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1 Introduction

During the last four decades a lot of interest has been shown in the study of diffusions in random
environment. A well known model is the dynamic of a Brownian particle 5 in a potential. It is
often given by the solution of the one-dimensional stochastic differential equation

1
dX; = dB; - SV (Xy)dt,

where V : R — R. Thanks to the regularising property of the Brownian motion one can consider
very general potentials, for example cadlag functions (see [Man68]). In particular, it can be
supposed that the potential is a Brownian path (see [Bro86|), a Lévy path (see [Car97]) or other
random path (Gaussian and/or fractional process ...).

The study of the convergence of sequences of general Markov processes is one of usual ques-
tions. The present paper consider this question in the setting of the preceding model. A usual
way to obtain convergence results is the use of the theory of Feller processes. In this context
there exist two corresponding results of convergence (see, for instance [Kal02|, Theorems 19.25,
p. 385 and 19.27, p. 387, see also [?] §4.8 pp. 225-238 for related results and discussion). How-
ever, on one hand, when one needs to consider unbounded coefficients, technical difficulties could
appear in the framework of Feller processes. On the other hand the cited results of convergence
impose the knowledge of a core of the generator. This could not be the case in some probabilistic
constructions. Detailed overviews on these topics and many other references on the subject can
be found in [SV06], [?], [Jac05], [Kih17].

Our method to tackle these difficulties is to consider the context of the martingale local
problems and of locally Feller processes, introduced in [GH21]. In this general framework we have



already analysed the question of convergence of sequences of locally Feller processes, employing
the setting of the local Skorokhod topology on the space of cadlag processes (see [GH1S]). Several
examples of locally Feller but not Feller processes are given in [GH21|, Remarks 4.11 and 4.12,
pp. 148-149.

In the present paper we add the study of the convergence for processes indexed by a discrete
time parameter towards processes indexed by a continuous time parameter. We obtain the
characterisation of the convergence in terms of convergence of associated operators, by using the
uniform convergence on compact sets, and hence operators with unbounded coefficients could be
considered. Likewise, we do not impose that the limit operator is a generator, but we assume only
the well-posed feature of the associated martingale local problem. Proving that the limit of the
generators is indeed the generator of the limit process can be technically involved, especially in
non-smooth settings and well-posedness allows one to bypass this step. Indeed, it could be more
easy to verify the well-posed feature (see for instance, [Str75] for Lévy-type processes, [SVOG]
for diffusion processes, [Kurll] for Lévy-driven stochastic differential equations and forward
equations...).

When studying a Brownian particle in a potential, we prove the continuous dependence
of the diffusion with respect to the potential, using our abstract results. We point out that
it can be possible to consider potentials with very few constraints. In particular we consider
diffusions in random potentials as limits of random walks in random mediums, as an application
of an approximation of the diffusion by random walks on Z. An important example is the
convergence of Sinai’s random walk [Sin82] towards the diffusion corresponding to a Brownian
movement in a Poisson potential (recovering Theorem 2 from [Sei00], p. 296), or towards the
diffusion corresponding to a Brownian movement in a Brownian potential, also called Brox’s
diffusion (improving Theorem 1 from [Sei00], p. 295) and, more generally, towards the diffusion
corresponding to a Brownian movement in a Lévy potential.

The considerations on locally Feller processes are also applied to Lévy-type processes in order
to get (or to improve) sharp results of convergence for discrete and continuous time sequences of
processes towards Lévy-type process, in terms of Lévy parameters, but also simulation methods
and Euler schemes (see for instance [Haul§], §4.4).

Let us describe the organisation of the paper. The next section contains notations and
statements from our previous paper [GH21|, which are very useful for an easy reading of the
present paper. In particular, we recall the necessary end sufficient conditions for the existence of
solutions for martingale local problems and also for the convergence of continuous time locally
Feller processes. Our main results are given in Sections 3 and 4. Section 3 is devoted to the study
of sequences of discrete time locally Feller processes, while Section 4 contains its applications to
the diffusions evolving in a potential. The appendix collect the statements of auxiliary results
already proved in [GH2I].

2 DMartingale local problem setting and related results

Let S be a locally compact Polish space. Take A ¢ S, and we will denote by S® > S the one-
point compactification of S, if S is not compact, or the topological sum SU{A}, if S is compact
(so A is an isolated point). We will denote by A € U the fact that a subset A is compactly
embedded in an open subset U C S. If 2 € (S2)®+ we denote the explosion time by

{(z) :==inf{t > 0[{zs}s<t & S}.



The set of exploding cadlag paths is defined by

Vt > €(z), 7= A,
Dioe(S) =<z € (SA)R+ YVt >0, x; = lim, xs, ,
V> 08t {Ts}s<t €S, x4 = limgyy o5 exists

and it is endowed with the local Skorokhod topology which is also Polish (see Theorem 2.4, p.
1187 in [GHIS]). The local Skorokhod topology is weaker than the usual (global) Skorokhod
topology. A sequence (2*)ren in Dioe(S) converges to x for the local Skorokhod topology if and
only if there exists a sequence (A¥);, of increasing homeomorphisms on R satisfying

Vt>0s.t. {25}s<; €S, lim supd(zs,25.) =0 and lim sup |\F —s| = 0.

k—oo s<t k—oo s<t

The local Skorokhod topology does not depend on the arbitrary metric d on S?, but only on the
topology on S (see also Remark 2.6, p. 1199, in [GHIS]).

Denote by C(S) := C(S,R), respectively by C(S2) := C(S2,R), the set of real continuous
functions on S, respectively on S2, and by Co(S) the set of restrictions to S of functions f €
C(S?), with f(A) = 0. We endow the set C(S) with the topology of uniform convergence on
compact sets and Cq(S) with the topology of uniform convergence.

Since our context concerns generators of or martingale problems an operator L from Cy(.5)
to C(S) will be defined as a subset of Cy(S) x C(S). Its domain will be denoted by D(L) :=
{f €Co(S) | 3g € C(9), (f,9) €L}

We proceed by recalling the notion of martingale local problem (not to be confused with
the local martingale problem, see Definition 3.2, p. 135 in [GH21]). The canonical stochastic
process on Dy, (S) will be always denoted by X. We endow Djc(S) with the Borel o-algebra
F :=0(Xs, 0 < s < o00) and the filtration F; := 0(X,, 0 < s <t). The set M(L) of solutions
of the martingale local problem associated to L is the set of probabilities P € P (D}oc(5)) such
that for all (f,g) € L and open subset U € S:

tnrY
f(Xinrv) — / 9(X;)ds is a P-martingale
0

with respect to the filtration (F;); or, equivalent, to the filtration (F;, );. Here 7V is the stopping
time given by

Vi=inf{t>0| X, ¢gUor X,_ ¢U}. (2.1)
Theorem 3.10, p. 139 in [GH21| provides a result of existence of solutions for the martingale

local problem. We recall its statement since it will be one of our main tools in Section 4:

Theorem 2.1. Let L be a linear subspace of Co(S) x C(S) such that its domain D(L) is dense
in Co(S). Then, there is equivalence between

i) existence of a solution for the martingale local problem: for any a € S there exists an
element P € M(L) such that P(Xo = a) = 1;

i1) L satisfies the positive mazimum principle: for all (f,g) € L and ag € S, if f(ag) =
sup,cg f(a) > 0 then g(ag) < 0.

The martingale local problem is well-posed if there is existence and uniqueness of the solution,
which means that for any a € S there exists a unique element P € M(L) such that P(X, =
a) = 1.



A family of probabilities (Py)a € P(Dioc(S))” is called locally Feller if there exists L C
Co(S) x C(S) such that D(L) is dense in Cy(S) and

Ya e S: PeM(L) and P(Xy=a

)
(see also Definition 4.5, p. 144 in [GH21]). The (Co x C)-generator of a locally Feller family
(Py)a € P(Dioc(S)) is the set of functions (f, g) € Co(S) x C(S) such that, for any a € S and
any open subset U € S,

=1<=P=P,.

tATY
f(Xprv) — / 9(Xs)ds is a P,-martingale.
0

It can be noticed (see Remark 4.6(ii), p. 144 in [GH21|) that if h € C(S,R%) and if L is the
Coy x C-generator of a locally Feller family, then

hL :={(f,hg)|(f,g) € L} is the Cy x C-generator of a locally Feller family. (2.2)

A family of probability measures associated to a Feller semi-group constitutes a natural
example of locally Feller family (see Theorem 4.10, p. 147 in [GH2I]). We recall that a Feller
semi-group (7%)¢cr, is a strongly continuous semi-group of positive linear contractions on Cq(.5).
Its (Co x Cp)-generator is the set Lo of (f,g) € Co(S) x Co(S) such that, for all a € S

lim 1(T,gf(a) — f(a)) = g(a).

t—0 t

It can be proved that the martingale associated to Ly admits a unique solution (consequence of
Proposition 4.2, p. 142 in [GH21]), and if L denotes the Cy(.5) x C(S)-generator of the associated
Feller family, then taking the closure in Cy(S) x C(S), we have

Lo=LnN (Co(S) X CO(S)) and L= fo (23)

(see Proposition 4.16, p. 151 in [GH21]).

The following result of convergence is essential for our further development in Section 4, and
it was stated in Theorem 4.17, p. 151 in [GH21]|. As was already pointed out in the introduction,
it can be considered as an improvement with respect to the classical result of convergence (see for
instance Theorem 19.25, p. 385, in [Kal02], see also [?], §4.8, pp. 225-238). To be more precise,
one does not need to know (and in is not known) that the limit the sequence of generators is the
generator of the limit family, but only the fact that a martingale local problem is well-posed.

Theorem 2.2 (Convergence of locally Feller family). Forn € NU{oo}, let (P"), € P(D;,c(S))°
be a locally Feller family and let L, be a subset of Co(S) x C(S). Suppose that for any n € N,
L., is the generator of (P1),, suppose also that D(Ls) is dense in Co(S) and

VYa € S : PeM(Ly) and P(Xg=a)=1< P =P°.
Then we have equivalence between:

a) the mapping
(NU{oo}) x P(S2) = P (Doe(9))
(n, p) — Py
is weakly continuous for the local Skorokhod topology, where P, := [Pqu(da) and Pa(Xo =
A)=1;

b) for any a,,a € S such that a, — a, P} converges weakly for the local Skorokhod topology
to P2, as n — oo;

a ’

¢) for any f € D(Lo), for each n 3f, € D(Ly,,) such that f, % fy Lnfn _% Loof.



3 Convergence of discrete time locally Feller families

We start our study by introducing a discrete time version of the notion of locally Feller family.

Definition 3.1 (Discrete time locally Feller family). Denote by Y the discrete time canonical

process on (S2)N and endow (S2)N with the canonical o-algebra. A family (P,), € P ((SA)N)S
is said to be a discrete time locally Feller family if, with the convention Pa({A}Y) = 1, for
each a, the canonical process Y under P, is an homogeneous Markov chain starting at a and
whose transition T'f(a) = Eq(f(Y1)) satisfies Tf € C(S) for all f € Co(S). We also denote, for
p € P(SA), P, = [P,u(da).

The following theorem contains a result of convergence of a discrete time locally Feller family
towards a continuous time locally Feller family (see also Theorem 1X.3.39, p. 551 from [?], in
the semi-martingales setting). The main difference with respect to Theorem 19.28, p. 387, in
[Kal02], is that one does not need to know the generator of the limit family, but only the fact that
a martingale local problem is well-posed (hence from this point of view it could be considered
as a slightly improvement). In the following |r| will denote the integer part of a positive real
number 7.

Theorem 3.2 (Convergence). Let L C Co(S) x C(S) be an operator with D(L) a dense subset
of Co(S), such that the martingale local problem associated to L is well-posed. Let (Pg), €
P(Dyoc(S))? be the associated continuous time locally Feller family. For each n € N we introduce
(P™), € P((S*)N) a discrete time locally Feller family having its transition operator T,. We
denote the operator Ly, := (T,, —id)/e,, where (e,)n s a sequence of positive numbers converging
to 0, as n — oo. There is equivalence between:

a) for any pin, p € P(S®) such that p, — p weakly, Lpn ((Yitje,))t=0) PDioe(S)) P,
n—00 K n—00
b) for any an,a € S such that a,, — a, Lpn ((YLt/enJ)@o) P(DLLC()S)) P.;
n—00 an ' n—00

c) for any f € D(L), there ewists (fu)n € Co(S)" such that f, COT(SQ fs Lnfn C_(>—>S) Lf.

Proof. Set Q:= (S®)N x RY and G := B(S2)®N @ B(R4)®". For any p € P(S?) and n € N, we
denote
n ._ pn N
Pl =P @ £(1)%7, (3.1)

where £(1) is the exponential distribution with expectation 1. We also set

Y, : Q - S and E, : Q - Ry (3.2)
((yr)ks (S)K) = ¥n ((yr)ks (SK)K) = Sns ’
n+1
and introduce the standard Poisson process, N; := inf {n eN | Z by > t}, t>0.
k=1
Step 1) For each n € N we set
Ztn = YNt/an . (33)
Consider the following slightly modified assertions concerning the processes Z™:
a') for any p,,p € P(S?) such that pu, — pu, Ln (Z7) P (Proc(S)) P,;
Hn n—00



P(Dioc(5))

n—oo

V') for any an,a € S such that a, —a, Zpp (Z") P,.

We claim that a') < V') < ¢).

We will prove that for all u € P(S?), Lon(Z7) € M(Ly). Setting G' := 0(Nyse,,, 23, s < 1), it
is enough to prove that, for each f € Cy(S) and 0 < s <,

E; {f(Z?) -1z~ [ Lz gz} =0 (3.4

This fact follows from the properties of the multivariate point process. For the sake of com-
pleteness we give here some details. Let us introduce the (G});>¢ -stopping times 7} := inf {u >
0| Nyyse, = k} Then, for all k € N, we split

]EZ [f( tn/\(Tngl\/s)) - f(Ztn/\(T,C“Vs)) ‘ g?/\(ﬂ?\/s)] =A + A27 (35)
where
A =1 s<rr, yEL [(f(yk+1) = fYe) Ly, <y ‘ gtnA(T,gvS)] ,
Az = Tsrp acrp, ER [(F(Vi1) = FOR) D ((rp, , —rpyvs<t—rp)vs) ‘ Gllays] -

By using the definition of the transition operator T, and the fact that (N,/.,). is a Poisson
process, we get for all k£ € N,

A1 = g srpy (T f (V) = F(V) (1= e val/en),
Ay = Lisrpscrpyy Enf (Bl Jon (1 — e 078 V/20 ), (3.6)

Similarly, we also can split, for all £ € N,

N tA(T 4 Vs) .
E; / L,f(Z})du
tA(T]'Vs)

ng(TgvS)} = By + By, (3.7)
with

Bl = ]l{t>7',z",s<'r,?+1}Lnf(Z?,?\/s)EZ [t A Tl?Jrl - Tl? Vs ‘ gtn/\('r]?\/s)] ’

By i= Ljssrp scri sy Lnf (2o JEL (6= TV 8) A (ry =72V s) | Gss]

Once again, since the distribution of 7', | — 7" is exponential we get, for all k € N,
[ee]
By = Lsrpscnpoy Enf(Zins) [ (1/20)e /(¢ = 7 v s) Audu
0
By = Lpsrp s<rp, y Lnf (Zgg)envs)en (1 - e*(t*“?vs)/e") (3.8)

Gathering (3.6)) in (3.5)), respectively (3.8) in (3.7)) and then subtracting (3.7 from (3.5)), we get,
for all k € N,

. . . tA (T, Vs) .
Eu f( t/\(‘riﬁrl\/s)) - f(Zt/\(‘r;'?\/s)) - /t Lnf(Zu )du

A(TVS)

gZL/\(T,';‘\/s):| =0. (39)




Recalling the definition of the stopping times 7' and by summing on k£ € N, we also get

o]

n n n n tA(T]zL+1VS) n
= ZEM E; f(Zt/\(T,yﬂvS)) - f(Zt/\(r,va)) - /t Lnf(Z,)du

k>0 ATV s)

E? {f(zt") s~ [ Lz

al

By using (3.9) we end up with (3.4). As a consequence, for each n € N, Zpn(Z") € M(Ly).
Invoking Theorem [2.2] applied to L,, and L, our claim a’) < ') < ¢) is achieved.

gtn/\(’r,y Vs):|

Step 2. To carry out the proof we need to establish the following result.

Lemma 3.3. For n € N, let (Q",G",P") be a probability space, let Z"™ : Q™ — Dy,.(S) and
™. Q" —» C(R4,Ry) be a increasing random bijection. Define Z™ := Z™ o I™. If, for each
e>0andteRy,

P"(sup|FZ —s| > 8) — 0,
s<t n—oo

then for any P € P(D,c(S)),

Lon(Z") — P & L (") — P,

n—oo n— oo

where the limits hold for the weak topology associated to the local Skorokhod topology.

We postpone the proof of this result and we finish the proof of the theorem. Recalling (3.1))
and (3.2]), and setting for all t > 0 and n € N,

[t/en]
T} i=cn [ > Ex+(t/en— [t/en))Blje, )1 | 5 (3.10)
k=1

it is readily seen, by (3.3), that for any ¢ > 0 and n € N, Y|4/, | = 2. Clearly the process I'"
have the same law under all P,. By showing that

vVt >0, Ve >0, P} <sup % —s| > 5) — 0, (3.11)
s<t

n—0o0

and employing the latter lemma, we can conclude that a) < a’) and b < V'), so we ends up with
a) & b) & o).

Step 3. It remains to verify our claim . This is quite classical but again for the sake of
completeness we sketch its proof. Denote by [r] the smallest integer larger or equal than the
positive real number r. Fix ¢t > 0, ¢ > 0, n € N and u € ’P(SA). Since I'" is a continuous
piecewise affine function, we have

k
sup {F? —s| < sup {Fzgn — ken‘ = sup ’6n ZEi — ken’ =&, sup ’Mk‘
s<t kEN keN Py keN
k<[t/en] k<[t/en] k<[t/en]



with My = Zle E; — k. Owing again (3.1)) and (3.2), we see that the discrete martingale
(My,), satisfies Ej}[M}] = KE[(E1 — 1)?] = k. Hence, applying Markov’s and maximal Doob’s
inequalities, we get

2
5
PZ(Sgp\FZ —s| > s) < PZ(en sup |My| > 5) < E—ZEZ { sup M,f}
s<t

k<[t/eu] k<[t/ea]
e} o [y r2 Alt/enler _ 4t +en)en
< B [MFy ) = < :

Our claim (3.11]) is verified and the proof of Theorem is complete except for Lemma O
Lemma [3.3] is obtained as a consequence of a general result stated and proved below:

Lemma 3.4. Let E be a Polish topological space, for n € N, let (Q",G™,P™) be a probability
space and consider random variables Z™, Z™ : Q" — E. Suppose that for each compact subset
K C E and each open subset U C E x E containing the diagonal {(z,z)|z € E},

P" (2" e K, (2", Z")¢U) — 0. (3.12)
n—oo
Then, for any P € P(E),
Lon(Z") —> P implies Lo (Z7) — P, (3.13)

where the limits hold for the weak topology on P(E).

Proof of Lemma[34 Suppose that % (Z™) — P, so for any bounded continuous function
n—oo

f:+ E—=R Ef(Z™)] — | fdP. E being a Polish space, the sequence (Zpn(Z")), is tight.

Pick an arbitrary € > 0 and let K be a compact subset of E such that

VneN, PY(Z"¢K)<e. (3.14)
By applied to K and U := {(2,2) | |f(2) — f(2)| < €}, we obtain
P (2" € K, |f(Z") - f(Z2")] > &) — 0.

n—oo

We split successively
B2 - [ 1ap| < [Erzn) - [ rap| 4|12 - pizn|
< B2 - [ 0P|+ EP[|F(Z) = HE L gncse s simze)]
FE"[|F(Z") = FZ) Y g p@rsiami<ey) +E"|[FE) = F(Z)|Lizngry |

Hence, by using (3.14), we endup with

B"(7(2) - [ sap|
< [Elr(zm) - [ $aP|+ 215|P (27 € K. 152" - (2] 2 €) + 21+ 201]).

Letting successively n — oo and € — 0, we conclude that % (Z2") — P. O

n—oo



Proof of Lemma[3.3 We denote by A the space of increasing bijections A from R, to R . For
t € Ry, we set ||\ —id||; := sup,<,; |[As — s|. Since

VAEA VEER,, Ve>0, |A—id|pe <e= ||IA"1—id||; <e,
the hypotheses of Lemma are symmetric with respect to Z and A , so it suffices to prove
only one implication. Suppose Zp-(Z") — P and we prove, by applying Lemma that
n—roo

Fon(Z™) — P. Let K be a compact subset of Djo(S) and U be an open subset of Dyge(S) x
n—oo

Dioc(S) containing the diagonal {(z, z) |z € Dioc(S)}. It will be sufficient to prove the following
assertion N
JG>0, Ie>0,Vze K, VA€A, |[A—-idli<e=(z,20))€cU. (3.15)

Indeed, if we pick ¢ and € given by (3.15]), then

P (2" €K, (2",2") ¢ U) <P (" —id]¢ 2 &) — 0,

and we employ Lemma to conclude that L (Z") — P as desired.
n— oo

To verify (3.15) we assume that it is false, so we can find two sequences (z"), € K and
(A"),, € AN such that, for all n € N, (2",2" 0 A") € U and for all t > 0, lim |\, —id||; — 0.
n—oo

By compactness of K, possibly by taking a subsequence, there exists z € K such that 2" — z,
as n — o0o. It is then straightforward to obtain

UF(z",2"0 ") — (2,2) € U.

n—oo

This is a contradiction with the fact that U is open, so (3.15) is verified. O

4 Convergence towards diffusions evolving in a potential

Let us recall that LL (R) denotes the space of locally integrable functions, and a continuous
real function f is called locally absolutely continuous if its distributional derivative f’ belongs

to L{ .(R). We introduce the set of potentials
Vo= {V : R — R measurable | Ve L%OC(R)} .

It is straightforward to prove that there exists a unique Polish topology on ¥ such that a sequence
(Vi)n in ¥ converges to V € ¥ if and only if

M
VM e Ry, lim }ev(“) - ev"(“)’ v ’e_v(a) —e V(@ |da =0.
M

n—oo J_

Notation 4.1. For a potential V € ¥, we introduce the operator

1
_lvd vd

LV = 4.1
2 dae da (4.1)

as the set of couples (f,g) € Co(R)x C(R) such that f and e~V f" are locally absolutely continuous
and g = 3e¥(e”V f')".



Remark 4.2. Let us notice that it is a particular case of the operator DmD;' described in
[Man68]|, pp. 21-22 (see also [?], [?] for general study of one-dimensional diffusion processes).
Heuristically, the solutions of the martingale local problem associated to LY are solutions of the
stochastic differential equation

1
dX; =dg; — §V'(Xt)dt,
where [ is a standard Brownian motion. O

We can state now the main results of this section. The first theorem contains some properties
of the operator LY and will be obtained as an application of Theorems and (or Theorems
3.10 and 4.17 in [GH21]).

Theorem 4.3 (Diffusions in a potential).
1. For any potential V € ¥, the operator LV is the generator of a locally Feller family.

2. For any sequence of potentials (V,,)n in ¥ converging to V. € ¥ for the topology of ¥,
the sequence of operators LY~ converges to LV, in the sense of the third statement of the
convergence Theorem[2.3

Remark 4.4. At this level it is important to notice that Theorem 1, p. 643-644, in [?] contains
a convergence result for one-dimensional diffusion processes in terms of pointwise convergence of
scale functions and vague convergence of speed measures. Hence the result of second part of the
previous theorem can be also obtained by using the result of Stone’s theorem. The proof which
we provide below can be seen as an illustration of application of our general Theorem [2:2| for this
example of one-dimensional generator. O

The second theorem gives an approximation result of a diffusion in a potential by using a sequence
of random walks. Its proof will be based on the result Theorem in Section 3.

en > 0 be. For all n € N, in accordance with Definition (3.1} let (P})rez € P(ZN)? be the unique
discrete time locally Feller family such that

Theorem 4.5 (Approximation by random walks on ZiFor (n,k) e NxZ, let ¢o1, € R and
3.1

n n — — 1
We introduce the sequence of potentials in ¥ given by
la/en] —la/en|—1
Vn(a) = Z (]n,k]laZs,l - Z qn,fk]]-a<07
k=1 k=0

such that V;, converges for the topology of ¥ to a potential of ¥, say V. Let (P,), be the locally
Feller family associated with LV . If €, — 0, then, for any sequence ., € P(Z) such that their
push-forwards with respect to the mappings k — e,k converge to a probability measure p € P(R),

we have
) 7’(IDMLC(}S))

— 00

fpzn ((é‘nYLt/eiJ)tEO PM'
Before proving these two theorems, we state and prove an important consequence concerning
the connection between a random walk and a diffusion in random environment. Several examples

of application of the following result will be then discussed.
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Corollary 4.6. For eachn € N, let (Q",G",P") be a probability space and consider the random
variables
(Gn)k 1 Q" — RZ (Z)): Q" = 7ZN  and &,:Q" — RY .

Suppose that for any n € N and k € N, P"-almost surely,

n n n n 1
P (Zk+1 =27y +1 ’ €ns (Gn,0)eez, (Z; )Ogégk) = e 1
P (Ziy = 23 =1 | en, (ane)eez, (27 )o<e<k) = ez £ 1 etz 41 (4.2)
For any n € N and a € R, introduce a random potential belonging to ¥,
La/an —La/an—l
Wha(a) := Z Inkl{a>c,} — Z In,—k1{a<o} - (4.3)
k=1 k=0

Furthermore, on a probability space (1, G,P), consider two random variables W : Q — ¥ and
Z : Q = Do (R), such that the conditional distribution of Z with respect to W satisfies, P-a.s.

Lo (Z | W) € M(LW). (4.4)

Assuming that €,, converges in distribution to 0, that €, 27 converges in distribution to Zy and
that W,, converges in distribution to W for the topology of V', then (5"Zflt/s§j)t converges in
distribution to Z for the local Skorokhod topology.

Proof of Corollary[{.6 Let F : Dj,.(R) — R be a bounded continuous function. For any a € R,
Ve and e € RY, let P*V:¢ ¢ P(ZN) be the unique probability measure such that P*V:¢ (Y, =
la/e]) = 1, and such that P®""¢-almost surely, for all k € N,

PV (Vi1 =Y +1|Y,....Y) =1 -P*V* (Vo1 =Y, —1|Yp,...,Y3)

eYr eYr+e
(/ ev(a)da) / (/ ev(“)da> .
eYr—e eYr—e

Furthermore, let P*V9 € P(Dy,.(R)) be the unique probability measure belonging to M(L")
and starting from a. Define the bounded mapping G: R x ¥ x R, — R as follows:

G(a,V,e) :=E"V [F (cY|s/e2))] and G(a,V,0):=E“Y[F(X)]. (4.5)

An application of Theorem shows that the mapping G is continuous at every point of
R x ¥ x {0}. Thus,
E™ [G(enZg, Wh,en)] — E[G(Zo, W,0)]. (4.6)

n—oo

Combining the definitions (4.2)) and (4.5)) we can write
B [F(enZaes)) | = B (B [F(en 2z ) ens 280 (anoeez]| = B (GlenZl, Waszn)] . (47)
Gathering (4.6)) on the right hand side of (4.7, and invoking (4.4))-(4.5)), we obtain

E" [F(ean./E%J)} — E[G(Zo, W,0)] = E[E[F(Z)|Zo, W]} —E[F(Z)] .

n— oo

We conclude that (EnZﬁ Je2 J)t converges in distribution to Z. O
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Example 4.7. Let us describe three examples of application.

1) Let (gx)r be an i.i.d sequence of centred real random variables with finite variance o
and suppose that g, = \/€,qx. Suppose also that W is a Brownian motion with variance o2.
Then, by Donsker’s theorem, (W,,) given by converges in distribution to W, so we can
apply Corollary [4.6] to deduce the convergence of a random walk in a random i.i.d. medium
(introduced by Sinai in [Sin82]) to the diffusion corresponding to a Brownian movement in a
Brownian potential (introduced by Brox in [Bro86]). We recover in this manner Theorem 1 from
[Sei00], p. 295, without a technical hypothesis imposing that the common distribution of the
random variables g is compactly supported.

2) Fix this time a deterministic ¢ € R* and also A > 0. Suppose that for each n € N, (g )&
is an i.i.d sequence of random variables such that P"(g,x = ¢) = 1 — P"(gor = 0) = Ae,.
Suppose also that W (a) = ¢Nx,, where N stands for a standard Poisson process on R. Then, it
is classical (see for instance [Car97]), that (W,,) given by converges in distribution to W.
So we can apply Corollary [£.6] to deduce the convergence of Sinai’s random walk to the diffusion
corresponding to a Brownian movement in a Poisson potential. We recover now Theorem 2 from
[Sei00], p. 296.

3) More generally, suppose that for each n € N, (g, 1)« is an i.i.d sequence of random variables.
Likewise, suppose that (W,,) given again by , converges in distribution to some Lévy process
W. We can apply Corollary [£.6]to deduce the convergence of Sinai’s random walk to the diffusion
corresponding to a Brownian movement in a Lévy potential (introduced in [Car97]). O

2

We go further and detail the proofs of Theorems[f.3]and [I.5] To achieve this, we need to state
two more auxiliary results contained in Lemma [I.8 and Remark [£.9] The proof of the lemma is
essentially an application of the second chapter of [Man68| and it will postponed at the end of
this section.

Lemma 4.8. Let V' be a potential in ¥ and let h € C(R,R%) be a function such that, for all

n €N,
n+1 n+2
( / / V@ gp da) < / / V(@)-V(b dbda)
(n+1)
( / / Vg da) ( / / eV(@=Vblgp da)} (4.8)
(n+1) (n+2) (n+1)

Then, with the notations (1)) and ([2.2), the operator (hLY)N (Co(R) x Co(R)) is the (Co x Cq)-
generator of a Feller semi-group.

. 1
inf a) < —
n§|a|§n+l n

Remark 4.9. Consider ay,as € Rand let V : [a; Aag, a1 Vas] — R be a measurable function such
that ¢!Vl € L'([a1 Aag, a; Vas]). For any absolutely continuous function f € C([a; Aag, a1 Vas],R)
such that eV f’ is absolutely continuous and g := %ev(e_v ") is continuous, we have two
elementary but useful representations. Firstly, we can write

floz) = flar) + [ @)
and we deduce

as b
flaz) = flar) + / eV ® (<er'><a1> 2 / eV@g(c)dc) ab, (4.9)

ai ai
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Furthermore, we can also develop

as as b
f(az):f(a1)+(efvf’)(a1)/ eV<b>db+2g(a1)/ / VOV qcdb

ay

a b
+2 / / VOV (g(c) — glay))dedb.  (4.10)

This last equality will be useful to show that some operators satisfy the positive maximum
principle. O

Proof of Theorem[].3 We are now ready to give the proof of the first part of theorem as an
application of Theorem Firstly, by using the result of Lemma and, by quoting (2.2)) and
(2.3)), we deduce that the operator

= %(hLV) M (Co(R) x Co(R))

is the generator of a locally Feller family. Here the closure is taken in Co(R) x C(R), and
it is straightforward that L cLV. Secondly, thanks to the representation , it is also
straightforward to obtain LY = LV. Invoking 7 we can deduce that LY satisfies the
positive maximum principle. Finally, using Theorem we deduce the existence result for the
martingale local problem associated to LY. We conclude that LY = L is the generator of a
locally Feller family.

We proceed with the proof of the second part of Theorem Let us denote by (P?), and
(P2°), the locally Feller families associated, respectively, to L'Y» and LY. Thanks to Theorem
2.2 it is enough to prove that for each sequence of real numbers (a, ), converging to a € R,
P converges weakly to Pg°  for the local Skorokhod topology. According to Lemma in the
Appendix (see also Lemma 4.22 from [GH21], p. 154), for M € N*, there exists hys € C(R, [0, 1])
such that

{hM#O}:(_2M72M)7 {hM:]-}:[_MaM]v
and, for all n € N, the martingale local problems associated to hy; LY and to hps LV are well-
posed. For n € N and M € N*, we denote by (P™M), and (P2>™), the locally Feller families
associated, respectively to hp; L' and hp;LY. For n € N, define the extension of hy;L"":

Ly = {(f, g) € Co(R) x C(R) | g = %hMeV" (e_v"f/)lll(—zM,zM)}7

where f and e~V» f/ are supposed to be locally absolutely continuous only on (—2M,2M). By
it is straightforward to obtain that [//_n\]/\/[ satisfies the positive maximum principle, so using
Theorem m is a linear subspace of the generator of the family (P™™),. We will prove
that the sequence of operators (m) converges to the operator hy LY in the sense of the third
statement of Theorem [2.2] Pick f € D(L) and define f,, € Co(R) by

fla), a¢ (—2M —n=12M +n~1),

fn(a) == a
F0) + / eVn(®) [(e*V #(0) + 2 / VoL f(c)dc}db, a € [~2M,2M),
0 0

with £, affine function on [~2M —n~1, —2M] and on [2M, 2M +n~"]. Hence f, € D(Ly /) and
Lyt fn =hy LY f. We can deduce the upper bound

[fn=fIl<  sup  |fala) = fla)|+ sup |faz) — f(a1)].
a€[—2M,2M] 2M<|a1|,laz|<2M+n"1
OSalaz
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Since f is continuous, the second supremum in the latter equation tends to 0. By using the
expression of f,, and the convergence V,, — V, it is straightforward to deduce from (4.9) that

sup  |fu(a) = f(a)] — 0.
a€[—2M,2M] n—0o0

Hence nhﬁn;o I fn — fll = 0, so according to Theorem
prM _y pM, (4.11)

At this level we need to employ Lemma in the Appendix (see also Proposition 4.15 from
[GH21], p. 153): for all M € N* and n € NU {o0},

Lo (X7 (4.12)

an

(—JM‘JM)) _ fpgn (XT

(—I\/I,]\/I))

Finally, we use a result of localisation of the continuity contained in Lemma|5.3|in the Appendix
(see also Lemma Al from [GH21], p. 159). Putting together (4.11) and (4.12)) and then letting
M — oo we conclude that P} — P2° . O

a
" n—oo had

Proof of Theorem[].5 For n € N, define the continuous function ¢, : R x R — R, given by

a+h b
on(a,h) =2 / / eVn(®=Valo)qe .

For each a € R, it is clear that ¢, (a, -) is strictly increasing on R and ¢, (a,0) = 0. Furthermore,
since V,, is constant on the interval [e,[a/e,],en([a/en] + 1)),

en([a/en]+1) b
enla,2e,) 2 2/ / eVn®)=Valdgedh = &2,
En "a/en“ En "a/en“
Hence, there exists a unique 1 ,,(a) € (0, 2¢,,] such that
Pn(a,P1(a)) = e (4.13)

Using the continuity of ¢, and the compactness of [0, 2e,], it is straightforward to obtain that
11, is continuous. In the same manner, we can prove that, for each a € R, there exists a unique
a2.n(a) € (0,2¢,] such that

Qon(a, 7w2,n(a)) = 51217 (414>

and that v, is continuous. Introduce the continuous function p, : R — (0,1) given by

a a+1b1,n(a)
pn(a) := (/ ev"(b)db) / </ ev"(b)db) . (4.15)
U'*wZ,n(a) a7w2,n(a)

Also define a transition operator T), : Co(R) — Co(R) by
Tof(a) :=pn(a)f(a+¢1n(a)) + (1 = pn(a))fla — van(a)).

According to Definition we can denote by (P"), € P (RN)R the discrete time locally Feller
family with T;, as a transition operator. For any k € Z, V,, is constant on the interval [e,, k, e, (k+
1)) and on the interval [e,,(k — 1),e,k), hence we have

en(k+l) b
@n(anka i5n) = 2/ dedb = 672L

enk enk
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and therefore Y1 ,,(enk) = Y2 n(enk) = €,. Furthermore

k) = f;:(’z 1) eVn(®)dp EneVn(an(k—l)) B 1
pn(En ) . fen((]iv+11) eV (b)db gneVn(EH(kfl)) +€neV"(€"k) - 1 —|—e(In,k~’

hence for any f € Co(R),

T f(enk) := flen(k+1)) + fen(k —1)).

1 +e¢1n,k 1 +e_Qn,k

We deduce that for any p € P(Z) and n € N, Lpn(e,Y) = ﬁg, where i is the push-forward
measure of u with respect to the mapping k — ¢, k.

We shall now use Theorem [3.2| of convergence of discrete time Markov families. If f € D(LY),
we need to prove that there exists a sequence of continuous functions f, € Co(R) Converging
to f such that (T}, f, — fn)/€2 converges to LY f. By the second part of Proposition there
exists a sequence of continuous functions f,, € D(L"") such that fn converges to f and LV~ f,

converges to LY f. Applying (#.10)) to f, and V,, and recalling (4 and , we can write,

foralla e Rand n € N,
a+'¢’1,n(a)
F(a+ din(@) =f(@) + (™ f)(a) / 'O dh 1 2LV, (a)

a+11,n(a) b
+2 / / VOV (LVa g (¢) = LV £, (a))dedb,
a a

and

@ = van(e) =1~ (e P)0) [ T VO 20V f,(a)
a—12 n(a)

a—z n(a) rb
”/ / VOV (LV: £, (¢) = LV fu(a))dedb.

Hence by (4.15)), for all a € R and n € N,

AT TORP

2pp(a)) [oTVrnl@) b V(e
. 82( )‘/ / VOV LY £ (¢) = LV f (@) de b

+M‘/” ‘/’“(“’/ VOV (LVn g, )_Lann(a))dcdb‘

o2
< sup |Lv”fn(a +h)— Lv"fn( ).
|h|<2ey,

It is not difficult to deduce that (T, f, — fn)/e2 converges to LY f. Therefore we can apply
Theorem of convergence of discrete time Markov families, so for any sequence p, € P(Z)
such that [i,, converges to a probability measure u € P(R), we have

P(Dioc(S))

n— oo

P

I

Loy, ((EnYie ) = Zon ((Yiegez))e)

where [1,, are the push-forwards of u, with respect to the mappings k — ¢, k. O
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Proof of Lemma[{.8 As was already announced this proof is essentially an application of the
second chapter of [Man68|. For the sake of completeness we give here few details.

As was quoted in Remark the operator ALY coincides on Co(R) x Co(R) with the operator
DD € C(R) x C(R), on the extended real line R, described in [Man68], pp. 21-22, where

—V(a)
dm(a) := e7ada and  dp(a) := ¢"@da.
h(a) g

Applying our hypothesis(4.8) we can obtain

oo ra n+2 pn+tl
/ / dm(b)dp(a) > lim bup/ / dm(b)dp(a) > limsup 2n = oo,
0 0 n—o0 n4 n— 00
[ee] a n+1
/ / dp(b)dm(a) > lim sup/ / dp(b)dm(a) > limsup2n =
0 0 n—o00 n—00
0 0 —n—1
/ / dm(b)dp(a) > lim sup/ / p(a) > limsup 2n = oo,
n—oo n— oo

/ / dp(b)dm(a >l1msup/ / dp(b)dm(a) > lim sup 2n = oco.
n— 00 —n—1 n— 00

Thus, according to the definition given in [Man68|, pp. 24-25, the boundary points —oo and +o0
are natural. Thanks to Theorem 1 and Remark 2 p. 38 in [Man68|, D,, D, is the generator of a

conservative Feller semi-group on C(R). Furthermore by steps 7 and 8 from [Man68|, pp. 31-32,
+ _ + _ +
DmDp f(—OO) _D’I’TLDp f(+OO) _07 VfED(DmDp )a
so that the operator
(hLY) N Co(R) x Co(R) = Dy, D N Co(R) x Co(R)

is the (Cy x Cp)-generator of a Feller semi-group. O

5 Appendix

We recall below the statements of three results already proved in [GH21] and used in the proof of
Theorem We refer the interested reader to the paper [GH21] for the introductory contexts
and complete proof of each lemma.

Lemma 5.1 (cf. Proposition 4.20 in [GH2I], p. 153). Let L1, Ls C Co(S) x C(S) be such that
D(Ly) = D(L2) is dense in Co(S) and assume that the martingale local problems associated to
Ly and Ly are well-posed. Let P € M(Ly) and P? € M(Ls) be two solutions of these problems
having the same initial distribution and let U C S be an open subset. If for all f € D(Ly),

(Laf)v = (L1f) v, then Lp2 (XTU) = %1 (XTU),

Lemma 5.2 (cf. Lemma 4.22 in [GH21], p. 154). Let U be an open subset of S and L be a subset
of Co(S) x C(S) with D(L) is dense in C(S). Assume that the martingale local problem associated
to L is well-posed. Then there exists a function hg € C(S,Ry) satisfying {ho # 0} = U, such
that for all h € C(S,Ry) with {h # 0} = U and sup,c;(h/ho)(a) < oo, the martingale local
problem associated to hL is well-posed.
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Lemma 5.3 (c¢f. Lemma A.1 in [GH21|, p. 159). Let (Upn)men be an increasing sequence of
open subsets such that S =J,, Un,. For n,m € NU {oo}, let P™™ € P(D,c(S)) be such that

i) for each m € N, P™™ — P weakly for the local Skorokhod topology,

n— oo

ii) for each m € N andn € NU {0}, Lpnm (XTU"") = Dpn.o (XTU"">.

Then P™° — P> weakly for the local Skorokhod topology.

n— 00
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