Analyse pour processus stochastiques : devoir en classe

vendredi 14 mars 2014 - durée 3 heures - documents de cours autorisés

Exercice I.

Soient Q, Q_1, Q_2, \ldots des probabilités sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- 1. Montrer que la suite $\{Q_n\}_{n\geqslant 1}$ peut converger étroitement vers Q sans qu'il y ait convergence de la suite des moments $\Big\{\mu_k^{(n)} = \int_{\mathbb{R}} x^k Q_n(dx)\Big\}_{n\geqslant 1}$ $(k\geqslant 1 \text{ entier}).$ On pourra prendre $Q_n = (1-n^{-1/2})\delta_0 + n^{-1/2}\delta_n.$
- 2. Montrer que si $\limsup_{n\to\infty} \int_{\mathbb{R}} |x|Q_n(dx) < \infty$ alors la suite $\{Q_n\}_{n\geqslant 1}$ est tendue. On pourra montrer à l'aide de l'inégalité de Markov que $\inf_{r>0} \left[\sup_{n\geqslant 1} Q_n(|x|>r)\right]=0$.
- 3. On suppose que la suite $\{Q_n\}_{n\geqslant 1}$ converge étroitement vers Q. On veut montrer que pour toute fonction borélienne f, bornée sur tout compact de \mathbb{R} , continue Q-presque partout et dont le comportement à l'infini est en o(g), avec $g\geqslant 0$ borélienne t.q. $\limsup_{n\to\infty}\int_{\mathbb{R}}g(x)Q_n(dx)<\infty$, on a $\lim_{n\to\infty}\int_{\mathbb{R}}f(x)Q_n(dx)=\int_{\mathbb{R}}f(x)Q(dx)$.
 - (a) Soient, pour r > 0, $\eta_r := \sup_{|x| > r} \frac{|f(x)|}{g(x)}$ et $A_r := \sup_{|x| \leqslant r} |f(x)|$. Montrer que

$$\forall r > 0$$
, $\limsup_{n \to \infty} \int_{\{|x| > r\}} |f(x)| Q_n(dx) \leqslant \eta_r \limsup_{n \to \infty} \int_{\mathbb{R}} g(x) Q_n(dx)$.

Vérifier qu'il existe un R>0 tel que $|f(x)|\leqslant A_R+g(x), \ \forall x\in\mathbb{R}$. En déduire que $f\in\mathrm{L}^1(Q_n)$ et qu'elle vérifie $\int_{\mathbb{R}}|f(x)|Q_n(dx)\leqslant A_R+\int_{\mathbb{R}}g(x)Q_n(dx), \ \forall n\geqslant 1.$

- (b) Montrer que $\forall \ell \geqslant 0, \forall n \geqslant 1, \int_{\mathbb{R}} (|f(x)| \wedge \ell) Q_n(dx) \leqslant A_R + \int_{\mathbb{R}} g(x) Q_n(dx)$. En déduire que f vérifie $\int_{\mathbb{R}} |f(x)| Q(dx) \leqslant A_R + \limsup_{n \to \infty} \int_{\mathbb{R}} g(x) Q_n(dx) < \infty$ et donc $f \in L^1(Q)$.
- (c) Utiliser les points précédents pour montrer que

$$\lim_{r \to \infty} \limsup_{n \to \infty} \int_{\{|x| > r\}} |f(x)| Q_n(dx) = 0 \quad \text{et} \quad \lim_{r \to \infty} \int_{\{|x| > r\}} |f(x)| Q(dx) = 0.$$

(d) Montrer qu'il existe un ensemble dense $\mathcal{R} \subset (0, \infty)$ tel que pour tout $r \in \mathcal{R}$ on ait

$$\lim_{n \to \infty} \int_{\{|x| \leqslant r\}} |f(x)| Q_n(dx) = \int_{\{|x| \leqslant r\}} |f(x)| Q(dx).$$

On pourra étudier l'ensemble de points de discontinuité de la fonction $f_r(x) = f(x) \mathbb{1}_{\{|x| \leq r\}}$

- (e) Montrer que $\limsup_{n\to\infty} \Big| \int_{\mathbb{R}} f(x)Q_n(dx) \int_{\mathbb{R}} f(x)Q(dx) \Big| \leqslant 0$ et conclure.
- 4. On continue de supposer que la suite $\{Q_n\}_{n\geqslant 1}$ converge étroitement vers Q. Montrer que, s'il existe un entier $\ell\geqslant 1$ tel que $\limsup_{n\to\infty}\int_{\mathbb{R}}x^{2\ell}Q_n(dx)<\infty$, alors Q admet des moments de tout ordre $k<2\ell$ et on a $\lim_{n\to\infty}\int_{\mathbb{R}}x^kQ_n(dx)=\int_{\mathbb{R}}x^kQ(dx), \ \forall k<2\ell$. On pourra utiliser le point précédent pour deux fonctions f et g bien choisies.

Tournez la page S.V.P.

- 5. Supposons cette fois-ci qu'il y a convergence de toutes les suites de moments pour les probabilités Q_n , autrement dit, $\forall k \geqslant 1$ entier, $\exists \lim_{n \to \infty} \int_{\mathbb{R}} x^k Q_n(dx) = \mu_k \in \mathbb{R}$. Montrer que la suite $\{Q_n\}_{n\geqslant 1}$ est tendue et qu'il existe une probabilité Q sur \mathbb{R} telle que les μ_k $(k\geqslant 1$ entier) sont ses moments. Si Q est entièrement déterminée par ses moments déduire que $\{Q_n\}_{n\geqslant 1}$ converge étroitement vers Q.
- 6. Que peut-on dire de la suite de probabilités $\{Q_n\}_{n\geqslant 1}$ satisfaisant la condition que $\forall k\geqslant 1$ entier $\lim_{n\to\infty}\int_{\mathbb{R}}x^kQ_n(dx)=\left\{\begin{array}{ll}0 & \text{si }k\text{ impair}\\\frac{(2p)!}{2^pp!} & \text{si }k=2p\text{ pair}\end{array}\right.$?

Exercice II.

Soit $(B_t)_{t\in[0,1]}$ un mouvement réel standard défini sur un espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ et on note \mathcal{W} sa loi.

1. Rappeler l'expression de la fonctionnelle de taux I pour le principe de grandes déviations satisfait par la famille des lois de $\{\sqrt{\varepsilon}B_{\bullet}\}_{\varepsilon>0}$. Notons $I(A):=\inf_{f\in A}I(f)$ avec A un borélien de $E=\mathrm{C}([0,1];\mathbb{R})$. On fixe $g\in E$ une fonction strictement positive et on note

$$G := \{ f \in E : \exists t \in [0, 1] \text{ t.q. } f(t) \geqslant g(t) \}.$$

Évidemment G ne contient pas la fonction nulle. On veut étudier $P(B_{\bullet} \in \frac{1}{\sqrt{\varepsilon}}G)$.

- (a) Vérifier que G est un fermé et c'est un ensemble de continuité pour I (c'est-à-dire $I(\mathring{G}) = I(G)$.) On pourra vérifier que pour tout $\eta > 0$, $(1 + \eta)f \in \mathring{G}$, dès que $f \in G$, et déduire que $I(G) \leq I(\mathring{G}) \leq (1 + \eta)^2 I(G)$.
- (b) Pour tout $u \in (0,1]$ on introduit la fonction $g_u(t) := \frac{g(u)}{u}(t \wedge u)$. Montrer que $g_u \in G$ et que $I(f) \geqslant I(g_{\tau_f})$ pour toute $f \in G$, où $\tau_f := \inf\{t \in [0,1] : f(t) = g(t)\}$. Que vaut I(G)?
- (c) Déduire que $\lim_{\varepsilon \to 0} \varepsilon \log P(\exists t \in [0,1] \text{ tel que } \sqrt{\varepsilon} B_t \geqslant g(t)) = -\inf_{u \in (0,1]} \left[g(u)^2/(2u) \right].$ Supposons qu'il existe un unique u_0 réalisant l'infimum dans la relation pécédente. Pourquoi g_{u_0} est la trajectoire la plus probable au franchissement de la "barrière" g?
- (d) Étudier le cas de la fonction g(t) = 1 + t.
- 2. Soit $\sigma \in \mathbb{R}$ et considérons $(X_t)_{t \in [0,1]}$ un processus continu adapté tel que

$$X_t = B_t - \sigma \int_0^t X_s ds, \quad t \in [0, 1].$$

- (a) Justifier succinctement l'existence d'un unique processus X. On note $Q = P \circ X_{\bullet}^{-1}$ sa loi. Montrer qu'il s'agit d'une loi gaussienne et calculer sa covariance.
- (b) Pour $\varepsilon > 0$ la loi de $X_{\bullet}^{(\varepsilon)} = \sqrt{\varepsilon} X_{\bullet}$ sera notée Q_{ε} . Justifier soigneusement que la famille $\{Q_{\varepsilon}\}_{{\varepsilon}>0}$ satisfait un principe de grandes déviations et donner la fonctionnelle de taux J.
- (c) On note $Z = \sqrt{\int_0^1 X_s^2 ds}$ et ν_{ε} la loi de la variable aléatoire $\sqrt{\varepsilon}Z$. Montrer que la famille $\{\nu_{\varepsilon}\}_{\varepsilon>0}$ satisfait un principe de grandes déviations sur $\mathbb R$ et de fonction de taux K.
- (d) Montrer que $K(y) = \begin{cases} y^2 K(1) & \text{si } y \geqslant 0 \\ +\infty & \text{si } y < 0 \end{cases}$ et déduire que $K \in C^{\infty} \big((0, \infty); [0, \infty] \big)$.

Tournez la page S.V.P.

Exercice III.

Soient deux fonctions $b, \sigma \in C_b^1(\mathbb{R}; \mathbb{R})$ (dérivables avec dérivées continues et bornées sur \mathbb{R}). On note $\{B_t\}_{t\in[0,1]}$ un mouvement brownien réel standard défini sur un espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ et on considère l'équation différentielle stochastique

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t$$
, $t \in (0,1]$, avec $X_0 = x$.

Justifier succinctement l'existence et l'unicité de la solution X de cette équation.

- 1. On suppose d'abord que $b(x) = \mu x$ et $\sigma(x) = \sigma x$, où μ et σ sont deux constantes non-nulles.
 - (a) Donner le développement en chaos de Wiener de la variable aléatoire X_t . On pourra commencer par expliciter X_t et justifier l'égalité $\exp\left(B_t t/2\right) = \sum_{n \geqslant 0} I_n\left(\mathbb{1}_{[0,t]}^{\otimes n}\right)$. En déduire les valeurs de $\mathrm{E}(X_t)$ et $\mathrm{E}(X_t^2)$.
 - (b) Montrer que $D_s X_t = \sigma X_t$ si $s \leq t$ et que $D_s X_t = 0$ si s > t.
- 2. On suppose ici que $\sigma(x) \equiv \sigma \neq 0$. Ainsi $X_t = x + \int_0^t b(X_u) du + \int_0^1 \sigma \mathbb{1}_{[0,t]}(u) dB_u$, $t \in [0,1]$.
 - (a) Justifier pourquoi $D_s X_t = 0$ si s > t. Montrer que si $s \leq t$, $D_s X_t = \int_s^t b'(X_u) D_s X_u du + \sigma \mathbb{1}_{[0,t]}(s)$.
 - (b) Pour $t \ge s$, on pose $\rho_s(t) := D_s X_t$. Que vaut $\rho_s(s)$? Montrer que $\rho_s(t)$ vérifie une équation différentielle ordinaire linéaire. Déduire l'expression de $D_s X_t$.
- 3. On continue de supposer que $\sigma(x) \equiv \sigma \neq 0$ et soit $b(x) = \mu x$, $\mu \neq 0$. Qui est le processus X?
 - (a) Montrer que $X_t = e^{\mu t} \left(x + \sigma \int_0^1 \mathbb{1}_{[0,t]}(u) e^{-\mu u} dB_u \right)$. Calculer $D_s X_t$.
 - (b) Utiliser le résultat du point 2(b) précédent pour retrouver $D_s X_t$.