m une mesure stationnaire pour cette chaîne. Montrer que pour tout $x \in \mathbb{N}$,

$$\mathbf{m}(x) = q(x)\mathbf{m}(0) + r(x), \quad \text{ où } \quad \mathbf{r}(x) := \sum_{y \ge x} \frac{\mathbf{m}(y)}{y},$$

et que la série $\sum_{y>0} \frac{m(y)}{y}$ est convergente.

4. On pose $Q(x) := \sum_{y>x} q(y)$. Q est-elle bien définie ? Montrer que, pour tout x>0,

$$x r(x-1) = m(x) + x r(x)$$
 et encore $x r(x-1) = q(x)m(0) + (x+1)r(x)$,

où r est la quantité introduite au point précédent.

En déduire que (x+1)r(x) = m(0)Q(x) et que, pour tout x > 0,

$$\mathbf{m}(x) = \mathbf{m}(0) \, x \Big(\frac{Q(x-1)}{x} - \frac{Q(x)}{x+1} \Big).$$

5. On considère maintenant q(0) = 0 et q(x) = 1/x - 1/(x+1), $x \ge 1$. q est-elle une probabilité sur \mathbb{N} ? La chaîne $(X_n)_{n\ge 0}$ est-elle récurrente positive? On pourra calculer l'expression de m et sa masse totale.

Déduire la valeur de la limite

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \mathbb{1}_{\{X_n = 0\}}.$$