
0.1. LA CONSTRUCTION D’UNE PROBABILITÉ SUR (0, 1]* 1

0.1 La construction d’une probabilité sur (0, 1]*

i) Soit
Ω = (0, 1], B = B(0,1] et S = {(a, b] : 0 6 a 6 b 6 1}.

Il est clair que ∅, Ω ∈ S.
Si I1, I2 ∈ S, alors I1 ∩ I2 ∈ S. Donc S est stable par intersection finie.
Enfin, si I ∈ S, alors Ic est une union disjointe de deux intervalles de S (faire un dessin).
De plus on sait que σ(S) = B la tribu borélienne sur Ω.

ii) On définit sur S la fonction λ : S → [0, 1], par :

λ(∅) = 0 et λ((a, b]) = b− a.

On a λ(Ω) = λ((0, 1]) = 1.
Montrons que λ est une fonction additive sur S. Soit (a, b] ∈ S et supposons que :

(a, b] =

r⋃
i=1

(ai, bi],

où les intervalles dans le membre droit sont disjoints. Supposons aussi que ces intervalles ont
été numérotées convenablement :

a1 = a, br = b, bi = ai+1, i = 1, . . . , r − 1.

Alors λ((a, b]) = b− a et

r∑
i=1

λ((ai, bi]) =
r∑
i=1

(bi − ai) = b1 − a1 + b2 − a2 + . . .+ br − ar = br − a1 = b− a.

iii) Montrons maintenant que λ est σ-additive. Soit (a, b] ∈ S et supposons que :

(a, b] =
∞⋃
i=1

(ai, bi],

où les intervalles dans le membre droit sont à nouveau disjoints.

iii)-a) Montrons d’abord que

λ((a, b]) = b− a 6
∞∑
i=1

(bi − ai) =

∞∑
i=1

λ((ai, bi]) . (1)

On choisit ε < b− a et on observe que

[a+ ε, b] ⊂
∞⋃
i=1

(
ai, bi +

ε

2i

)
.

Le membre droit est un recouvrement ouvert du compact [a+ ε, b], donc on peut en extraire
un recouvrement fini : il existe un entier N tel que

[a+ ε, b] ⊂
N⋃
i=1

(
ai, bi +

ε

2i

)
. (2)
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Pour terminer la preuve de (1) il suffit de prouver que

b− a− ε 6
N∑
i=1

(bi − ai +
ε

2i
) . (3)

En effet on aurait alors

b− a− ε 6
N∑
i=1

(bi − ai +
ε

2i
) 6

∞∑
i=1

(bi − ai) + ε

d’où

b− a 6
∞∑
i=1

(bi − ai) + 2ε

et comme ε est choisit arbitraire on obtient (1). Il reste à prouver que (2) implique (3).

iii)-b) Avec un petit changement de notations, on va montrer que

[c, d] ⊂
N⋃
i=1

(ci, di) . (4)

implique

d− c 6
N∑
i=1

(di − ci) . (5)

On fait une récurrence : c’est clair pour N = 1. Supposons que (4) pour N − 1 implique (5)
pour N − 1 et on vérifie l’implication pour N . Supposons que

cN = max
i=1,...,N

ci et cN < d 6 dN .

On considère deux cas (faire un dessin) :

1. Supposons cN 6 c. Alors d− c 6 dN − cN 6
∑N

i=1(di − ci).
2. Supposons c < cN . Alors par (4) on a

[c, cN ] ⊂
N−1⋃
i=1

(ci, di),

et par l’hypothèse de récurrence

cN − c 6
N−1∑
i=1

(di − ci),

donc

d− c = d− cN + cN − c 6 d− cN +
N−1∑
i=1

(di− ci) 6 dN − cN +
N−1∑
i=1

(di− ci) =
N∑
i=1

(di− ci).
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Cela achève la preuve de (1).

iii)-c) Pour terminer la preuve de la σ-additivité on va vérifier l’inégalité inverse. On reprend
(a, b] =

⋃∞
i=1(ai, bi] avec une union d’intervalles disjoints. Comme pour tout n,

⋃n
i=1(ai, bi]

est une union d’intervalles disjoints la même chose est vrai pour

(a, b] \
n⋃
i=1

(ai, bi] =:
m⋃
j=1

Ij .

Comme λ est additive on peut écrire

λ((a, b]) = λ(
n⋃
i=1

(ai, bi] ∪
m⋃
j=1

Ij) =
n∑
i=1

λ((ai, bi]) +
m∑
j=1

λ(Ij) >
n∑
i=1

λ((ai, bi])

Lorsque n→∞ on trouve

λ((a, b]) >
∞∑
i=1

λ((ai, bi])

donc λ est σ-additive sur S.

iv) Une définition et le resultat clé en cadre général :

Définition 0.1 (semi-algèbre)
Soit Ω un ensemble non-vide quelconque. Une famille de sous-ensembles S de Ω est une
semi-algèbre si

— ∅, Ω ∈ S ;
— S est stable par intersections finies ;
— si A ∈ S, alors il existe un n fini et des ensembles C1, . . . , Cn disjoints dans S tels que

Ac = C1 ∪ . . . ∪ Cn.

Théorème 0.1 (d’extension)
Supposons que S est une semi-algèbre sur un ensemble non-vide quelconque Ω et que P est
une fonction σ-additive d’ensembles définie sur S, à valeurs dans [0, 1], telle que P(Ω) = 1.
Alors il existe une unique mesure de probabilité P sur σ(S) qui prolonge P (c’est-à-dire que
P|S = P).

Ce résultat s’applique pour Ω = (0, 1] avec S définie en i) et λ définie en ii). La probabilité
ainsi obtenue est la mesure de Lebesgue sur (0, 1].
v) Donnons les idées de preuve du résultat clé. On considère Ω un ensemble non-vide quel-
conque. Le Théorème 0.1 est une conséquence des trois lemmes suivants. Avant de les énoncer
on a besoin d’une définition (rappel) :

Définition 0.2 (algèbre et algèbre engéndrée)
1. Une famille de sous-ensembles A de Ω est une algèbre si

— Ω ∈ A ;
— A ∈ A implique Ac ∈ A ;
— A,B ∈ A implique A ∪B ∈ A.
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2. L’algèbre engendrée par une famille de sous-ensembles S de Ω est la plus petite algèbre
contenant S (on note A(S) ).

Lemme 0.1 (algèbre engéndrée par une semi-algèbre)
Supposons que S est une semi-algèbre sur Ω. Alors, l’algèbre engendrée par S est la famille
des unions finies d’éléments disjoints de S :

A(S) := {
⋃
i∈I

Si : I fini, Si ∈ S disjoints }. (6)

Lemme 0.2 (première extension)
Supposons que S est une semi-algèbre sur Ω et que P est une fonction σ-additive définie sur
S, à valeurs dans [0, 1], telle que P(Ω) = 1. Alors il existe une unique extension P′ de P sur
A(S), telle que P′ est σ-additive sur A(S) et P′(Ω) = 1. Cette extension est définie par

P′(
⋃
i∈I

Si) =
∑
i∈I

P′(Si). (7)

Lemme 0.3 (deuxième extension)
Supposons que A est une algèbre sur Ω et que P′ est une fonction σ-additive définie sur A, à
valeurs dans [0, 1], telle que P′(Ω) = 1. Alors il existe une unique mesure de probabilité P sur
σ(A) (tribu engendrée par A) qui prolonge P′.

Preuve du Lemme 0.1. On note Λ l’ensemble du membre droit de (6). Il est clair que
Λ ⊃ S et on montre que Λ est une algèbre. On vérifie les trois axiomes de la Définition 0.2.

1. Définition 0.1 implique Ω ∈ S, donc Ω ∈ Λ.

2. Si
⋃
i∈I Si et

⋃
j∈J S

′
j sont deux éléments de Λ, alors

(⋃
i∈I

Si

)⋂⋃
j∈J

S′j

 =
⋃

(i,j)∈I×J

Si ∩ S′j ∈ Λ

puisque {Si ∩S′j : (i, j) ∈ I ×J} est une famille finie disjointe d’éléments de S (qui est
stable par intersection finie).

3. Enfin, vérifions la stabilité au passage au complémentaire. Soit
⋃
i∈I Si ∈ Λ dont le

complémentaire est
⋂
i∈I S

c
i . D’après la troisième axiome d’une semi-algèbre, comme

Si ∈ S, on a

Sci =
⋃
j∈Ji

Sij ,

avec une famille finie disjointe {Sij : j ∈ Ji} d’éléments de S. Par le point précédent
on conclut que

⋂
i∈I S

c
i ∈ Λ.

Cela montre que Λ est une algèbre contenant S, donc Λ ⊃ A(S). Par ailleurs,
⋃
i∈I Si ∈ Λ

implique
⋃
i∈I Si ∈ A(S), d’où Λ ⊂ A(S). �

Preuve du Lemme 0.2. On commence par vérifier que P′ est bien définie par (7), ensuite
que P′ est σ-additive sur A(S) et enfin que l’extension est unique.
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1. Supposons que A ∈ A(S) admet deux représentations différentes A =
⋃
i∈I Si =⋃

j∈J S
′
j et on a besoin de vérifier que

∑
i∈I P(Si) =

∑
j∈J P(S′j) pour que P′ ait une

unique valeur en A. Comme Si ∈ A,∑
i∈I

P(Si) =
∑
i∈I

P(Si ∩A) =
∑
i∈I

P(Si ∩
⋃
j∈J

S′j) =
∑
i∈I

P(
⋃
j∈J

Si ∩ S′j)

et comme Si =
⋃
j∈J Si ∩ S′j ∈ S on peut utiliser l’additivité de P. Ainsi∑

i∈I
P(Si) =

∑
i∈I

∑
j∈J

P(Si ∩ S′j) =
∑
j∈J

∑
i∈I

P(Si ∩ S′j) =
∑
j∈J

P(S′j).

La dernière égalité s’obtient en faisant le chemin inverse.

2. Supposons que pour i > 1 les ensembles disjoints sont Ai =
⋃
j∈Ji Sij ∈ A(S), Sij ∈ S

et A =
⋃∞
i=1Ai ∈ A(S). Par ailleurs, comme A ∈ A(S), A admet la représentation

A =
⋃
k∈K Sk, Sk ∈ S, k ∈ K fini. Alors

S 3 Sk = Sk ∩A =

∞⋃
i=1

Sk ∩Ai =

∞⋃
i=1

⋃
j∈Ji

Sk ∩ Sij avec Sij ∈ S.

Par (7)

P′(A) =
∑
k∈K

P(Sk) =
∑
k∈K

∞∑
i=1

∑
j∈Ji

P(Sk ∩ Sij) =
∞∑
i=1

∑
j∈Ji

∑
k∈K

P(Sk ∩ Sij)

=
∞∑
i=1

∑
j∈Ji

P(Sij) =
∞∑
i=1

P(
⋃
j∈Ji

Sij) =
∞∑
i=1

P′(Ai),

puisque
∑

k∈K Sk ∩ Sij = A ∩ Sij = Sij ∈ S.

3. Soient P′1 et P′2 deux extensions additives. Alors, pour tout A =
⋃
i∈I Si ∈ A(S) on a

P′1(A) =
∑

i∈I P(Si) = P′2(A).

On ainsi construit l’extension de P à une algèbre. �

Preuve du Lemme 0.3. On divise la preuve en trois parties : en 1ère partie on étend P′ à
une fonction d’ensemble Π σ-additive sur une famille G ⊃ A. En 2ème partie on étend Π à
une fonction d’ensemble Π∗ sur P(Ω) ⊃ σ(A) et en 3ème partie on fait la restriction de Π∗ à
σ(A) et on obtient la probabilité recherchée.

1. On définit d’abord la famille G :

G = {
∞⋃
j=1

Aj : Aj ∈ A} = {lim
n
↑ Bn : Bn ∈ A, Bn ⊂ Bn+1, ∀n}

et ensuite la fonction Π : G → [0, 1], par : si G = limn ↑ Bn ∈ G, où Bn ∈ A, alors

Π(G) = lim
n→∞

P′(Bn). (8)

Cette dernière définition est bien justifiée car P′ est σ-additive donc la propriété de
continuité sur des suites croissantes est vraie. On dit que {Bn} est une suite appro-
chante de G. Il reste à voir que Π est bien définie, c’est-à-dire
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Fait 1 Si G admet deux suites approchantes {Bn} et {B′n},

G = lim
n
↑ Bn = lim

n
↑ B′n alors lim

n→∞
P′(Bn) = lim

n→∞
P′(B′n). (9)

Listons quelques propriétés de Π et G :

Fait 2 On a
Ω, ∅ ∈ G et Π(ω) = 1, Π(∅) = 0,

et pour G ∈ G
0 6 Π(G) 6 1. (10)

Enfin, on a A ⊂ G et Π|A = P′.

Fait 3 Si Gi ∈ G pour i = 1, 2,alors G1 ∪G2 ∈ G, G1 ∩G2 ∈ G et Π est additive :

Π(G1 ∪G2) + Π(G1 ∩G2) = Π(G1) + Π(G2). (11)

Fait 4 Π est monotone sur G : si Gi ∈ G pour i = 1, 2 et G1 ⊂ G2, alors Π(G1) 6
Π(G2).

Fait 5 G est stable par des limites des suites croissantes et Π est continue sur des
suites croissantes : si Gn ∈ G et Gn ↑ G, alors G ∈ G et Π(G) = limn→∞Π(Gn).

Par les Faits 3 et 5 on déduit que Π est σ-additive sur G donc la 1ère partie est vérifiée.

2. On définit Π∗ : P(Ω)→ [0, 1] par

∀A ∈ P(Ω) : Π∗(A) = inf{Π(G) : A ⊂ G ∈ G}. (12)

Π∗(A) est le plus petit majorant des valeurs Π(G) sur des ensembles G ∈ G contenant
A. C’est la mesure extérieure de A. Comme pour Π, on va lister les propriétés de
Π∗ :

Fait 6 On a
Π∗|G = Π (13)

et 0 6 Π∗(A) 6 1, pour tout A ∈ P(Ω). En particulier, Π∗(Ω) = Π(Ω) = 1 et
Π∗(∅) = Π(∅) = 0.

Fait 7 Π∗ est sous-additive : on a pour A1, A2 ∈ P(Ω)

Π∗(A1 ∪A2) + Π∗(A1 ∩A2) 6 Π∗(A1) + Π∗(A2). (14)

En particulier
1 = Π∗(Ω) 6 Π∗(A) + Π∗(Ac). (15)

Fait 8 Π∗ est monotone sur P(Ω).

Fait 9 Π∗ est continue sur des suites croissantes : si An ↑ A, alors Π∗(An) ↑ Π∗(A).

3. On introduit une sous-famille D de P(Ω) :

D := {D ∈ P(Ω) : Π∗(D) + Π∗(Dc) = 1}. (16)

Fait 10 D est une tribu et Π∗|D est une probabilité sur (Ω,D).
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Fait 11 D ⊃ A, donc D ⊃ σ(A), et alors Π∗|σ(A) est la probabilité (unique par un

argument de classe monotone) désirée.

Preuve du Fait 1 : Il suffit de montrer que :

∞⋃
n=1

Bn ⊂
∞⋃
n=1

B′n implique lim
n→∞

P′(Bn) 6 lim
n→∞

P′(B′n). (17)

Pour m fixé limn ↑ (Bm ∩B′n) = Bm et on a aussi Bm ∩B′n ⊂ B′n. On sait que la σ-additivité
de P implique la continuité sur des suites croissantes. On en déduit :

lim
n→∞

P′(B′n) > lim
n→∞

P′(Bm ∩B′n) = P′(Bm).

Comme cette inégalité a lieu pour tout m, on en déduit que

lim
n→∞

P′(B′n) > lim
m→∞

P′(Bm).

�
Preuve du Fait 2 : Si on pose Bn = Ω pour tout n, alors

A 3 Bn = Ω ↑ Ω et Π(Ω) = lim
n→∞

P′(Ω) = 1.

Le même argument marche pour ∅. (10) s’obtient par le fait que 0 6 P′(Bn) 6 1, pour toute
suite approchante {Bn} de A. Enfin, pour montrer que Π(A) = P′(A) pour tout A ∈ A, on
prend la suite approchante identiquement égale à A. �

Preuve du Fait 3 : Soient les suites approchantes Bn1, Bn2 ∈ A, telles que Bni ↑ Gi pour
i = 1, 2. Comme A est une algèbre, on voit que

A 3 Bn1 ∪Bn2 ↑ G1 ∪G2, A 3 Bn1 ∩Bn2 ↑ G1 ∩G2,

qui montrent que G1 ∪G2, G1 ∩G2 ∈ G. De plus

P′(Bn1 ∪Bn2) + P′(Bn1 ∩Bn2) = P′(Bn1) + P′(Bn2),

et pour n→∞ on trouve (11). �

Preuve du Fait 4 : C’est une conséquence directe de (17). �

Preuve du Fait 5 : Pour chaque n, Gn admet une suite approchante Bm,n ∈ A telle que
limm ↑ Bm,n = Gn. On définit Dm = ∪mn=1Bm,n ∈ A (car A est stable par union finie). On va
montrer que

lim
m
↑ Dm = G (18)

et alors G admet une suite approchante croissante d’éléments de A, donc G ∈ G.
Montrons d’abord que {Dm} est croissante :

Dm =

m⋃
n=1

Bm,n ⊂
m⋃
n=1

Bm+1,n ⊂
m+1⋃
n=1

Bm+1,n = Dm+1
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Calculons la limite de {Dm}. Si n > m, on a par la définition de Dm :

Bm,n ⊂ Dm =

m⋃
j=1

Bm,j ⊂
m⋃
j=1

Gj = Gm.

donc Bm,n ⊂ Dm ⊂ Gm. On prend la limite en m :

Gn = lim
m
↑ Bm,n ⊂ lim

m
↑ Dm ⊂ lim

m
↑ Gm = G

et ensuite la limite en n :

G = lim
n
↑ Gn ⊂ lim

m
↑ Dm ⊂ lim

m
↑ Gm = G.

Donc G ∈ G et par la définition de Π, on sait que Π(G) = limm→∞Π(Dm). Il reste à prouver
que Π(Gn) ↑ Π(G). Par les trois inclusions précédentes :

Π(Bm,n) 6 Π(Dm) 6 Π(Gm).

On fait m→∞ et comme Gn = limm ↑ Bm,n,

Π(Gn) 6 lim
m→∞

Π(Dm) 6 lim
m→∞

Π(Gm), ∀n.

On fait n→∞ :
lim
n→∞

Π(Gn) 6 lim
m→∞

Π(Dm) 6 lim
m→∞

Π(Gm)

donc limn→∞Π(Gn) = limm→∞Π(Dm) = Π(G). �

Preuve du Fait 6 : Il est clair que si A ∈ G, alors A ∈ {G : A ⊂ G ∈ G} et donc l’infimum
est atteint en A. �

Preuve du Fait 7 : Pour vérifier (14), on fixe ε > 0 et on trouve Gi ∈ G tels que Gi ⊃ Ai
et pour i = 1, 2,

Π∗(Ai) +
ε

2
> Π(Gi).

On somme ces deux inégalités et on trouve

Π∗(A1) + Π∗(A2) + ε > Π(G1) + Π(G2) = Π(G1 ∪G2) + Π(G1 ∩G2).

par le Fait 3 pour Π. Comme G1 ∪G2 ⊃ A1 ∪ A2 et G1 ∩G2 ⊃ A1 ∩ A2, par la définition de
Π∗ qu’on peut encore minorer par

Π∗(A1 ∪A2) + Π∗(A1 ∩A2).

�
Preuve du Fait 8 : Cette propriété est une conséquence du fait que Π est monotone sur G
(Fait 4). �

Preuve du Fait 9 : On fixe ε > 0. Pour chaque n > 1 on trouve Gn ∈ G tels que Gn ⊃ An
et

Π∗(An) +
ε

2n
> Π(Gn).
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On pose G′n = ∪nm=1Gm. Comme G est stable par réunion finie, G′n ∈ G et {G′n} est croissante.
On montre par récurrence

Π∗(An) + ε
n∑

m=1

2−m > Π(G′n). (19)

Pour n = 1 c’est le choix de Gn. On montre que “n⇒ n+ 1”. On a

An ⊂ Gn ⊂ G′n et An+1 ⊂ Gn+1 ⊂ G′n+1

et donc An ⊂ G′n et An+1 ⊂ G′n+1, donc An ⊂ G′n ∩Gn+1 ∈ G. Ainsi

Π(G′n+1) = Π(G′n ∪Gn+1) = Π(G′n) + Π(Gn+1)−Π(G′n ∩Gn+1)

par (11). On peut alors majorer le membre de droite de l’égalité précédente par

6

(
Π∗(An) + ε

n∑
m=1

2−m

)
+ Π∗(An+1) +

ε

2n+1
−Π∗(An) = ε

n+1∑
m=1

2−m + Π∗(An+1)

qui est (19) pour n+ 1. On fait n→∞ dans (19). D’après la monotonie de Π sur G et celle
de Π∗ sur P(Ω), et comme G est stable par des unions croissantes, on obtient

lim
n→∞

Π∗(An) + ε > lim
n→∞

Π(G′n) = Π(
∞⋃
j=1

G′j).

Comme A = limn ↑ An ⊂
⋃∞
j=1G

′
j ∈ G, on déduit que limn→∞Π∗(An) > Π∗(A). Par ailleurs,

la monotonie donne Π∗(An) 6 Π∗(A), d’où limn→∞Π∗(An) 6 Π∗(A). �
Preuve du Fait 10 : D’abord on prouve que D est une algèbre. Il est clair que Ω ∈ D,
puisque Π∗(Ω) = 1 et Π∗(∅) = 0. Le passage au complémentaire est évident donc il reste à
vérifier la stabilité aux unions et intersections finies. Si A1, A2 ∈ D, alors par (14) on trouve :

Π∗(D1 ∪D2) + Π∗(D1 ∩D2) 6 Π∗(D1) + Π∗(D2) (20)

Π∗((D1 ∪D2)
c) + Π∗((D1 ∩D2)

c) 6 Π∗(Dc
1) + Π∗(Dc

2). (21)

On additionne (20) et (21) pour obtenir

Π∗(D1 ∪D2) + Π∗((D1 ∪D2)
c) + Π∗(D1 ∩D2) + Π∗((D1 ∩D2)

c) 6 2 (22)

où le membre de droite est obtenu parce que D1, D2 ∈ D. Par (15) le membre de gauche est
> 2 donc en (22) on a égalité. En combinant cette égalité avec (15) on trouve

Π∗(D1 ∪D2) + Π∗((D1 ∪D2)
c) = 1

Π∗(D1 ∩D2) + Π∗((D1 ∩D2)
c) = 1,

donc D1 ∪D2, D1 ∩D2 ∈ D et D est une algèbre. De plus on obtient des égalités en (20) et
(21) (sinon on contredit (22)), donc Π∗ est additive sur D.

Pour montrer que D est une tribu il suffit de vérifier que D est une classe monotone
(et utiliser ensuite le théorème de classe monotone). Comme D est stable par passage au
complémentaire il suffit de montrer que Dn ∈ D, Dn ↑ D, implique D ∈ D. Par le Fait 9

lim
n→∞

Π∗(Dn) = Π∗(
∞⋃
n=1

Dn) = Π∗(D).
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Par ailleurs, pour tout m > 1,

Π∗((
∞⋃
n=1

Dn)c) = Π∗(
∞⋂
n=1

Dc
n) 6 Π∗(Dc

m),

d’où, par (15),

1 6 Π∗(
∞⋃
n=1

Dn) + Π∗((
∞⋃
n=1

Dn)c) 6 lim
n→∞

Π∗(Dn) + Π∗(Dc
m). (23)

Si on fait m→∞, comme Dn ∈ D,

1 66 lim
n→∞

Π∗(Dn) + lim
m→∞

Π∗(Dc
m) = lim

n→∞
(Π∗(Dn) + Π∗(Dc

n)) = 1,

donc (23) est une égalité et donc D =
⋃∞
n=1Dn ∈ D. Ainsi D est une algèbre et une classe

monotone, donc une tribu.
Montrons que Π∗|D est σ-additive. Soit Dn une suite disjointe dans D. Comme D est une

algèbre et par le Fait 9 et l’additivité de Π∗ on a

Π∗(
∞⋃
n=1

Dn) = Π∗(lim
n

n⋃
i=1

Di) = lim
n→∞

Π∗(
n⋃
i=1

Di) = lim
n→∞

n∑
i=1

Π∗(Di) =
∞∑
i=1

Π∗(Di).

�
Preuve du Fait 11. Tout élément A ∈ A est élément de G (suite approchante constante) et
alors Π∗(A) = Π(A) = P′(A) et la même chose pour Ac. Mais alors, par (15) 1 6 Π∗(A) +
Π∗(Ac) = P′(A) + P′(Ac) = 1, d’où A ∈ D. Ainsi, D ⊃ A, donc la tribu D contient σ(A). La
restriction Π∗|σA est la probabilité désirée. L’unicité de cette extension de A à σ(A) s’obtient
par un argument de classe monotone. �


