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Abstract. We study a one-dimensional kinetic stochastic model driven by a Lévy process with a
non-linear time-inhomogeneous drift. More precisely, the process (V,X) is considered, where X is
the position of the particle and its velocity V is the solution to a stochastic differential equation
with a drift of the form t−βF (v). The driving process is a stable Lévy process of index α, the
function F satisfies a homogeneity condition and β is a real number. The behaviour in large time of
the process (V,X) is analysed. A result concerning the moments estimates of the velocity process
is one of main tools.

1. Introduction

In this paper, we consider a one-dimensional stochastic kinetic model driven by a Lévy process.

dVt = dLt − F (Vt)t
−β dt and Xt = X0 +

∫ t

0
Vs ds. (1.1)

The process (Vt, Xt)t>0 may be thought of as the velocity and position processes of a particle subject
to a friction force F (v)t−β and interacting with its environment. Our purpose is to study the long-
time behaviour of solutions to (1.1) where L is an α-stable (non-symmetric) Lévy process. More
precisely, we look for the convergence in distribution of the process (Vt/ε, Xt/ε)t>0, as ε → 0, with
an appropriate rate.

It is a simple observation, when F = 0, to see that the rescaled process (ε
1
αVt/ε, ε

1+ 1
αXt/ε)t>0

converges in distribution towards the Kolmogorov process (Lt,
∫ t
0 Ls ds)t>0. The goal of the present

paper is to extend the results obtained for the Brownian motin driven noise in Gradinaru and
Luirard (2023), to an α-stable driven motion, with α ∈ (0, 2), when F is homogeneous of some
degree.

The study of stochastic differential equations (SDEs) driven by a Lévy process is a topic of
great interest (see Bass (2003) for a survey). The α-stable perturbation is a generalization of
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the Gaussian case, and it is also motivated by some Langevin-type models in stochastic climate
dynamics (see Ditlevsen (1999)). So far, most of the papers present results about existence and
uniqueness of solution, see for instance Applebaum and Siakalli (2009), Dong (2018), Kurenok
(2007), Pilipenko (2012), Chen et al. (2018) and Chen et al. (2021). The coefficients of the studied
SDE are often supposed to be time-homogeneous (see for instance Applebaum and Siakalli (2009)
and Dong (2018)). Accordingly, the case of time-dependent coefficients is scarcely studied (see Chen
et al. (2021), Kurenok (2007) and Zhang (2013)). In this situation, the usual tools associated with
time-homogeneous equation may no longer be employed.

Furthermore, few papers (see Applebaum and Siakalli (2009), Priola et al. (2012), Reker (2023))
present results about the asymptotic behaviour of the solution of such SDEs. For instance, in
Applebaum and Siakalli (2009) the authors give conditions for asymptotic stability of the solutions
to a SDE driven by a Brownian motion and a compensated Poisson process, with coefficients that
are supposed to satisfy usual global Lipschitz and growth assumptions. In Priola et al. (2012), the
authors establish the exponential ergodicity of the solutions to a SDE driven by an α-stable process,
where the drift coefficient is supposed to be the sum of two components, one linear and the other
bounded. In a number of articles, the small noise influence of the solutions is . To our knowledge,
the only work before ours considering the long-time behaviour is Fournier and Tardif (2021). In all
cited papers, coefficients are time-homogeneous.

Let us explain heuristically what the intuition of our analysis is. In long-time regime, we observe
three schemes, depending on the balance between the space and time coefficients of the drift function
with respect to α, the parameter of stability of the driving process. When the drag force is sufficiently
“small at infinity”, the convergence towards the Kolmogorov process (S,

∫ ·
0 S) still holds. When the

two terms in the stochastic equation of the velocity process offset, we still get a kinetic process of
the form (V,

∫ ·
0 V), as limiting process. Though the process V no longer has the same distribution as

the driving Lévy process. Alternatively, when the drift swings with the random noise, the limiting
process is no longer kinetic.

The main ingredients of the proofs are moments estimates and the self-similarity of the driving
process. By their scaling property, Lévy stable processes are natural extensions of the Brownian
motion, but the jump component of the Lévy noise brings some difficulties. Indeed, by contrast
with a Brownian motion, an α-stable Lévy process can only have moments of order κ ∈ [0, α). Thus,
moments estimation of the velocity process stands as a significant part of our study (see Section 4).
Moment estimates of Lévy and Lévy-type processes were studied in Luschgy and Pagès (2008),
Kühn (2017) and Deng and Schilling (2015), nevertheless the methods used by those authors can
not be easily adapted to the solutions to a SDE. The key idea will be to cut the jumps of the driving
process in a non-homogeneous manner.

The proof for the critical (see Theorem 2.4) significantly relies on a change in both space and
time, taking advantage of the scaling property of the driving process, to be close to a stationary
time-homogeneous SDE, as performed in Appleby and Wu (2009) and Gradinaru and Offret (2013).
The same strategy applies for the sub-critical case and gives only a partial result concerning the
behavior of the velocity process. As in the Gaussian situation the study of the position process
seems more difficult and stays an open problem.

Here is the structure of the paper: in Section 2, we introduce some notations and we state our
main results. We study the existence of the solution to the system (1.1) in Section 3. In Section 4,
we give estimates of the moments, which also ensure the non-explosion of the velocity process. The
proofs of our main results are presented in Section 5. Some useful auxiliary results are presented in
the Appendix.
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2. Notations and statements of main results

Throughout the paper, we deal with L = (Lt)t≥0 as an α-stable Lévy process with α ∈ (0, 2).
We call ν its Lévy measure, given by

ν(dz) =
a+1{z>0} + a−1{z<0} dz

|z|1+α , with a+, a− ≥ 0 and a+ + a− > 0. (2.1)

As a Lévy measure, ν satisfies
∫
R∗(1 ∧ z2)ν(dz) < +∞. By Lévy-Itô’s decomposition, L is a pure-

jump Lévy process and there exists a Poisson point measure N and the associated compensated
Poisson measure Ñ such that, for all t ≥ 0,

Lt =



∫ t

0

∫
R∗
zN(ds, dz) if α ∈ (0, 1),∫ t

0

∫
{0<|z|<1}

zÑ(ds, dz) +
∫ t

0

∫
{|z|≥1}

zN(ds, dz) if α = 1,∫ t

0

∫
R∗
zÑ(ds, dz) if α ∈ (1, 2).

(2.2)

The space of continuous functions C((0,+∞),R) is endowed with the uniform topology given by
the metric du defined for (f, g) ∈ C((0,+∞),R)2 by

du(f, g) :=
+∞∑
n=1

1

2n
min

(
1, sup

[ 1
n
,n]

|f − g|
)
. (2.3)

Set Λ := {λ : R+ → R+, continuous and increasing function s.t. λ(0) = 0, lim
t→+∞

λ(t) = +∞}
and set

kn(t) :=


1 if 1

n ≤ t ≤ n,

n+ 1− t if n < t < n+ 1,

0 if n+ 1 ≤ t.

The space of right-continuous with left limits (càdlàg) functions D((0,+∞),R) is endowed with the
Skorokhod topology given by the metric ds defined for (f, g) ∈ D((0,+∞),R)2 by

ds(f, g) :=
+∞∑
n=1

1

2n
min

(
1, inf

λ∈Λ

{
sup
s ̸=t

∣∣∣∣log λ(t)− λ(s)

t− s

∣∣∣∣ ∨ sup
t≥ 1

n

∣∣kn(t) (f ◦ λ(t)− g(t))
∣∣}) . (2.4)

For simplicity, we will write C and D for C((0,+∞),R) and D((0,+∞),R), respectively.
For a family ((Z

(ε)
t )t>0)ε>0 of càdlàg processes, we write

(Z
(ε)
t )t>0 =⇒

ε→0
(Zt)t>0,

provided (Z
(ε)
t )t>0 converges in distribution to (Zt)t>0 in D, as ε→ 0, and we write

(Z
(ε)
t )t>0

f.d.d.
=⇒
ε→0

(Zt)t>0,

provided, for any finite subset S ⊂ (0,+∞), the vector (Z(ε)
t )t∈S converges in distribution to (Zt)t∈S

in RS , as ε→ 0.
Let β a real number and F a continuous function satisfying

for some γ ∈ R, ∀v ∈ R, λ > 0, F (λv) = λγF (v). (Hγ)

We introduce another assumption on F , which will sometimes be in force in the sequel.
When (i) α ∈ (0, 1] or (ii) α ∈ (1, 2) and γ ≥ 1,

we suppose furthermore that for all v ∈ R, vF (v) ≥ 0.
(Hsgn)
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Our main interest is taking into the following one-dimensional stochastic kinetic model given, for
t ≥ t0 > 0, by

dVt = dLt − t−βF (Vt) dt, with Vt0 = v0 > 0, and dXt = Vt dt, with Xt0 = x0 ∈ R. (SKE)

In the following, sgn is the sign function with the convention that sgn(0) = 0. We denote by C
some positive constants, which may change from line to line. We use the subscripts to indicate the
parameters on which the constant depends. For instance, Ct0,α denotes a constant depending on
the parameters t0 and α.

Remark 2.1. If a function π satisfies (Hγ), then for all x ∈ R, π(x) = π(sgn(x)) |x|γ . As an example
of a function satisfying (Hγ) one can keep in mind F : v 7→ sgn(v) |v|γ (see also Gradinaru and
Offret (2013)).

Let us state our main results which correspond to the three regimes: super-critical, critical and
sub-critical, depending respectively on the position of the exponent β with respect to 1 + γ−1

α .
When β > 1 + γ−1

α we have a super-critical regime, the friction force is asymptotically negligible
and the couple velocity-position process behaves like Kolmogorov diffusion:

Theorem 2.2. Consider γ ∈ (1− α
2 , α). Assume that (Hγ) and (Hsgn) are satisfied, and suppose

that β > 1 + γ−1
α . Let (Vt, Xt)t≥t0 be the unique global solution to (SKE). Then, in the space D,(

ε
1
αVt/ε, ε

1+ 1
αXt/ε

)
t≥εt0

=⇒
ε→0

(
Lt,

∫ t

0
Ls ds

)
t>0

.

Remark 2.3. Theorem 2.2 is also true when the following hypothesis holds instead of (Hγ).

F is such that (SKE) has a unique solution up to explosion and
|F | ≤ G where G is a positive function satisfying (Hγ).

(H ′
γ)

For instance, the function F : v 7→ v
(1+v2)

(see also Fournier and Tardif (2021)) satisfies (H ′
γ), with

γ = 0.

In the critical regime, i.e. when β = 1+ γ−1
α , the friction force compensates somehow the random

force. The limit law is the kinetic law of a "mixture" between the limit laws of two regimes, and it
depends only on the parameters of the friction force.

Theorem 2.4. Consider α > 1 and γ ∈ [1, α). Assume that (Hγ) and (Hsgn) are satisfied, and
suppose that β = 1 + γ−1

α . Let (Vt, Xt)t≥t0 be the unique global solution to (SKE). Then the
time-homogeneous SDE, driven by an α-stable process L,

dHs = dLs −
Hs

α
ds− F

(
Hs

)
ds (2.5)

admits a unique strong solution which is exponentially ergodic. Denote by H the eternal ergodic
process, that is the solution to (2.5) having the invariant measure as the distribution of H−∞ and
introduce the process V :=

(
t
1
αHlog(t)

)
t≥0

.

Then, under (Hγ), the following convergence holds in the space D

(ε
1
αVt/ε, ε

1+ 1
αXt/ε)t≥εt0 =⇒

ε→0

(
Vt,

∫ t

0
Vs ds

)
t>0

.

Remark 2.5. If ΛF denotes the invariant measure of the eternal process, it can be noticed that the d-
dimensional distribution of the process V is the pushforward measure of the measure ΛF,log(t1),...,log(td)

by the linear map T (u1, · · · , ud) := (t
1/α
1 u1, · · · , t

1/α
d ud).
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For the sub-critical regime, when β < 1 + γ−1
α , we obtain only the convergence of the velocity

process, the behaviour of the position process being an open problem. The velocity process diverges
towards the infinity under the random force, but it is very quickly recalled towards 0 by the drift.
Note that the finite dimensional marginals of the velocity process depend on the parameters of the
friction force. The study of the homogeneous case seems to indicate that there is no convergence in
distribution of the normalised velocity but only for its marginals of finite rank. Even for the simple
linear case with Brownian driving noise, it is not possible to prove tightness. We therefore lose the
kinetic character of the limit process, and at the same time the regularity of its position component.

Theorem 2.6. Consider α > 1 and γ ≥ 1. Assume that (Hγ) and (Hsgn) are satisfied, and suppose
that β < 1 + γ−1

α . Let (Vt, Xt)t≥t0 be the unique global solution to (SKE) and set q := β
α+γ−1 <

1
α .

Then the time-homogeneous SDE, driven by an α-stable process L,

dHs = dLs − F (Hs) ds. (2.6)

admits a unique strong solution which is ergodic. Denote again by H the eternal ergodic process
solution of (2.6) starting at its invariant measure and introduce the process V = (tqHt)t≥0 Then,(

εqVt/ε
)
t≥εt0

f.d.d.
=⇒
ε→0

(Vt)t≥0 .

Remark 2.7. If ΠF denotes the invariant measure of the eternal process then the d-dimensional
distribution of V is the pushforward of the measure Π⊗d

F by the linear map T (u1, · · · , ud) :=
(t1

qu1, · · · , tdqud).

Remark 2.8. Assuming that the driving process is the Brownian motion and considering only the
linear situation (γ = 1), in Gradinaru and Luirard (2023) it was proved that, provided that β ∈
(−1/2, 1), the process

(
εβ+1/2Xt/ε

)
t≥εt0

converges in f.d.d. as ε tends to 0 towards a centered
Gaussian process with an explicit covariance function. We conjecture that for the α-stable non-
Gaussian Lévy driving process, and for the linear case (γ = 1) again, provided that β ∈ (− 1

α , 1),
the family of processes

(
εβ+1/αXt/ε

)
t≥εt0

should converge in f.d.d. to the process X :=
∫ ·
0 s

β dLs.
Nevertheless, the method employed in Gradinaru and Luirard (2023) does not succeed and the
question is open.

Remark 2.9. As we will see in Section 3, the assumption γ > 1− α
2 is needed in order to obtain the

existence and uniqueness up to explosion of the solution under the hypothesis (Hγ) and without
the hypothesis (Hsgn).

Remark 2.10. Let us point out that, during the proof of Theorems 2.2 and 2.4, we employ some
moments estimates for the the velocity process V . Assuming that (Hsgn) is satisfied, we suppose
also that the hypothesis on the sign of F holds for (α, γ, κ) ∈ (1, 2)× [0, 1]× (1, α). Then, for any
α ∈ (0, 2), γ ∈ R, β ∈ R and κ ∈ [0, α), we will show, in Section 4, that there exists a constant
Cγ,κ,β,t0 such that

∀t ≥ t0, E [|Vt|κ] ≤ Cγ,κ,β,t0t
κ
α .

Note that the above bounds are the best possible, taking F = 0.

3. Existence up to explosion

In this section, we study the existence of the solution to (SKE) up to explosion time.

Remark 3.1. Assume that (Hγ) holds. If 0 < γ < 1, then the function F is γ-Hölder and if γ ≥ 1,
it is locally Lipschitz.

Proposition 3.2. Assume that (Hγ) is satisfied. There exists a pathwise unique strong solution to
(SKE), defined up to the explosion time, provided that



820 Mihai Gradinaru and Emeline Luirard

(i) 1− α
2 < γ < 1 and β ≥ 0 when α ∈ (0, 2).

(ii) γ ≥ 1 when α > 1.

Proof : If γ ∈ (0, 1), the drift coefficient is γ-Hölder (see Remark 3.1) and locally bounded, thereby
the conclusion of the first point follows from Remark 1.3 in Chen et al. (2021).

Assume now that α > 1 and γ ≥ 1. The drift coefficient is locally Lipschitz (see Remark 3.1) and
locally bounded, so we can apply Lemma 115 p. 78 in Situ (2005) to get the pathwise uniqueness.
Thanks to Theorem 137 p. 104 in Situ (2005), it suffices to prove that there exists a weak solution.

The drift coefficient is continuous with respect to its two variables, so it is a locally bounded
and measurable function. By a standard localization argument, since the drift coefficient is locally
Lipschitz, by using Theorem 9.1 p. 231 in Ikeda and Watanabe (1981), we deduce that there exists
a unique solution defined up to explosion. □

Remark 3.3. If (Hsgn) is satisfied, then the function F is increasing and then uniqueness follows.
Since the drift coefficient is a continuous function, using a standard localization argument, we can
apply Theorem 3.1 p. 866 in Kurenok (2007) to conclude to existence. Hence, we can remove the
condition γ > 1− α

2 under this hypothesis.

4. Moment estimates and non-explosion of the velocity process

In this section, we present estimates on moments of the velocity process V solution to (SKE).
This will be doubly useful to conclude of the non-explosion of solution to (SKE) with Lemma 4.1,
and to control some terms appearing along the proofs of Theorems 2.2 and 2.4 in Section 5.

Let V be the unique solution up to explosion time to (SKE). For all r ≥ 0, define the stopping
time

τr := inf{t ≥ t0, |Vt| ≥ r} (4.1)
and set τ∞ := limr→+∞ τr the explosion time of V . We give first a sufficient condition for the
non-explosion of a general process.

Lemma 4.1. Let (Yt)t≥t0 be a càdlàg process and τ∞ its explosion time. Assume that there exist
two measurable and non-negative functions ϕ and b such that

(i) ϕ is non-decreasing and lim
r→∞

ϕ(r) = +∞,
(ii) b is finite-valued,
(iii) and for all t ≥ t0,

sup
r≥0

E [ϕ(Yt∧τr)] ≤ b(t). (4.2)

Then τ∞ = +∞ a.s.

Proof : Pick t ≥ t0. Using the definition of τr, the monotony of ϕ and (iii), we get, for all r ≥ 0,

ϕ(r)P(τr ≤ t) ≤ E
[
ϕ (Yτr)1{τr≤t}

]
≤ E [ϕ (Yτr)] ≤ b(t).

Thus, by Fatou’s lemma,

0 ≤ P (τ∞ ≤ t) ≤ lim inf
r→∞

P(τr ≤ t) ≤ b(t) lim
r→∞

1

ϕ(r)
= 0.

We conclude that
0 ≤ P (τ∞ < +∞) ≤

∑
t∈Q

P (τ∞ ≤ t) = 0.

□

With this result in hands we can now state and prove moments estimates for the velocity process
V . Recall that (Vt)t≥t0 is the solution to (SKE). We will split our analysis in several cases following
the position of the stability parameter α.
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Proposition 4.2. Pick α ∈ (0, 1) and assume that (Hsgn) holds. For any γ, β, the explosion time
τ∞ is a.s. infinite and for all κ ∈ [0, α), there exists a constant Cκ,t0 such that, we have

∀t ≥ t0, E [|Vt|κ] ≤ Cκ,t0t
κ
α . (4.3)

Proof : Fix t ≥ t0. Since α < 1, the stable process can be written as

Lt =

∫ t

0

∫
R∗
zN(ds, dz) =

∑
s≤t

∆Ls.

Fix κ ∈ [0, α). Pick the sequence of C2-functions fn : x 7→
√
x2 + 1

n , which converges uniformly to
the function x 7→ |x| on R. Then, for all n ≥ 1, we apply Itô’s formula (see Theorem 32 p. 78 in
Protter (2005)) to get

fn(Vt∧τr) = fn(v0)−
∫ t∧τr

t0

f ′n(Vs)F (Vs)s
−β ds+

∫ t∧τr

t0

∫
R∗

(fn(Vs− + z)− fn(Vs−))N(ds, dz)

≤ fn(v0) +
∑

s≤t∧τr

(fn(Vs− +∆Ls)− fn(Vs−)).

The term
∫ t∧τr
t0

f ′n(Vs)F (Vs)s
−β ds is non-negative, since (Hsgn) holds.

Hence, the previous inequality can be written as

fn(Vt∧τr) ≤ fn(v0) +
∑

s≤t∧τr

(fn(Vs)− fn(Vs−)).

Since ∥f ′n∥∞ ≤ 1, we deduce that (fn(Vs)− fn(Vs−)) ≤ |∆Vs| = |∆Ls|, hence,

|Vt∧τr | ≤ fn(Vt∧τr) ≤ fn(v0) +
∑

s≤t∧τr

|∆Ls| .

Furthermore, since κ < α < 1, we have

|Vt∧τr |
κ ≤ fn(v0)

κ +
( ∑

s≤t∧τr

|∆Ls|
)κ
.

Taking the expectation, we get

E [|Vt∧τr |
κ] ≤ E [fn(v0)

κ] + E
[(∑

s≤t

|∆Ls|
)κ]

. (4.4)

Notice that the process L+
t :=

∑
s≤t |∆Ls| is also a pure-jump Lévy process and an α-stable process.

By owing to (2.1), its Lévy measure is given, for any Borel subset A ⊂ (0,∞), by ν+(A) =
ν(A) + ν(−A) = (a+ + a−)

∫
A

dz
|z|1+α . In other words, the Lévy measure of L+

t is the Lévy measure
of an α-stable subordinator and is given by

ν+(dz) = (a+ + a−)1{z>0}
dz

|z|1+α
.

Invoking Kingman’s formula, the same conclusion can be readily obtained by computing the char-
acteristic function of L+

t . With this observation in hand, since κ < α, letting n → +∞ in (4.4) we
obtain

E [|Vt∧τr |
κ] ≤ |v0|κ + E

[∣∣L+
t

∣∣κ] ≤ Ct0,κt
κ
α .

Thanks to Lemma 4.1, we can conclude that the explosion time of V is a.s. infinite, and (4.3) follows,
letting r → ∞. □
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Proposition 4.3. Pick α ∈ (1, 2). For any γ ∈ [0, 1) and any β ∈ R, the explosion time τ∞ is a.s.
infinite and for all κ ∈ [0, 1], there exists Cγ,κ,β,t0 such that we have

∀t ≥ t0, E [|Vt|κ] ≤ Cγ,κ,β,t0

{
t
κ
α if γ−1

α + 1 ≤ β,

t
κ 1−β

1−γ else.
(4.5)

Proof of Proposition 4.3: Assume that γ ∈ [0, 1) and fix κ ∈ [0, 1]. Then Jensen’s inequality yields,
for all t ≥ t0, E [|Vt|κ] ≤ E [|Vt|]κ, hence it suffices to verify (4.5) only for κ = 1.
Recall that under (Hγ), there exists a positive constant K, such that for all v ∈ R, |F (v)| ≤ K |v|γ .
Hence, we can write, for any t ≥ t0 and r ≥ 0,∣∣V(t∧τr)−∣∣ ≤ |v0 − Lt0 |+

∣∣L(t∧τr)−
∣∣+ ∫ t∧τr

t0

s−β |F (Vs∧τr)| ds

≤ |v0 − Lt0 |+
∣∣L(t∧τr)−

∣∣+K

∫ t∧τr

t0

s−β |Vs∧τr |
γ ds.

Since L is an α-stable process, it has a finite first moment, which can be computed. Taking the
expectation in the above inequality, we get, by choosing Ct0 big enough,

E
[∣∣V(t∧τr)−∣∣] ≤ E [|v0 − Lt0 |] + E

[∣∣L(t∧τr)−
∣∣]+K

∫ t

t0

s−βE [|Vs∧τr |
γ ] ds

≤ Ct0t
1
α +K

∫ t

t0

s−βE [|Vs∧τr |]
γ ds.

Recalling that τr is given by (4.1), the function gr : t 7→ E
[∣∣V(t∧τr)−∣∣] is bounded by r. Applying a

Grönwall-type lemma (see Lemma A.1), we end up, for β ̸= 1, with

∀t ≥ t0, E
[∣∣V(t∧τr)−∣∣] ≤ Cγ

[
Ct0t

1
α +

(
1− γ

1− β
K(t1−β − t1−β

0 )

) 1
1−γ

]
.

The case β = 1 can be treated similarly. Thanks to Lemma 4.1, we conclude that the explosion
time of V is a.s. infinite, and (4.5) follows from Fatou’s lemma. □

Proposition 4.4. Pick α ∈ [1, 2) and assume that for all v ∈ R, vF (v) ≥ 0. For any γ ∈ R and
any β ∈ R, the explosion time τ∞ is a.s. infinite and there exists Cκ,t0 such that

for κ ∈ (0, α), ∀t ≥ t0, E [|Vt|κ] ≤ Cκ,t0t
κ
α . (4.6)

Proof : The key idea is to slice the small and big jumps in a non-homogeneous way with respect to
the function ξ 7→ ξ

1
α . We write the proof in the general setting of α ∈ (1, 2). When α = 1, the

proof is similar since ν is symmetric.
Pick ξ ≥ t0. The α-stable Lévy driving process can be written, by using this cutting threshold

(see for instance Chaudru de Raynal and Menozzi (2022) and references therein for similar ideas),
as

Lt − Lt0 =

∫ t

t0

∫
|z|≤ξ

1
α

zÑ(ds, dz) +

∫ t

t0

∫
|z|>ξ

1
α

zN(ds, dz)−
∫ t

t0

∫
|z|>ξ

1
α

zν(dz) ds.

The two first integrals satisfy the same scaling property as the α-stable Lévy driving process. It is
a direct and simple computation to see that∫

|z|>ξ
1
α

zν(dz) =
a+ − a−
α− 1

ξ
1
α
−1.

Step 1. We first apply Itô’s formula and estimate the expectation of each term, in order to get
(4.6).
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Fix η > 0 and define the C2-function f : v 7→ (η+ v2)κ/2. For all t ≥ t0, by Itô’s formula, using that
for all v ∈ R, vF (v) ≥ 0, we have

f(Vt∧τr) ≤ f(V0)−
a+ − a−
α− 1

ξ
1
α
−1

∫ t

t0

1{s≤τr}f
′(Vs) ds+Mt +Rt + St, (4.7)

where the terms M , R and S are respectively given by

Mt :=

∫ t

t0

∫
0<|z|<ξ

1
α

1{s≤τr} [f(Vs− + z)− f(Vs−)] Ñ(ds, dz), (4.8)

Rt :=

∫ t

t0

∫
|z|≥ξ

1
α

1{s≤τr} [f(Vs− + z)− f(Vs−)])N(ds, dz), (4.9)

St :=

∫ t

t0

∫
0<|z|<ξ

1
α

1{s≤τr}
[
f(Vs + z)− f(Vs)− zf ′(Vs)

]
ν(dz) ds. (4.10)

We estimate expectations of M , R and S.
Observe that, for κ < 1 and for all v ∈ R,∣∣f ′(v)∣∣ ≤ κη

κ−1
2 . (4.11)

Again, as previously, by direct computation, for all k > α,∫
0<|z|<ξ

1
α

|z|k ν(dz) = a+ + a−
k − α

ξ
k
α
−1, (4.12)

and for all k < α, ∫
|z|≥ξ

1
α

|z|k ν(dz) = a+ + a−
α− k

ξ
k
α
−1. (4.13)

Firstly, we show that the local martingale (Mt)t≥t0 is a martingale. Fix q ≥ 2 and r ≥ 0. Set

It(q) :=

∫ t

t0

∫
0<|z|<ξ

1
α

1{s≤τr} |f(Vs− + z)− f(Vs−)|q ν(dz) ds.

Notice that, since for all |v| ≤ r and |z| ≤ ξ
1
α , |f(v + z)− f(v)| ≤

∥∥∥f ′1
[−(r+ξ

1
α ),r+ξ

1
α ]

∥∥∥
∞
|z|, so we

have

It(q) ≤
∥∥∥f ′1

[−(r+ξ
1
α ),r+ξ

1
α ]

∥∥∥q
∞

∫ t

t0

∫
0<|z|<ξ

1
α

1{s≤τr} |z|
q ν(dz) ds.

The right-hand side of this last inequality is a finite quantity, since (4.12) holds and q ≥ 2. Therefore,
for q ≥ 2, by Kunita’s inequality (see Theorem 4.4.23 p. 265 in Applebaum (2009)), there exists
Dq > 0 such that

E
[

sup
t0≤s≤t

|Ms|q
]
≤ Dq

(
E
[
It(2)

q
2

]
+ E [It(q)]

)
< +∞.

Hence, by Theorem 51 p. 38 in Protter (2005), M is a martingale.
We estimate now the finite variation part S defined in (4.10). We use a similar idea as in the proof
of Theorem 3.1 p. 3863 in Deng and Schilling (2015). Note that for all v ∈ R,∣∣f ′′(v)∣∣ = κ(2− κ)v2(v2 + η)

κ
2
−2 + κ(v2 + η)

κ
2
−1

= κ(2− κ)v2(v2 + η)−1(v2 + η)
κ
2
−1 + κ(v2 + η)

κ
2
−1

≤ κ(3− κ)(v2 + η)
κ
2
−1 ≤ κ(3− κ)η

κ
2
−1,

where we used the fact that κ
2 − 1 < 0. Assume that |z| < ξ

1
α . Using Taylor’s formula, we get a.s.∣∣f(Vs + z)− f(Vs)− zf ′(Vs)

∣∣ ≤ 1

2
κ(3− κ)η

κ
2
−1z2.
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By integrating, we get the almost sure following bound∣∣∣∣∣
∫
0<|z|<ξ

1
α

(
f(Vs + z)− f(Vs)− zf ′(Vs)

)
ν(dz)

∣∣∣∣∣ ≤ 1

2
κ(3− κ)η

κ
2
−1

∫
0<|z|<ξ

1
α

z2ν(dz).

Gathering (4.12) into this last inequality, we end up with∣∣∣∣∣
∫
0<|z|<ξ

1
α

(
f(Vs + z)− f(Vs)− zf ′(Vs)

)
ν(dz)

∣∣∣∣∣ ≤ 1

2
κ(3− κ)η

κ
2
−1a+ + a−

2− α
ξ

2
α
−1. (4.14)

It remains to study the Poisson integral R defined in (4.9), using Theorem 2.3.7 p. 106 in Applebaum
(2009). Pick κ ≤ 1. By Hölder property of power functions, we can write,

|f(v + z)− f(v)| =
∣∣∣(η + (v + z)2

)κ
2 −

(
(v + z)2

)κ
2 + (v + z)κ − vκ +

(
v2
)κ

2 −
(
η + v2

)κ
2

∣∣∣
≤ 2η

κ
2 + |z|κ .

By integration we deduce that∫
|z|≥ξ

1
α

|f(Vs + z)− f(Vs)| ν(dz) ≤ η
κ
2 ν(|z| ≥ ξ

1
α ) +

∫
|z|≥ξ

1
α

|z|κ ν(dz).

Replacing (4.13) into the latter relation, we obtain∫
|z|≥ξ

1
α

|f(Vs + z)− f(Vs)| ν(dz) ≤ η
κ
2
a+ + a−

α
ξ−1 +

a+ + a−
α− κ

ξ
κ
α
−1. (4.15)

Gathering (4.11), (4.15) and (4.14), we get from (4.7),

E [|Vt∧τr |
κ] ≤ E [f(Vt∧τr)] ≤ E [f(Vt0)] + tξ−1

×
(
κη

κ−1
2
a+ − a−
α− 1

ξ
1
α + ηκ/2

a+ + a−
α

+
a+ + a−
α− κ

ξ
κ
α +

1

2
κ(3− κ)η

κ
2
−1a+ + a−

2− α
ξ

2
α

)
.

(4.16)

It suffices to choose η = t
2
α and ξ = t on the right hand side of the previous inequality to obtain

E [|Vt∧τr |
κ] ≤ E [f(Vt0)] + t

κ
α ×

(
κ
a+ − a−
α− 1

+
a+ + a−

α
+
a+ + a−
α− κ

+
1

2
κ(3− κ)

a+ + a−
2− α

)
≤ Cκ,t0t

κ
α . (4.17)

Thanks to Lemma 4.1, we can conclude that the explosion time of V is a.s. infinite and letting
r → +∞, for all κ ∈ [0, 1],

E [|Vt|κ] ≤ Cκ,t0t
κ
α . (4.18)

Step 2. Pick κ ∈ (1, α). We estimate R in another manner, using again Theorem 2.3.7 p. 106 in
Applebaum (2009).
By Hölder property of power function and (4.13), we get∫

|z|≥ξ
1
α

|f(Vs + z)− f(Vs)| ν(dz) ≤
∫
|z|≥ξ

1
α

∣∣2zVs + z2
∣∣κ2 ν(dz)

≤ Cκ

(
a+ + a−
α− κ

ξ
κ
α
−1 + |Vs|

κ
2
a+ + a−
α− κ

2

ξ
κ
2α

−1

)
. (4.19)

Gathering (4.14), (4.19) and then using that for all v ∈ R, |f ′(v)| ≤ κ |v|κ−1, we deduce that
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E [|Vt∧τr |
κ] ≤ E [f(Vt0)] +

(
Cκ

a+ + a−
α− κ

ξ
κ
α
−1 +

1

2
κ(3− κ)η

κ
2
−1a+ + a−

2− α
ξ

2
α
−1

)
t

+ κ
a+ − a−
α− 1

ξ
1
α
−1

∫ t

t0

E
[
|Vs|κ−1

]
ds+ Cκ

a+ + a−
α− κ

2

ξ
κ
2α

−1

∫ t

t0

E
[
|Vs|

κ
2

]
ds. (4.20)

Injecting (4.18) and by choosing η = t
2
α and ξ = t, we conclude that

E [|Vt∧τr |
κ] ≤ Cκ,t0,αt

κ
α .

Letting r → +∞, the announced inequality (4.6) follows.
□

Example 4.5. Remark that the velocity process V is explicit in the linear case (γ = 1), and that the
moments estimate is as best as possible. Choose F (1) = ρ > 0, F (−1) = −ρ. Pick β ̸= 1, so

Vt = v0 + exp

(
−ρ t

1−β

1− β

)∫ t

t0

exp

(
ρ
s1−β

1− β

)
dLs

is solution to (SKE). Hence, by an integration by parts,

Vt = v0 + Lt − e
ρ 1
1−β

(t1−β
0 −t1−β)

Lt0 − e
−ρ t1−β

1−β

∫ t

t0

ρs−βe
ρ s1−β

1−β Ls ds,

and, we end up with
E [|Vt|] ≤ Ct0

(
t
1
α + t1−β+ 1

α

)
≤ Ct0t

1
α .

The case β = 1 can be treated similarly.

5. Proof of the asymptotic behavior of the solution

This section is devoted to the proofs of our main results, Theorems 2.2, 2.4 and 2.6.
Notice that, in the super-critical and critical regimes, it is enough to prove the convergence of

the rescaled velocity process (ε
1
αVt/ε)t≥εt0 in the space D endowed with the Skorokhod topology.

We recall that in the sub-critical situation we obtained the convergence only of the f.d.d. It was
pointed out in Gradinaru and Luirard (2023), Remark 2.6 that even for the simple linear case with
Brownian driving noise, it is not possible to prove tightness.

Let us briefly explain how the convergence of the rescaled position process can be obtained by
assuming the convergence of the rescaled velocity process. For ε ∈ (0, 1] and t ≥ εt0, we can write

ε1+
1
αXt/ε = ε1+

1
αx0 +

∫ t

εt0

V (ε)
s ds.

Let us introduce the mapping gε : V 7→
(
Vt,
∫ t
εt0
Vs ds

)
t>0

defined and valued on D. It converges,

as ε→ 0, to the continuous mapping g : V 7→
(
Vt,
∫ t
0 Vs ds

)
t>0

.

In order to obtain the desired result, it suffices to show that gε(V
(ε)
• ) converges weakly in D,

endowed with the Skorokhod topology. To see V (ε) as a process of D([0,+∞)), we state, for all
s ∈ [0, εt0], V

(ε)
s := V

(ε)
εt0

= ε
1
α v0. Call Pε, P the distribution of V (ε), V, respectively. Invoking the

Portmanteau theorem (see Theorem 2.1 p. 16 in Billingsley (1999)), it suffices to prove that for all
bounded and uniformly continuous function h : D([0,+∞))×D([0,+∞)) → R,∫

D([0,+∞))2
h(gε(ω)) dPε(dω) −→

ε→0

∫
D([0,+∞))2

h(g(ω)) dP (dω).

Pick such a function h. By assumption, the convergence Pε =⇒
ε→0

P holds, hence, using Lemma A.4, it

suffices to prove that the uniformly bounded sequence (h◦gε)ε of continuous functions on D([0,+∞))
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converges to the continuous function h ◦ g uniformly on compact subsets of D([0,+∞)). This can
be verified exploiting the properties of h, gε and ω in compact subset of D([0,+∞)). Therefore,
it suffices to prove the convergence of the rescaled velocity process (ε

1
αVt/ε)t≥εt0 in order to prove

Theorems 2.2 and 2.4.
In Sections 5.1 and 5.2, the aim is to prove the convergence of the velocity process.

5.1. Asymptotic behavior in the super-critical regime. In the remainder of this section, we assume
that γ ≥ 0 and β > 1 + γ−1

α .

Proof of Theorem 2.2: Thanks to a change of variables, we have, for all ε ∈ (0, 1] and t ≥ εt0,

ε
1
αVt/ε =ε

1
α (v0 − Lt0) + ε

1
αLt/ε − ε

1
α

∫ t/ε

t0

F (Vs)s
−β ds

=ε
1
α (v0 − Lt0) + ε

1
αLt/ε − εβ−1+ 1

α

∫ t

εt0

F (Vu/ε)u
−β du.

By self-similarity, L(ε) := (ε
1
αLt/ε)t≥0 has the same distribution as an α-stable process.

As a consequence, thanks to Theorem 3.1 p. 27 in Billingsley (1999) and Lemma A.3, it suffices
to prove

∀T > 0 sup
εt0≤t≤T

∣∣∣V (ε)
t − L

(ε)
t

∣∣∣ P−→ 0, as ε→ 0. (5.1)

Recall that under (Hγ), there exists a positive constant K, such that

ε
γ
α

∣∣∣∣∣F
(
V

(ε)
•

ε
1
α

)∣∣∣∣∣ ≤ K
∣∣∣V (ε)

•

∣∣∣γ . (5.2)

Modifying the factor in front of the integral, we get

V
(ε)
t = ε

1
α (v0 − Lt0) + L

(ε)
t − εβ−1+ 1−γ

α

∫ t

εt0

ε
γ
αF

(
V

(ε)
u

ε
1
α

)
u−β du. (5.3)

Gathering (5.3) and (5.2), for all T > 0, we have, test

sup
εt0≤t≤T

∣∣∣V (ε)
t − L

(ε)
t

∣∣∣ ≤ε 1
α (v0 − Lt0) + εβ−1+ 1−γ

α sup
εt0≤t≤T

∣∣∣∣∣
∫ t

εt0

ε
γ
αF

(
V

(ε)
u

ε
1
α

)
u−β du

∣∣∣∣∣
≤ε

1
α (v0 − Lt0) + εβ−1+ 1−γ

α

∫ T

εt0

K
∣∣∣V (ε)

u

∣∣∣γ u−β du. (5.4)

Taking the expectation and using the moments estimates on V (see Remark 2.10), we obtain, when
β ̸= γ

α + 1,

εβ−1+
(1−γ)

α E
[∫ T

εt0

K
∣∣∣V (ε)

u

∣∣∣γ u−β du

]
= εβ−1+ 1−γ

α

∫ T

εt0

KE
[∣∣∣V (ε)

u

∣∣∣γ]u−β du

= εβ−1+ 1
α

∫ T

εt0

KE
[∣∣Vu/ε∣∣γ]u−β du ≤ εβ−1+ 1−γ

α

∫ T

εt0

Cα,β,t0u
γ
α
−β du

= Cα,β,t0

(
εβ−1+ 1−γ

α T
γ
α
−β+1 − t

γ
α
−β+1

0 ε
1
α

)
. (5.5)

Gathering (5.4) and (5.5) and setting r := min
(
β − 1 + 1−γ

α , 1α
)
> 0, we get

E
[

sup
εt0≤t≤T

∣∣∣V (ε)
t − L

(ε)
t

∣∣∣ ] = O
ε→0

(εr).
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The case β = 1 + γ
α can be treated similarly and we end up with

E
[

sup
εt0≤t≤T

∣∣∣V (ε)
t − L

(ε)
t

∣∣∣ ] = O
ε→0

(ε
1
α ln(ε)).

This concludes the proof. □

5.2. Asymptotic behaviour in the critical regime. We adapt the strategy in Gradinaru and Offret
(2013) to the α-stable Lévy case. Pick a C2-diffeomorphism φ : [0, t1) → [t0,+∞). Let V be the
solution to the equation (SKE). Thanks to Proposition 3.4.1 p. 124 in Samorodnitsky and Taqqu
(1994), the following process is also an α-stable process

(Rt)t≥0 :=

(∫ t

0

dLφ(s)

φ′(s)
1
α

)
t≥0

. (5.6)

Then, by the change of variables t = φ(s), we get

Vφ(t) − Vφ(0) =

∫ t

0
φ′(s)

1
α dRs −

∫ t

0

F (Vφ(s))

φ(s)β
φ′(s) ds.

By integration by parts, we get

d

(
Vφ(s)

φ′(s)
1
α

)
= dRs −

φ′(s)1−
1
α

φ(s)β
F (Vφ(s)) ds−

φ′′(s)

αφ′(s)

Vφ(s)

φ′(s)
1
α

ds.

Set Ω = D([t0,∞)) the set of càdlàg functions that are equal ∞ after their (possibly infinite)
explosion time. Introduce the scaling transformation Φφ defined, for ω ∈ Ω, by

Φφ(ω)(s) :=
ω(φ(s))

φ′(s)
1
α

, with s ∈ [0, t1).

As a consequence, we obtain the following result (see Proposition 2.1, p. 187 in Gradinaru and
Offret (2013)).

Proposition 5.1. If V is a solution to the equation (SKE), then V (φ) := Φφ(V ) is a solution to

dV (φ)
s = dRs −

φ′(s)1−
1
α

φ(s)β
F (φ′(s)

1
αV (φ)

s ) ds− φ′′(s)

φ′(s)

V
(φ)
s

α
ds, with V (φ)

0 =
Vφ(0)

φ′(0)
1
α

, (5.7)

where R is an α-stable process given by (5.6).
Conversely, if V (φ) is a solution to (5.7), then Φ−1

φ (V (φ)) is a solution to the equation (SKE), where

Lt − Lt0 :=

∫ t

t0

(φ′ ◦ φ−1)
1
α (s) dRφ−1(s)

is an α-stable process.
Furthermore, uniqueness in law, pathwise uniqueness, strong existence hold for the equation (SKE)
if and only if they hold for the equation (5.7).

Let us focus firstly on the exponential change of time φe : t 7→ t0e
t. This scaling is convenient

since it allows to produce a time-homogeneous term in (5.7). Thanks to Proposition 5.1, the process
V (e) := Φe(V ) satisfies the SDE driven by the α-stable process (Rt)t≥0.

dV (e)
s = dRs −

V
(e)
s

α
ds− t

1− 1
α
−β

0 e(1−
1
α
−β)sF

(
t
1
α
0 e

s
αV (e)

s

)
ds. (5.8)

Proof of Theorem 2.4: Assume in the sequel that β = 1 + γ−1
α .
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Step 1. Firstly we prove the finite-dimensional convergence of the rescaled velocity process. To
that end, we reduce the problem to the convergence of a time-homogenous process.
Since (Hγ) holds, (5.8) becomes exactly the equation (2.5), driven by the α-stable process R:

dV (e)
s = dRs −

V
(e)
s

α
ds− F

(
V (e)
s

)
ds. (5.9)

Using the bijection Φe induced by the exponential change of time (see Proposition 5.1), and the
unique strong existence of the velocity process V (see Proposition 3.2 and Remark 2.10), there exists
a pathwise unique strong solution H to the time-homogeneous equation (5.9). Hence, we have the
equality (

Vt0et

(t0et)
1/α

)
t≥0

= (Ht)t≥0,

as two solutions to the same SDE, starting from the same point. We rewrite the above equality as(
Vt

t
1
α

)
t≥t0

= (Hlog(t/t0))t≥t0 .

So, we have, for all ε > 0, d ∈ N∗, and (t1, · · · , td) ∈ [εt0,+∞)d,(
Vε−1t1

(ε−1t1)
1/α
, · · · ,

Vε−1td

(ε−1td)
1/α

)
=
(
Hlog(t1)+log((εt0)−1), · · · ,Hlog(td)+log((εt0)−1)

)
. (5.10)

Since lim sup|x|→+∞
−F (x)−x/α

x < 0, it follows from Proposition 0.1 in Kulik (2009) that the process
(Ht)t≥0 is exponentially ergodic. We denote its invariant measure by ΛF . Call H the solution to
the time homogeneous equation (5.9), such that the initial condition H−∞ has the distribution ΛF .
For (t1, · · · , td) ∈ Rd, let ΛF,t1,··· ,td := L(Ht1 , · · · , Htd) be the distribution of (Ht1 , · · · , Htd). Then,
for all s ≥ 0, ΛF,t1,··· ,td = ΛF,t1+s,··· ,td+s. Indeed, thanks to the invariance property of ΛF , (H•) and
(H•+s) satisfy the same SDE, starting from the same point. As a consequence, we get the stationary
limit

lim
ε→0

L
(
Hlog(t1)+log((εt0)−1), · · · , Hlog(td)+log((εt0)−1)

)
= ΛF,log(t1),··· ,log(td). (5.11)

Moreover, by exponential ergodicity, we have for every continuous and bounded function ψ : Rd → R,

E
[
ψ
(
Hlog(t1/(t0ε)), · · · ,Hlog(td/(t0ε))

)]
− E

[
ψ
(
Hlog(t1/(t0ε)), · · · , Hlog(td/(t0ε))

)]
−→
ε→0

0. (5.12)

We postpone the proof of this convergence in Step 2.
To conclude this step, we gather (5.10), (5.11) and (5.12) to get(

Vε−1t1

(ε−1t1)
1/α
, · · · ,

Vε−1td

(ε−1td)
1/α

)
=⇒
ε→0

ΛF,log(t1),··· ,log(td).

This can also be written as(
ε

1
αVt1/ε, · · · , ε

1
αVtd/ε

)
=⇒
ε→0

T ∗ ΛF,log(t1),··· ,log(td),

where T ∗ ΛF,log(t1),··· ,log(td) denotes the pushforward of the measure ΛF,log(t1),··· ,log(td) by the linear
map T (u1, · · · , ud) := (t

1/α
1 u1, · · · , t

1/α
d ud).

Step 2. Let us now prove (5.12).
For the sake of clarity, let us give a proof for d = 2, the general case d ≥ 2 being similar.
Let ψ : R2 → R be a continuous and bounded function. Pick εt0 ≤ s ≤ t and set h0 = v0t

− 1
α

0 , (5.12)
is now equivalent to

E
[
ψ
(
Hlog(s/(t0ε)),Hlog(t/(t0ε))

) ∣∣∣H0 = h0

]
− E

[
ψ
(
Hlog(s/(t0ε)), Hlog(t/(t0ε))

) ∣∣∣H0 ∼ ΛF

]
−→
ε→0

0.
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We introduce µε := L
(
Hlog(s/(t0ε))

∣∣∣H0 = h0

)
. We now use the generalized Markov property of

solutions to SDE driven by Lévy process (for the sake of completeness, we state and prove it in our
context in Appendix, see Lemma A.6.). This leads to

E
[
ψ
(
Hlog(s/(t0ε)),Hlog(t/(t0ε))

) ∣∣∣H0 = h0

]
= E

[
ψ
(
H0,Hlog(t/s)

) ∣∣∣H0 ∼ µε

]
and, since ΛF is invariant,

E
[
ψ
(
Hlog(s/(t0ε)), Hlog(t/(t0ε))

) ∣∣∣H0 ∼ ΛF

]
= E

[
ψ
(
H0, Hlog(t/s)

) ∣∣∣H0 ∼ ΛF

]
.

Then, we are reduced to prove

E
[
ψ
(
H0,Hlog(t/s)

) ∣∣∣H0 ∼ µε

]
− E

[
ψ
(
H0, Hlog(t/s)

) ∣∣∣H0 ∼ ΛF

]
−→
ε→0

0.

The left-hand side can be written as,∫
R
E
[
ψ
(
H0,Hlog(t/s)

) ∣∣∣H0 = y
]
(µε(dy)− ΛF (dy)) .

Hence, setting p(t, x,dy) := Px(Ht ∈ dy) and ∥.∥TV for the total variation norm, we get∣∣∣E [ψ (H0,Hlog(t/s)

) ∣∣∣H0 ∼ µε

]
− E

[
ψ
(
H0, Hlog(t/s)

) ∣∣∣H0 ∼ ΛF

]∣∣∣
≤ ∥ψ∥∞

∫
R
|p (log(s/(t0ε)), h0,dy)− ΛF (dy)|

≤ ∥ψ∥∞ ∥p (log(s/(t0ε)), h0, ·)− ΛF ∥TV .

This converges to 0, as ε→ 0, by the exponential ergodicity of H.

Step 3. Let us prove now the tightness of the family of distributions of the càdlàg process(
V (ε)

)
t≥εt0

=
(
ε

1
αVt/ε

)
t≥εt0

on every compact interval [m,M ], 0 < m ≤M .
We check the Aldous criterion for tightness stated in Theorem 16.10 p.178 in Billingsley (1999). Let
a, η, T be positive real numbers. Let τ be a discrete stopping time with finite range T , bounded
by T . Choose δ > 0 and ε > 0 small enough.
We have, by Jensen’s inequality, for r = α

2 ,

E
[∣∣∣V (ε)

τ+δ − V (ε)
τ

∣∣∣r] ≤ E
[∣∣∣L(ε)

τ+δ − L(ε)
τ

∣∣∣r]+ E
[∫ τ+δ

τ
K
∣∣∣V (ε)

u

∣∣∣γ u−β du

]r
.

Since L(ε) is an α-stable process, by the strong Markov property,

E
[∣∣∣L(ε)

τ+δ − L(ε)
τ

∣∣∣r] = E [ELτ [|Lδ − L0|r]] ≤ Cδ
r
α .

The stopping time has a finite range T . Hence, we can write

E
[∫ τ+δ

τ
K
∣∣∣V (ε)

u

∣∣∣γ u−β du

]
= E

[
E
[∫ τ+δ

τ
K
∣∣∣V (ε)

u

∣∣∣γ u−β du
∣∣∣τ]]

= E

[∑
τi∈τ

1

P(τ = τi)
E
[
1{τ=τi}

∫ τi+δ

τi

K
∣∣∣V (ε)

u

∣∣∣γ u−β du

]
1{τ=τi}

]

≤ E

[∑
τi∈τ

1

P(τ = τi)
E
[∫ τi+δ

τi

K
∣∣∣V (ε)

u

∣∣∣γ u−β du

]
1{τ=τi}

]
.
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For any τi ∈ T , using the relation β = 1+ (γ−1)
α and the moments estimates on V (see Remark 2.10),

we obtain

E
[∫ τi+δ

τi

K
∣∣∣V (ε)

u

∣∣∣γ u−β du

]
=

∫ τi+δ

τi

KE
[∣∣∣V (ε)

u

∣∣∣γ]u−β du

≤ K

∫ τi+δ

τi

u
γ
α
−β du = K

[
(τi + δ)

1
α − τ

1
α
i

]
≤ Kδ1,

1
α .

The term δ1,
1
α has to be read as δ or δ

1
α depending on the fact that x 7→ x

1
α is a Lipschitz continuous

function on [0, T + δ], if α < 1, or a 1
α -Hölder function, if α > 1.

By Markov’s inequality, for δ small enough, we have

P
(∣∣∣V (ε)

τ+δ − V (ε)
τ

∣∣∣ ≥ a
)
≤ Kδr,

r
α

ar
≤ η.

Furthermore, by moments estimates (see Propositions 4.2, 4.3 and 4.4), for all t ≥ εt0,

sup
ε

[∣∣∣V (ε)
t

∣∣∣r] ≤ Ct
r
α .

Hence, using again Markov’s inequality, by Corollary and Theorem 16.8 p. 175 in Billingsley
(1999), this concludes the proof of the tightness of the velocity process and therefore the proof
of Theorem 2.4.

□

5.3. The velocity process in the sub-critical regime. Assume in this section that β < 1 + γ−1
α and

α > 1. Recall that we set q := β
α+γ−1 <

1
α . As a consequence, αq < 1. This time we take an interest

into the power change of time φq : t 7→
(
t1−αq
0 + (1− αq)t

) 1
1−αq . Thanks to Proposition 5.1, the

process V (q) := Φq(V ) satisfies the SDE driven by an α-stable process R,

dV (q)
s = dRs − F

(
V (q)
s

)
ds− qφαq−1

q V (q)
s ds. (5.13)

For simplicity, we shall write φ instead of φq.

Proof of Theorem 2.6: Step 1. We first prove the finite dimensional convergence of the velocity
process (V

(ε)
t )t≥εt0 := (εqVt/ε)t≥εt0 . We give a proof for d = 2, the general case d ≥ 2 being similar.

We call H the ergodic process solution to

dHs = dLs − F
(
Hs

)
ds, with H0 = h0 := v0t

−q
0 , (5.14)

where, as previously, L is an α-stable process. We denote by ΠF its invariant measure. Using the
bijection induced by the power change of time (Proposition 5.1), as solutions to the same SDE
starting at the same point, we have, for all ε > 0, and (s, t) ∈ [εt0,+∞)2,(

εq
Vε−1s

sq
, εq

Vε−1t

tq

)
=
(
V

(q)
φ−1(ε−1s)

, V
(q)
φ−1(ε−1t)

)
.

Using Theorem 3.1 p. 27 in Billingsley (1999), it suffices to prove that for all (s, t) ∈ [εt0,+∞)2,
•
∥∥∥((Hφ−1(ε−1s),Hφ−1(ε−1t)

)
−
(
V

(q)
φ−1(ε−1s)

, V
(q)
φ−1(ε−1t)

))∥∥∥ −→
ε→0

0, where ∥·∥ is a norm on R2.

•
(
Hφ−1(ε−1s),Hφ−1(ε−1t)

)
=⇒
ε→0

ΠF ⊗ΠF .
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Step 2. Pick κ ∈ (1, α). We prove that E
[∣∣∣Ht − V

(q)
t

∣∣∣κ] −→
t→+∞

0.
We can write

d
(
H− V (q)

)
t
= −

(
F (Ht)− F (V

(q)
t )

)
dt+ qφαq−1(t)V

(q)
t dt.

By straightforward differentiation, we can deduce

d
∣∣∣H− V (q)

∣∣∣κ
t
= −κ

∣∣∣F (Ht)− F (V
(q)
t )

∣∣∣ ∣∣∣Ht − V
(q)
t

∣∣∣κ−1
dt

+ κqφαq−1(t)V
(q)
t sgn

(
Ht − V

(q)
t

) ∣∣∣Ht − V
(q)
t

∣∣∣κ−1
dt. (5.15)

We set
g(t) := E

[∣∣∣Ht − V
(q)
t

∣∣∣κ] , t ≥ 0.

Taking expectation in (5.15), we get

g′(t) = −κE
[∣∣∣F (Ht)− F (V

(q)
t )

∣∣∣ ∣∣∣Ht − V
(q)
t

∣∣∣κ−1
]

+ κqφαq−1(t)E
[
V

(q)
t sgn

(
Ht − V

(q)
t

) ∣∣∣Ht − V
(q)
t

∣∣∣κ−1
]
.

Since γ ≥ 1, the function F−1 is 1
γ -Hölder, there exists Cγ > 0 such that,

g′(t) ≤ −CγE
[∣∣∣Ht − V

(q)
t

∣∣∣κ−1+γ
]
+ κ |q|φαq−1(t)E

[∣∣∣V (q)
t

∣∣∣ ∣∣∣Ht − V
(q)
t

∣∣∣κ−1
]
.

Then, by Jensen’s inequality, since γ ≥ 1,

g′(t) ≤ −Cγg(t)
κ−1+γ

κ + κ |q|φαq−1(t)E
[∣∣∣V (q)

t

∣∣∣ ∣∣∣Ht − V
(q)
t

∣∣∣κ−1
]
.

Using Hölder’s inequality and moments estimates (Proposition 4.2), we have

g′(t) ≤ −Cγg(t)
κ−1+γ

κ + C |q|φ(αq−1)(1− 1
α
)(t)g(t)

κ−1
κ , g(0) = 0.

Recall that α > 1 and αq < 1, so φ(αq−1)(1− 1
α
)(t) −→

t→+∞
0, therefore the conclusion follows from

Lemma A.7.
Besides, for all t ≥ εt0, E

[∣∣∣Hφ−1(ε−1t) − V
(q)
φ−1(ε−1t)

∣∣∣κ] = g
(
φ−1(ε−1t)

)
−→
ε→0

0.

Step 3. Pick (s, t) ∈ [εt0,+∞)2. Similarly, as in Gradinaru and Luirard (2023), one can prove that
the solution H to (5.14) satisfies(

Hφ−1(ε−1s),Hφ−1(ε−1t)

)
=⇒
ε→0

ΠF ⊗ΠF . (5.16)

□

Appendix A. Some auxiliary results

We collect in this section several auxiliary results. To begin with, let us state a Grönwall-type
lemma which has been used to get moments estimates. The proof can be found in Gradinaru and
Luirard (2023).

Lemma A.1 (Grönwall-type lemma). Fix r ∈ [0, 1) and t0 ∈ R. Assume that g is a non-negative
real-valued function, b is a positive function and a is a differentiable real-valued function. Moreover,
suppose that the function bgr is a continuous function.
Assume that

∀t ≥ t0, g(t) ≤ a(t) +

∫ t

t0

b(s)g(s)r ds. (A.1)
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Then, setting Cr := 2
1

1−r ,

∀t ≥ t0, g(t) ≤ Cr

[
a(t) +

(
(1− r)

∫ t

t0

b(s) ds

) 1
1−r

]
.

Remark A.2. Call G the right-hand side of (A.1). Even if g is not continuous, notice that the
function G remains continuous and satisfies (A.1) (since b is positive and g ≤ G). So, one can apply
the lemma to G and thereafter use the inequality g ≤ G.

We state now a technical lemma concerning the convergence in the spaces C and D. We recall
that the spaces of continuous functions C and of càdlàg functions were endowed with metrics du
and ds respectively given by (2.3) and (2.4).

Lemma A.3.
(i) The uniform distance is finer than the Skorokhod one i.e. ds ≤ du.
(ii) Let (fε)ε≥0, (hε)ε≥0 be two sequences of functions of D. If for all n ≥ 1,

lim
ε→0

sup
t∈[ 1

n
,n]

|fε(t)− hε(t)| = 0

in probability, then lim
ε→0

d(fε, hε) = 0 in probability, where d ∈ {du, ds}.

Proof : Let f, g be two càdlàg functions. The first point is true by using the definition of the metrics
ds and du and by noting that

inf
λ∈Λ

{
sup
s ̸=t

∣∣∣∣log λ(t)− λ(s)

t− s

∣∣∣∣ ∨ sup
t≥ 1

n

|kn(t) (f(λ(t)− g(t))|

}
≤ sup

t∈[ 1
n+1

,n+1]

|f(t)− g(t)| .

Let us now prove the second part. Assume that for all n ≥ 1, sup[ 1
n
,n] |fε − hε|

P−→
ε→0

0, as ε→ 0. Fix

η > 0 and choose N > 0 such that
+∞∑

n=N+1

1
2n ≤ η

2 . Then,

ds (fε, hε) ≤ du(fε, hε) ≤
η

2
+

N∑
n=1

1

2n
sup
[ 1
n
,n]

|fε − hε| .

By setting η′ := η
2

(
+∞∑
n=1

1
2n

)−1

, it follows that

P (d (fε, hε) > η) ≤
N∑

n=1

P
(
sup
[ 1
n
,n]

|fε − hε| > η′
)

−→
ε→0

0.

□

For the sake of completeness, we state and improve the result of Problem 4.12 p. 64 in Karatzas
and Shreve (1991), on a general metric space.

Lemma A.4. Let S be a Polish metric space endowed with a Borel σ-field S. Suppose that (Pn)n≥1

is a sequence of probability measures on (S,S) which converges weakly to a probability measure P .
Suppose, in addition, that the sequence (fn)n≥1 of real-valued continuous functions on S is uniformly
bounded and converges to a continuous function f , the convergence being uniform on compact subsets
of S. Then, we have

lim
n→+∞

∫
S
fn(ω) dPn(ω) =

∫
S
f(ω) dP (ω).
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Proof : Notice that, since (Pn)n≥1 converges weakly thus, it is tight. So, for any ε > 0, there exists
a compact subset K of S such that for any n ≥ 1, Pn(K) ≥ 1− ε.
Let us decompose ∫

S
fn dPn −

∫
S
f dP = A+B + C +D,

where

A :=

∫
S\K

fn dPn, B :=

∫
K
(fn − f) dPn, C :=

∫
S\K

f dPn, and D :=

∫
S
f dPn −

∫
S
f dP.

Let M be a bound for the sequence (fn). Thus, by the choice of K,

|A| ≤MPn(S \K) ≤Mε.

The third integral can be treated analogously. Besides, since the sequence (fn) converges uniformly
on K to f , there exists nε such that for all n ≥ nε, supK |fn − f | ≤ ε. Thereby, we get

|B| ≤ εPn(K).

The last integral is smaller than ε for n large enough, since Pn converges weakly to P , and this
concludes the proof. □

Remark A.5. Lemma A.4 could be applied with S = C([0,+∞)) or D([0,+∞)). However, the result
for S = C([0,+∞)) is already contained in Problem 4.12 p. 64 in Karatzas and Shreve (1991).

Lemma A.6. Consider b a measurable function such that the following time-homogeneous SDE
driven by an α-stable process

dYt = dLt + b(Yt) dt with Y0 = y, (A.2)

has a pathwise unique strong solution. Denote by (Y y
t )t≥0 this solution. Then (Yt)t≥0 is a Markov

process.
Namely, for any d ≥ 1, 0 ≤ t1 ≤ · · · ≤ td, u ≥ 0 and any bounded measurable function ϕ : Rd → R,

E
[
ϕ(Y y

t1+u, · · · , Y
y
td+u)

∣∣∣Fu

]
= E

[
ϕ(Y z

t1 , · · · , Y
z
td
)
]
z=Y y

u
. (A.3)

Proof : For simplicity, we give a proof for d = 2, the general case being similar. Call (Y s,y
t ) the

solution to dYt = dLt + b(Yt) dt, satisfying Ys = y. Let ϕ : R2 → R be a bounded measurable
function. Pick u ≥ 0 and consider, for y ∈ R and u ≤ s ≤ t the function

G(y, s, t, u) := (Y u,y
s , Y u,y

t ) =

(
y + Ls − Lu +

∫ s

u
b(Yh) dh, y + Lt − Lu +

∫ t

u
b(Yh) dh

)
.

Pick 0 ≤ s ≤ t. Using pathwise uniqueness,
(
Y y
s+u, Y

y
t+u

)
= G (Y y

u , s+ u, t+ u, u). Moreover, by
time-homogeneity of the SDE, (Y u,y

s+u)s≥0 and (Y y
s )s≥0 have the same distribution. As a consequence,

G(y, s+ u, t+ u, u) = G(y, s, t, 0). Besides, by Markov property of Lévy processes, the function G
is independent of Fu. Hence,

E
[
ϕ(Y y

s+u, Y
y
t+u)

∣∣∣Fu

]
= E

[
ϕ ◦G (Y y

u , s+ u, t+ u, u)
∣∣∣Fu

]
= E

[
ϕ ◦G (z, s, t, 0)

∣∣∣Fu

]
z=Y y

u

= E [ϕ ◦G (z, s, t, 0)]z=Y y
u
= E [ϕ(Y z

s , Y
z
t )]z=Y y

u

This concludes the proof. □

Our last technical result is the following.

Lemma A.7. Let b be a function such that limt→+∞ b(t) = 0. Pick a > 0, γ ≥ 1 and κ > 1. Let g
be a continuously differentiable positive function satisfying

g′(t) ≤ −ag(t)
κ+γ−1

κ + b(t)g(t)
κ−1
κ , t ≥ 0. (A.4)

Then, g(t) −→
t→+∞

0.
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Proof : Pick ε > 0. Let t1 be a positive real such that for all t ≥ t1, |b(t)| ≤ a
2ε

γ
κ .

Step 1. We first show that there exists t∗ ≥ t1, such that g(t∗) ≤ ε. Assume, by way of contradic-
tion, that it is not the case. Thus, one can consider the function y = g

1
κ , which satisfies

κy′(t) ≤ −ay(t)γ + b(t), t ≥ t1. (A.5)

For all t ≥ t1, we have
κy′(t) ≤ −aε

γ
κ +

a

2
ε

γ
κ ≤ −a

2
ε

γ
κ .

As a consequence, for all t ≥ t1,

κε
1
κ < κy(t) ≤ κy(t1)− (t− t1)

a

2
ε

γ
κ −→

t→+∞
−∞.

This is a contradiction.
Step 2. We show that for all t ≥ t∗, g(t) ≤ ε.
Define T = inf{t ≥ t∗, g(t) > ε}. By continuity of the function g, we have g(T ) = ε. Hence,

g′(T ) ≤ −aε
κ+γ−1

κ +
a

2
ε

γ
κ ε

κ−1
κ < −a

2
ε

κ+γ−1
κ < 0.

Therefore, there exists δ0 > 0, such that for all 0 < δ ≤ δ0, g(T + δ) < g(T ) = ε. This is a
contradiction with the definition of T .

□

Acknowledgements The authors would like to thank Nicolas Fournier and Thomas Cavallazzi
for helpful discussions about moments estimates. We would also like to thank the Referees for their
careful reading of the manuscript and useful advice.

References

Applebaum, D. Lévy processes and stochastic calculus, volume 116 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, second edition (2009). ISBN 978-0-521-
73865-1. MR2512800.

Applebaum, D. and Siakalli, M. Asymptotic stability of stochastic differential equations driven by
Lévy noise. J. Appl. Probab., 46 (4), 1116–1129 (2009). MR2582710.

Appleby, J. A. D. and Wu, H. Solutions of stochastic differential equations obeying the law of
the iterated logarithm, with applications to financial markets. Electron. J. Probab., 14, 912–959
(2009). MR2497457.

Bass, R. F. Stochastic differential equations driven by symmetric stable processes. In Séminaire
de Probabilités, XXXVI, volume 1801 of Lecture Notes in Math., pp. 302–313. Springer, Berlin
(2003). MR1971592.

Billingsley, P. Convergence of probability measures. Wiley Series in Probability and Statistics:
Probability and Statistics. John Wiley & Sons, Inc., New York, second edition (1999). ISBN
0-471-19745-9. MR1700749.

Chaudru de Raynal, P.-E. and Menozzi, S. On multidimensional stable-driven stochastic differential
equations with Besov drift. Electron. J. Probab., 27, Paper No. 163, 52 (2022). MR4525442.

Chen, Z.-Q., Song, R., and Zhang, X. Stochastic flows for Lévy processes with Hölder drifts. Rev.
Mat. Iberoam., 34 (4), 1755–1788 (2018). MR3896248.

Chen, Z.-Q., Zhang, X., and Zhao, G. Supercritical SDEs driven by multiplicative stable-like Lévy
processes. Trans. Amer. Math. Soc., 374 (11), 7621–7655 (2021). MR4328678.

Deng, C.-S. and Schilling, R. L. On shift Harnack inequalities for subordinate semigroups and
moment estimates for Lévy processes. Stochastic Process. Appl., 125 (10), 3851–3878 (2015).
MR3373306.

http://www.ams.org/mathscinet-getitem?mr=MR2512800
http://www.ams.org/mathscinet-getitem?mr=MR2582710
http://www.ams.org/mathscinet-getitem?mr=MR2497457
http://www.ams.org/mathscinet-getitem?mr=MR1971592
http://www.ams.org/mathscinet-getitem?mr=MR1700749
http://www.ams.org/mathscinet-getitem?mr=MR4525442
http://www.ams.org/mathscinet-getitem?mr=MR3896248
http://www.ams.org/mathscinet-getitem?mr=MR4328678
http://www.ams.org/mathscinet-getitem?mr=MR3373306


Kinetic time-inhomogeneous Lévy-driven model 835

Ditlevsen, P. D. Observation of α-stable noise induced millennial climate changes from an ice-core
record. Geophys. Res. Lett., 26 (10), 1441–1444 (1999). DOI: 10.1029/1999GL900252.

Dong, Y. Jump stochastic differential equations with non-Lipschitz and superlinearly growing co-
efficients. Stochastics, 90 (5), 782–806 (2018). MR3810581.

Fournier, N. and Tardif, C. One dimensional critical kinetic Fokker-Planck equations, Bessel and
stable processes. Comm. Math. Phys., 381 (1), 143–173 (2021). MR4207442.

Gradinaru, M. and Luirard, E. Asymptotic behavior for a time-inhomogeneous Kolmogorov type
diffusion. ESAIM Probab. Stat., 27, 1–18 (2023). MR4529443.

Gradinaru, M. and Offret, Y. Existence and asymptotic behaviour of some time-inhomogeneous
diffusions. Ann. Inst. Henri Poincaré Probab. Stat., 49 (1), 182–207 (2013). MR3060153.

Ikeda, N. and Watanabe, S. Stochastic differential equations and diffusion processes, volume 24
of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York;
Kodansha, Ltd., Tokyo (1981). ISBN 0-444-86172-6. MR637061.

Karatzas, I. and Shreve, S. E. Brownian motion and stochastic calculus, volume 113 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition (1991). ISBN 0-387-97655-8.
MR1121940.

Kühn, F. Existence and estimates of moments for Lévy-type processes. Stochastic Process. Appl.,
127 (3), 1018–1041 (2017). MR3605719.

Kulik, A. M. Exponential ergodicity of the solutions to SDE’s with a jump noise. Stochastic Process.
Appl., 119 (2), 602–632 (2009). MR2494006.

Kurenok, V. P. Stochastic equations with time-dependent drift driven by Levy processes. J. Theoret.
Probab., 20 (4), 859–869 (2007). MR2359059.

Luschgy, H. and Pagès, G. Moment estimates for Lévy processes. Electron. Commun. Probab., 13,
422–434 (2008). MR2430710.

Pilipenko, A. Y. On strong existence and continuous dependence for solutions of one-dimensional
stochastic equations with additive Lévy noise. Theory Stoch. Process., 18 (2), 77–82 (2012).
MR3124776.

Priola, E., Shirikyan, A., Xu, L., and Zabczyk, J. Exponential ergodicity and regularity for equations
with Lévy noise. Stochastic Process. Appl., 122 (1), 106–133 (2012). MR2860444.

Protter, P. E. Stochastic integration and differential equations, volume 21 of Stochastic Modelling
and Applied Probability. Springer-Verlag, Berlin (2005). ISBN 3-540-00313-4. MR2273672.

Reker, J. Short-time behavior of solutions to Lévy-driven stochastic differential equations. J. Appl.
Probab., 60 (3), 765–780 (2023). MR4624041.

Samorodnitsky, G. and Taqqu, M. S. Stable non-Gaussian random processes. Stochastic models with
infinite variance. Stochastic Modeling. Chapman & Hall, New York (1994). ISBN 0-412-05171-0.
MR1280932.

Situ, R. Theory of stochastic differential equations with jumps and applications. Mathematical
and Analytical Techniques with Applications to Engineering. Springer, New York (2005). ISBN
978-0387-25083-0; 0-387-25083-2. MR2160585.

Zhang, X. Stochastic differential equations with Sobolev drifts and driven by α-stable processes.
Ann. Inst. Henri Poincaré Probab. Stat., 49 (4), 1057–1079 (2013). MR3127913.

http://dx.doi.org/10.1029/1999GL900252
http://www.ams.org/mathscinet-getitem?mr=MR3810581
http://www.ams.org/mathscinet-getitem?mr=MR4207442
http://www.ams.org/mathscinet-getitem?mr=MR4529443
http://www.ams.org/mathscinet-getitem?mr=MR3060153
http://www.ams.org/mathscinet-getitem?mr=MR637061
http://www.ams.org/mathscinet-getitem?mr=MR1121940
http://www.ams.org/mathscinet-getitem?mr=MR3605719
http://www.ams.org/mathscinet-getitem?mr=MR2494006
http://www.ams.org/mathscinet-getitem?mr=MR2359059
http://www.ams.org/mathscinet-getitem?mr=MR2430710
http://www.ams.org/mathscinet-getitem?mr=MR3124776
http://www.ams.org/mathscinet-getitem?mr=MR2860444
http://www.ams.org/mathscinet-getitem?mr=MR2273672
http://www.ams.org/mathscinet-getitem?mr=MR4624041
http://www.ams.org/mathscinet-getitem?mr=MR1280932
http://www.ams.org/mathscinet-getitem?mr=MR2160585
http://www.ams.org/mathscinet-getitem?mr=MR3127913

	1. Introduction
	2. Notations and statements of main results
	3. Existence up to explosion
	4. Moment estimates and non-explosion of the velocity process
	5. Proof of the asymptotic behavior of the solution
	5.1. Asymptotic behavior in the super-critical regime
	5.2. Asymptotic behaviour in the critical regime
	5.3. The velocity process in the sub-critical regime

	Appendix A. Some auxiliary results
	References

