Contrôle continu #2

le 9 mars 2020; durée 1 heure; documents, calculatrices et téléphones interdits Il sera tenu compte du soin apporté à la rédaction dans l'évaluation. Bon travail!

Exercice 1 (étude de suites de fonctions)

Les trois parties sont indépendantes.

- 1. Soit $h_n:[0,1]\to\mathbb{R}$ définie par $h_n(t)=\frac{ne^{-t}+t^2}{n+t}$. Étudier la convergence simple et uniforme de la suite (h_n) .
- 2. Pour $n \in \mathbb{N}^*$ soit $g_n : [0,1] \to \mathbb{R}$ définie par $g_n(t) = n^2 t(1-nt), t \in [0,\frac{1}{n}]$ et $g_n(t) = 0$ sinon.
 - (a) Étudier la limite simple de la suite (g_n) .
 - (b) Calculer $\int_0^1 g_n(t)dt$. Y a-t-il convergence uniforme de la suite de fonction (g_n) ?
 - (c) Étudier la convergence uniforme sur [a, 1] avec $a \in]0, 1[$.
- 3. Soit (f_n) une suite de fonctions telle que pour tout $n, f_n : I \to \mathbb{R}$ est une fonction uniformément continue sur I. On suppose que la suite (f_n) converge uniformément sur I vers une fonction f. Montrer que f est uniformément continue sur I.

Exercice 2 (étude de séries de fonctions)

Les deux parties sont indépendantes.

- 1. Étudier la convergence simple, uniforme et normale (dans cette ordre) de la série de fonctions $\sum u_n, \text{ avec } u_n(t) = \frac{(-1)^n}{(n+1)(t+1)}, t \in [0,1], n \in \mathbb{N}.$
- 2. Étudier la convergence (simple, uniforme, normale) de la série de fonctions $\sum v_n$ avec $v_n(t) = e^{-n}\sin(n^2t)$, $t \in \mathbb{R}$, $n \in \mathbb{N}$. On pourra commencer par étudier la convergence normale. Montrer ensuite que sa somme est dérivable.

Exercice 3 (question de cours)

Énoncer et démontrer un résultat d'équivalence pour la continuité (en 0) et le caractère lipschitzien (en 0) d'une application linéaire continue entre deux espaces vectoriels normés $\ell: E \to F$.