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1 Introduction
During the last four decades a lot of interest has been shown in the study of diffusions in random
environment. A well known model is the dynamic of a Brownian particle β in a potential. It is
often given by the solution of the one-dimensional stochastic differential equation

dXt = dβt −
1

2
V ′(Xt)dt,

where V : R→ R. Thanks to the regularising property of the Brownian motion one can consider
very general potentials, for example cadlag functions (see [Man68]). In particular, it can be
supposed that the potential is a Brownian path (see [Bro86]), a Lévy path (see [Car97]) or other
random path (Gaussian and/or fractional process ...).

The study of the convergence of sequences of general Markov processes is one of usual ques-
tions. The present paper consider this question in the setting of the preceding model. A usual
way to obtain convergence results is the use of the theory of Feller processes. In this context
there exist two corresponding results of convergence (see, for instance [Kal02], Theorems 19.25,
p. 385 and 19.27, p. 387, see also [?] §4.8 pp. 225-238 for related results and discussion). How-
ever, on one hand, when one needs to consider unbounded coefficients, technical difficulties could
appear in the framework of Feller processes. On the other hand the cited results of convergence
impose the knowledge of a core of the generator. This could not be the case in some probabilistic
constructions. Detailed overviews on these topics and many other references on the subject can
be found in [SV06], [?], [Jac05], [Küh17].

Our method to tackle these difficulties is to consider the context of the martingale local
problems and of locally Feller processes, introduced in [GH21]. In this general framework we have
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already analysed the question of convergence of sequences of locally Feller processes, employing
the setting of the local Skorokhod topology on the space of cadlag processes (see [GH18]). Several
examples of locally Feller but not Feller processes are given in [GH21], Remarks 4.11 and 4.12,
pp. 148-149.

In the present paper we add the study of the convergence for processes indexed by a discrete
time parameter towards processes indexed by a continuous time parameter. We obtain the
characterisation of the convergence in terms of convergence of associated operators, by using the
uniform convergence on compact sets, and hence operators with unbounded coefficients could be
considered. Likewise, we do not impose that the limit operator is a generator, but we assume only
the well-posed feature of the associated martingale local problem. Proving that the limit of the
generators is indeed the generator of the limit process can be technically involved, especially in
non-smooth settings and well-posedness allows one to bypass this step. Indeed, it could be more
easy to verify the well-posed feature (see for instance, [Str75] for Lévy-type processes, [SV06]
for diffusion processes, [Kur11] for Lévy-driven stochastic differential equations and forward
equations...).

When studying a Brownian particle in a potential, we prove the continuous dependence
of the diffusion with respect to the potential, using our abstract results. We point out that
it can be possible to consider potentials with very few constraints. In particular we consider
diffusions in random potentials as limits of random walks in random mediums, as an application
of an approximation of the diffusion by random walks on Z. An important example is the
convergence of Sinai’s random walk [Sin82] towards the diffusion corresponding to a Brownian
movement in a Poisson potential (recovering Theorem 2 from [Sei00], p. 296), or towards the
diffusion corresponding to a Brownian movement in a Brownian potential, also called Brox’s
diffusion (improving Theorem 1 from [Sei00], p. 295) and, more generally, towards the diffusion
corresponding to a Brownian movement in a Lévy potential.

The considerations on locally Feller processes are also applied to Lévy-type processes in order
to get (or to improve) sharp results of convergence for discrete and continuous time sequences of
processes towards Lévy-type process, in terms of Lévy parameters, but also simulation methods
and Euler schemes (see for instance [Hau18], §4.4).

Let us describe the organisation of the paper. The next section contains notations and
statements from our previous paper [GH21], which are very useful for an easy reading of the
present paper. In particular, we recall the necessary end sufficient conditions for the existence of
solutions for martingale local problems and also for the convergence of continuous time locally
Feller processes. Our main results are given in Sections 3 and 4. Section 3 is devoted to the study
of sequences of discrete time locally Feller processes, while Section 4 contains its applications to
the diffusions evolving in a potential. The appendix collect the statements of auxiliary results
already proved in [GH21].

2 Martingale local problem setting and related results
Let S be a locally compact Polish space. Take ∆ 6∈ S, and we will denote by S∆ ⊃ S the one-
point compactification of S, if S is not compact, or the topological sum S t{∆}, if S is compact
(so ∆ is an isolated point). We will denote by A b U the fact that a subset A is compactly
embedded in an open subset U ⊂ S. If x ∈ (S∆)R+ we denote the explosion time by

ξ(x) := inf{t ≥ 0 | {xs}s≤t 6b S}.
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The set of exploding cadlag paths is defined by

Dloc(S) :=

x ∈ (S∆)R+

∣∣∣∣∣∣
∀t ≥ ξ(x), xt = ∆,
∀t ≥ 0, xt = lims↓t xs,
∀t > 0 s.t. {xs}s<t b S, xt− := lims↑t xs exists

 ,

and it is endowed with the local Skorokhod topology which is also Polish (see Theorem 2.4, p.
1187 in [GH18]). The local Skorokhod topology is weaker than the usual (global) Skorokhod
topology. A sequence (xk)k∈N in Dloc(S) converges to x for the local Skorokhod topology if and
only if there exists a sequence (λk)k of increasing homeomorphisms on R+ satisfying

∀t ≥ 0 s.t. {xs}s<t b S, lim
k→∞

sup
s<t

d(xs, x
k
λks

) = 0 and lim
k→∞

sup
s<t
|λks − s| = 0.

The local Skorokhod topology does not depend on the arbitrary metric d on S∆, but only on the
topology on S (see also Remark 2.6, p. 1199, in [GH18]).

Denote by C(S) := C(S,R), respectively by C(S∆) := C(S∆,R), the set of real continuous
functions on S, respectively on S∆, and by C0(S) the set of restrictions to S of functions f ∈
C(S∆), with f(∆) = 0. We endow the set C(S) with the topology of uniform convergence on
compact sets and C0(S) with the topology of uniform convergence.

Since our context concerns generators of or martingale problems an operator L from C0(S)
to C(S) will be defined as a subset of C0(S) × C(S). Its domain will be denoted by D(L) :=
{f ∈ C0(S) | ∃g ∈ C(S), (f, g) ∈ L}.

We proceed by recalling the notion of martingale local problem (not to be confused with
the local martingale problem, see Definition 3.2, p. 135 in [GH21]). The canonical stochastic
process on Dloc(S) will be always denoted by X. We endow Dloc(S) with the Borel σ-algebra
F := σ(Xs, 0 ≤ s < ∞) and the filtration Ft := σ(Xs, 0 ≤ s ≤ t). The setM(L) of solutions
of the martingale local problem associated to L is the set of probabilities P ∈ P (Dloc(S)) such
that for all (f, g) ∈ L and open subset U b S:

f(Xt∧τU )−
∫ t∧τU

0

g(Xs)ds is a P-martingale

with respect to the filtration (Ft)t or, equivalent, to the filtration (Ft+)t. Here τU is the stopping
time given by

τU := inf {t ≥ 0 | Xt 6∈ U or Xt− 6∈ U} . (2.1)

Theorem 3.10, p. 139 in [GH21] provides a result of existence of solutions for the martingale
local problem. We recall its statement since it will be one of our main tools in Section 4:

Theorem 2.1. Let L be a linear subspace of C0(S)× C(S) such that its domain D(L) is dense
in C0(S). Then, there is equivalence between

i) existence of a solution for the martingale local problem: for any a ∈ S there exists an
element P ∈M(L) such that P(X0 = a) = 1;

ii) L satisfies the positive maximum principle: for all (f, g) ∈ L and a0 ∈ S, if f(a0) =
supa∈S f(a) ≥ 0 then g(a0) ≤ 0.

The martingale local problem is well-posed if there is existence and uniqueness of the solution,
which means that for any a ∈ S there exists a unique element P ∈ M(L) such that P(X0 =
a) = 1.

3



A family of probabilities (Pa)a ∈ P(Dloc(S))S is called locally Feller if there exists L ⊂
C0(S)× C(S) such that D(L) is dense in C0(S) and

∀a ∈ S : P ∈M(L) and P(X0 = a) = 1⇐⇒ P = Pa.

(see also Definition 4.5, p. 144 in [GH21]). The
(
C0 × C

)
-generator of a locally Feller family

(Pa)a ∈ P(Dloc(S))S is the set of functions (f, g) ∈ C0(S)× C(S) such that, for any a ∈ S and
any open subset U b S,

f(Xt∧τU )−
∫ t∧τU

0

g(Xs)ds is a Pa-martingale.

It can be noticed (see Remark 4.6(ii), p. 144 in [GH21]) that if h ∈ C(S,R∗+) and if L is the
C0 × C-generator of a locally Feller family, then

hL := {(f, hg) | (f, g) ∈ L} is the C0 × C-generator of a locally Feller family. (2.2)

A family of probability measures associated to a Feller semi-group constitutes a natural
example of locally Feller family (see Theorem 4.10, p. 147 in [GH21]). We recall that a Feller
semi-group (Tt)t∈R+

is a strongly continuous semi-group of positive linear contractions on C0(S).
Its (C0 × C0)-generator is the set L0 of (f, g) ∈ C0(S)× C0(S) such that, for all a ∈ S

lim
t→0

1

t

(
Ttf(a)− f(a)

)
= g(a).

It can be proved that the martingale associated to L0 admits a unique solution (consequence of
Proposition 4.2, p. 142 in [GH21]), and if L denotes the C0(S)×C(S)-generator of the associated
Feller family, then taking the closure in C0(S)× C(S), we have

L0 = L ∩
(
C0(S)× C0(S)

)
and L = L0 (2.3)

(see Proposition 4.16, p. 151 in [GH21]).
The following result of convergence is essential for our further development in Section 4, and

it was stated in Theorem 4.17, p. 151 in [GH21]. As was already pointed out in the introduction,
it can be considered as an improvement with respect to the classical result of convergence (see for
instance Theorem 19.25, p. 385, in [Kal02], see also [?], §4.8, pp. 225-238). To be more precise,
one does not need to know (and in is not known) that the limit the sequence of generators is the
generator of the limit family, but only the fact that a martingale local problem is well-posed.

Theorem 2.2 (Convergence of locally Feller family). For n ∈ N∪{∞}, let (Pna)a ∈ P(Dloc(S))S

be a locally Feller family and let Ln be a subset of C0(S) × C(S). Suppose that for any n ∈ N,
Ln is the generator of (Pna)a, suppose also that D(L∞) is dense in C0(S) and

∀a ∈ S : P ∈M(L∞) and P(X0 = a) = 1⇐⇒ P = P∞a .

Then we have equivalence between:

a) the mapping (
N ∪ {∞}

)
× P(S∆) → P (Dloc(S))

(n, µ) 7→ Pnµ

is weakly continuous for the local Skorokhod topology, where Pµ :=
∫
Paµ(da) and P∆(X0 =

∆) = 1;

b) for any an, a ∈ S such that an → a, Pnan converges weakly for the local Skorokhod topology
to P∞a , as n→∞;

c) for any f ∈ D(L∞), for each n ∃fn ∈ D(Ln) such that fn
C0−→

n→∞
f , Lnfn

C−→
n→∞

L∞f .
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3 Convergence of discrete time locally Feller families
We start our study by introducing a discrete time version of the notion of locally Feller family.

Definition 3.1 (Discrete time locally Feller family). Denote by Y the discrete time canonical
process on (S∆)N and endow (S∆)N with the canonical σ-algebra. A family (Pa)a ∈ P

(
(S∆)N

)S
is said to be a discrete time locally Feller family if, with the convention P∆({∆}N) = 1, for
each a, the canonical process Y under Pa is an homogeneous Markov chain starting at a and
whose transition Tf(a) = Ea(f(Y1)) satisfies Tf ∈ C(S) for all f ∈ C0(S). We also denote, for
µ ∈ P(S∆), Pµ :=

∫
Paµ(da).

The following theorem contains a result of convergence of a discrete time locally Feller family
towards a continuous time locally Feller family (see also Theorem IX.3.39, p. 551 from [?], in
the semi-martingales setting). The main difference with respect to Theorem 19.28, p. 387, in
[Kal02], is that one does not need to know the generator of the limit family, but only the fact that
a martingale local problem is well-posed (hence from this point of view it could be considered
as a slightly improvement). In the following brc will denote the integer part of a positive real
number r.

Theorem 3.2 (Convergence). Let L ⊂ C0(S) × C(S) be an operator with D(L) a dense subset
of C0(S), such that the martingale local problem associated to L is well-posed. Let (Pa)a ∈
P(Dloc(S))S be the associated continuous time locally Feller family. For each n ∈ N we introduce
(Pna)a ∈ P((S∆)N)S a discrete time locally Feller family having its transition operator Tn. We
denote the operator Ln := (Tn− id)/εn, where (εn)n is a sequence of positive numbers converging
to 0, as n→∞. There is equivalence between:

a) for any µn, µ ∈ P(S∆) such that µn −→
n→∞

µ weakly, LPnµn

(
(Ybt/εnc)t>0

) P(Dloc(S))−→
n→∞

Pµ ;

b) for any an, a ∈ S such that an −→
n→∞

a, LPnan

(
(Ybt/εnc)t>0

) P(Dloc(S))−→
n→∞

Pa ;

c) for any f ∈ D(L), there exists (fn)n ∈ C0(S)N such that fn
C0(S)−→
n→∞

f , Lnfn
C(S)−→
n→∞

Lf .

Proof. Set Ω := (S∆)N ×RN
+ and G := B(S∆)⊗N ⊗B(R+)⊗N. For any µ ∈ P(S∆) and n ∈ N, we

denote
Pnµ := Pnµ ⊗ E(1)⊗N, (3.1)

where E(1) is the exponential distribution with expectation 1. We also set

Yn : Ω → S and(
(yk)k, (sk)k

)
7→ yn

En : Ω → R+(
(yk)k, (sk)k

)
7→ sn,

(3.2)

and introduce the standard Poisson process, Nt := inf
{
n ∈ N

∣∣ n+1∑
k=1

Ek > t
}
, t ≥ 0.

Step 1) For each n ∈ N we set
Znt := YNt/εn . (3.3)

Consider the following slightly modified assertions concerning the processes Zn:

a′) for any µn, µ ∈ P(S∆) such that µn → µ, LPnµn (Zn)
P(Dloc(S))−→
n→∞

Pµ ;

5



b′) for any an, a ∈ S such that an → a, LPnan (Zn)
P(Dloc(S))−→
n→∞

Pa .

We claim that a′)⇔ b′)⇔ c).
We will prove that for all µ ∈ P(S∆), LPnµ(Zn) ∈M(Ln). Setting Gnt := σ(Ns/εn , Z

n
s , s ≤ t), it

is enough to prove that, for each f ∈ C0(S) and 0 ≤ s ≤ t,

Enµ

ñ
f(Znt )− f(Zns )−

∫ t

s

Lnf(Znu )du

∣∣∣∣∣ Gns
ô

= 0. (3.4)

This fact follows from the properties of the multivariate point process. For the sake of com-
pleteness we give here some details. Let us introduce the (Gnt )t>0 -stopping times τnk := inf

{
u ≥

0
∣∣Nu/εn = k

}
. Then, for all k ∈ N, we split

Enµ
î
f(Znt∧(τnk+1∨s)

)− f(Znt∧(τnk ∨s)
)
∣∣∣ Gnt∧(τnk ∨s)

ó
= A1 +A2, (3.5)

where

A1 := 1{t>τnk ,s<τ
n
k+1}E

n
µ

î
(f(Yk+1)− f(Yk))1{τnk+1≤t}

∣∣∣ Gnt∧(τnk ∨s)

ó
,

A2 := 1{t>τnk ,s<τ
n
k+1}E

n
µ

î
(f(Yk+1)− f(Yk))1{(τnk+1−τ

n
k )∨s≤(t−τnk )∨s}

∣∣∣ Gnτnk ∨só .
By using the definition of the transition operator Tn and the fact that (Nu/εn)u is a Poisson
process, we get for all k ∈ N,

A1 = 1{t>τnk ,s<τ
n
k+1}(Tnf(Yk)− f(Yk))

(
1− e−(t−τnk ∨s)/εn

)
,

A2 = 1{t>τnk ,s<τ
n
k+1}Lnf(Znτnk ∨s)εn

(
1− e−(t−τnk ∨s)/εn

)
. (3.6)

Similarly, we also can split, for all k ∈ N,

Enµ

ñ∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣∣∣ Gnt∧(τnk ∨s)

ô
= B1 +B2, (3.7)

with

B1 := 1{t>τnk ,s<τ
n
k+1}Lnf(Znτnk ∨s)E

n
µ

î
t ∧ τnk+1 − τnk ∨ s

∣∣∣ Gnt∧(τnk ∨s)

ó
,

B2 := 1{t>τnk ,s<τ
n
k+1}Lnf(Znτnk ∨s)E

n
µ

î
(t− τnk ∨ s) ∧ (τnk+1 − τnk ∨ s)

∣∣∣ Gnτnk ∨só .
Once again, since the distribution of τnk+1 − τnk is exponential we get, for all k ∈ N,

B1 = 1{t>τnk ,s<τ
n
k+1}Lnf(Znτnk ∨s)

∫ ∞
0

(1/εn)e−u/εn((t− τnk ∨ s) ∧ u)du

B2 = 1{t>τnk ,s<τ
n
k+1}Lnf(Zn(3.6)τnk ∨s

)εn

(
1− e−(t−τnk ∨s)/εn

)
. (3.8)

Gathering (3.6) in (3.5), respectively (3.8) in (3.7) and then subtracting (3.7) from (3.5), we get,
for all k ∈ N,

Enµ

ñ
f(Znt∧(τnk+1∨s)

)− f(Znt∧(τnk ∨s)
)−

∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣∣∣ Gnt∧(τnk ∨s)

ô
= 0. (3.9)
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Recalling the definition of the stopping times τnk and by summing on k ∈ N, we also get

Enµ

ñ
f(Znt )− f(Zns )−

∫ t

s

Lnf(Znu )du

∣∣∣∣∣ Gns
ô

=
∑
k≥0

Enµ

ñ
Enµ

ñ
f(Znt∧(τnk+1∨s)

)− f(Znt∧(τnk ∨s)
)−

∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣∣∣ Gnt∧(τnk ∨s)

ô ∣∣∣∣∣ Gns ô .
By using (3.9) we end up with (3.4). As a consequence, for each n ∈ N, LPnµ(Zn) ∈ M(Ln).
Invoking Theorem 2.2 applied to Ln and L, our claim a′)⇔ b′)⇔ c) is achieved.

Step 2. To carry out the proof we need to establish the following result.

Lemma 3.3. For n ∈ N, let (Ωn,Gn,Pn) be a probability space, let Zn : Ωn → Dloc(S) and
Γn : Ωn → C(R+,R+) be a increasing random bijection. Define Z̃n := Zn ◦ Γn. If, for each
ε > 0 and t ∈ R+,

Pn
(

sup
s≤t
|Γns − s| ≥ ε

)
−→
n→∞

0,

then for any P ∈ P(Dloc(S)),

LPn(Zn) −→
n→∞

P ⇔ LPn(Z̃n) −→
n→∞

P,

where the limits hold for the weak topology associated to the local Skorokhod topology.

We postpone the proof of this result and we finish the proof of the theorem. Recalling (3.1)
and (3.2), and setting for all t ≥ 0 and n ∈ N,

Γnt := εn

Ñ
bt/εnc∑
k=1

Ek + (t/εn − bt/εnc)Ebt/εnc+1

é
, (3.10)

it is readily seen, by (3.3), that for any t ≥ 0 and n ∈ N, Ybt/εnc = ZnΓnt . Clearly the process Γn

have the same law under all Pµ. By showing that

∀t ≥ 0, ∀ε > 0, Pnµ

Ç
sup
s≤t
|Γns − s| ≥ ε

å
−→
n→∞

0, (3.11)

and employing the latter lemma, we can conclude that a)⇔ a′) and b⇔ b′), so we ends up with
a)⇔ b)⇔ c).

Step 3. It remains to verify our claim (3.11). This is quite classical but again for the sake of
completeness we sketch its proof. Denote by dre the smallest integer larger or equal than the
positive real number r. Fix t ≥ 0, ε > 0, n ∈ N and µ ∈ P(S∆). Since Γn is a continuous
piecewise affine function, we have

sup
s≤t

∣∣Γns − s∣∣ ≤ sup
k∈N

k≤dt/εne

∣∣Γnkεn − kεn∣∣ = sup
k∈N

k≤dt/εne

∣∣∣εn k∑
i=1

Ei − kεn
∣∣∣ = εn sup

k∈N
k≤dt/εne

∣∣Mk

∣∣
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with Mk :=
∑k
i=1Ei − k. Owing again (3.1) and (3.2), we see that the discrete martingale

(Mk)k satisfies Enµ[M2
k ] = kEnµ[(E1 − 1)2] = k. Hence, applying Markov’s and maximal Doob’s

inequalities, we get

Pnµ
(

sup
s≤t
|Γns − s| ≥ ε

)
≤ Pnµ

(
εn sup

k≤dt/εne
|Mk| ≥ ε

)
≤ ε2

n

ε2
Enµ

ñ
sup

k≤dt/εne
M2
k

ô
≤ 4ε2

n

ε2
Enµ
î
M2
dt/εne

ó
=

4dt/εneε2
n

ε2
≤ 4(t+ εn)εn

ε2
.

Our claim (3.11) is verified and the proof of Theorem 3.2 is complete except for Lemma 3.3.

Lemma 3.3 is obtained as a consequence of a general result stated and proved below:

Lemma 3.4. Let E be a Polish topological space, for n ∈ N, let (Ωn,Gn,Pn) be a probability
space and consider random variables Zn, Z̃n : Ωn → E. Suppose that for each compact subset
K ⊂ E and each open subset U ⊂ E × E containing the diagonal {(z, z) | z ∈ E},

Pn
Ä
Zn ∈ K, (Zn, Z̃n) 6∈ U

ä
−→
n→∞

0. (3.12)

Then, for any P ∈ P(E),

LPn(Zn) −→
n→∞

P implies LPn(Z̃n) −→
n→∞

P, (3.13)

where the limits hold for the weak topology on P(E).

Proof of Lemma 3.4. Suppose that LPn(Zn) −→
n→∞

P, so for any bounded continuous function

f : E → R, En[f(Zn)] −→
n→∞

∫
fdP. E being a Polish space, the sequence (LPn(Zn))n is tight.

Pick an arbitrary ε > 0 and let K be a compact subset of E such that

∀n ∈ N, Pn(Zn 6∈ K) ≤ ε. (3.14)

By (3.12) applied to K and U := {(z, z̃) | |f(z̃)− f(z)| < ε}, we obtain

Pn
Ä
Zn ∈ K, |f(Z̃n)− f(Zn)| ≥ ε

ä
−→
n→∞

0.

We split successively∣∣∣En[f(Z̃n)]−
∫
fdP

∣∣∣ ≤ ∣∣∣En[f(Zn)]−
∫
fdP

∣∣∣+ En
∣∣∣f(Z̃n)− f(Zn)

∣∣∣
≤
∣∣En[f(Zn)]−

∫
fdP

∣∣+ En
[∣∣f(Z̃n)− f(Zn)

∣∣1{Zn∈K,|f(‹Zn)−f(Zn)|≥ε}

]
+ En

[∣∣f(Z̃n)− f(Zn)
∣∣1{Zn∈K,|f(‹Zn)−f(Zn)|<ε}

]
+ En

[∣∣f(Z̃n)− f(Zn)
∣∣1{Zn 6∈K}].

Hence, by using (3.14), we endup with∣∣∣En[f(Z̃n)]−
∫
fdP

∣∣∣
≤
∣∣∣En[f(Zn)]−

∫
fdP

∣∣∣+ 2‖f‖Pn
(
Zn ∈ K, |f(Z̃n)− f(Zn)| ≥ ε

)
+ ε
(
1 + 2‖f‖

)
.

Letting successively n→∞ and ε→ 0, we conclude that LPn(Z̃n) −→
n→∞

P.
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Proof of Lemma 3.3. We denote by Λ̃ the space of increasing bijections λ from R+ to R+. For
t ∈ R+, we set ‖λ− id‖t := sups≤t |λs − s|. Since

∀λ ∈ Λ̃, ∀t ∈ R+, ∀ε > 0, ‖λ− id‖t+ε < ε⇒ ‖λ−1 − id‖t < ε,

the hypotheses of Lemma 3.3 are symmetric with respect to Z and Z̃, so it suffices to prove
only one implication. Suppose LPn(Zn) −→

n→∞
P and we prove, by applying Lemma 3.4, that

LPn(Z̃n) −→
n→∞

P. Let K be a compact subset of Dloc(S) and U be an open subset of Dloc(S)×
Dloc(S) containing the diagonal {(z, z) | z ∈ Dloc(S)}. It will be sufficient to prove the following
assertion

∃t ≥ 0, ∃ε > 0, ∀z ∈ K, ∀λ ∈ Λ̃, ‖λ− id‖t < ε⇒ (z, z ◦ λ) ∈ U. (3.15)

Indeed, if we pick t and ε given by (3.15), then

Pn
Ä
Zn ∈ K, (Zn, Z̃n) 6∈ U

ä
≤ Pn (‖Γn − id‖t ≥ ε) −→

n→∞
0,

and we employ Lemma 3.4 to conclude that LPn(Z̃n) −→
n→∞

P as desired.

To verify (3.15) we assume that it is false, so we can find two sequences (zn)n ∈ KN and
(λn)n ∈ Λ̃N such that, for all n ∈ N, (zn, zn ◦ λn) 6∈ U and for all t ≥ 0, lim

n→∞
‖λn − id‖t → 0.

By compactness of K, possibly by taking a subsequence, there exists z ∈ K such that zn → z,
as n→∞. It is then straightforward to obtain

U 63 (zn, zn ◦ λn) −→
n→∞

(z, z) ∈ U.

This is a contradiction with the fact that U is open, so (3.15) is verified.

4 Convergence towards diffusions evolving in a potential
Let us recall that L1

loc(R) denotes the space of locally integrable functions, and a continuous
real function f is called locally absolutely continuous if its distributional derivative f ′ belongs
to L1

loc(R). We introduce the set of potentials

V :=
¶
V : R→ R measurable

∣∣ e|V | ∈ L1
loc(R)

©
.

It is straightforward to prove that there exists a unique Polish topology on V such that a sequence
(Vn)n in V converges to V ∈ V if and only if

∀M ∈ R+, lim
n→∞

∫ M

−M

∣∣eV (a) − eVn(a)
∣∣ ∨ ∣∣e−V (a) − e−Vn(a)

∣∣ da = 0.

Notation 4.1. For a potential V ∈ V , we introduce the operator

LV :=
1

2
eV

d

da
e−V

d

da
(4.1)

as the set of couples (f, g) ∈ C0(R)×C(R) such that f and e−V f ′ are locally absolutely continuous
and g = 1

2eV (e−V f ′)′.

9



Remark 4.2. Let us notice that it is a particular case of the operator DmD+
p described in

[Man68], pp. 21-22 (see also [?], [?] for general study of one-dimensional diffusion processes).
Heuristically, the solutions of the martingale local problem associated to LV are solutions of the
stochastic differential equation

dXt = dβt −
1

2
V ′(Xt)dt,

where β is a standard Brownian motion. ♦

We can state now the main results of this section. The first theorem contains some properties
of the operator LV and will be obtained as an application of Theorems 2.1 and 2.2 (or Theorems
3.10 and 4.17 in [GH21]).

Theorem 4.3 (Diffusions in a potential).

1. For any potential V ∈ V , the operator LV is the generator of a locally Feller family.

2. For any sequence of potentials (Vn)n in V converging to V ∈ V for the topology of V ,
the sequence of operators LVn converges to LV , in the sense of the third statement of the
convergence Theorem 2.2.

Remark 4.4. At this level it is important to notice that Theorem 1, p. 643-644, in [?] contains
a convergence result for one-dimensional diffusion processes in terms of pointwise convergence of
scale functions and vague convergence of speed measures. Hence the result of second part of the
previous theorem can be also obtained by using the result of Stone’s theorem. The proof which
we provide below can be seen as an illustration of application of our general Theorem 2.2 for this
example of one-dimensional generator. ♦

The second theorem gives an approximation result of a diffusion in a potential by using a sequence
of random walks. Its proof will be based on the result Theorem 3.2 in Section 3.

Theorem 4.5 (Approximation by random walks on Z). For (n, k) ∈ N × Z, let qn,k ∈ R and
εn > 0 be. For all n ∈ N, in accordance with Definition 3.1, let (Pnk )k∈Z ∈ P(ZN)Z be the unique
discrete time locally Feller family such that

Pnk (Y1 = k + 1) = 1−Pnk (Y1 = k − 1) =
1

eqn,k + 1
.

We introduce the sequence of potentials in V given by

Vn(a) :=

ba/εnc∑
k=1

qn,k1a≥εn −
−ba/εnc−1∑

k=0

qn,−k1a<0 ,

such that Vn converges for the topology of V to a potential of V , say V . Let (Pa)a be the locally
Feller family associated with LV . If εn → 0, then, for any sequence µn ∈ P(Z) such that their
push-forwards with respect to the mappings k 7→ εnk converge to a probability measure µ ∈ P(R),
we have

LPnµn

(
(εnYbt/ε2nc)t>0

) P(Dloc(S))−→
n→∞

Pµ.

Before proving these two theorems, we state and prove an important consequence concerning
the connection between a random walk and a diffusion in random environment. Several examples
of application of the following result will be then discussed.
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Corollary 4.6. For each n ∈ N, let (Ωn,Gn,Pn) be a probability space and consider the random
variables

(qn,k)k : Ωn → RZ, (Znk )k : Ωn → ZN and εn : Ωn → R∗+ .

Suppose that for any n ∈ N and k ∈ N, Pn-almost surely,

Pn
(
Znk+1 = Znk + 1

∣∣ εn, (qn,`)`∈Z, (Zn` )0≤`≤k
)

=
1

eqn,Zk + 1
,

Pn
(
Znk+1 = Znk − 1

∣∣ εn, (qn,`)`∈Z, (Zn` )0≤`≤k
)

=
1

e−qn,Zk + 1
= 1− 1

eqn,Zk + 1
. (4.2)

For any n ∈ N and a ∈ R, introduce a random potential belonging to V ,

Wn(a) :=

ba/εnc∑
k=1

qn,k1{a≥εn} −
−ba/εnc−1∑

k=0

qn,−k1{a<0} . (4.3)

Furthermore, on a probability space (Ω,G,P), consider two random variables W : Ω → V and
Z : Ω→ Dloc(R), such that the conditional distribution of Z with respect to W satisfies, P-a.s.

LP (Z | W ) ∈M(LW ). (4.4)

Assuming that εn converges in distribution to 0, that εnZn0 converges in distribution to Z0 and
that Wn converges in distribution to W for the topology of V , then (εnZ

n
bt/ε2nc

)t converges in
distribution to Z for the local Skorokhod topology.

Proof of Corollary 4.6. Let F : Dloc(R)→ R be a bounded continuous function. For any a ∈ R,
V ∈ V and ε ∈ R∗+, let Pa,V,ε ∈ P(ZN) be the unique probability measure such that Pa,V,ε(Y0 =
ba/εc) = 1, and such that Pa,V,ε-almost surely, for all k ∈ N,

Pa,V,ε (Yk+1 = Yk + 1 | Y0, . . . , Yk) = 1−Pa,V,ε (Yk+1 = Yk − 1 | Y0, . . . , Yk)

=

Ç∫ εYk

εYk−ε
eV (a)da

å¬ Ç∫ εYk+ε

εYk−ε
eV (a)da

å
.

Furthermore, let Pa,V,0 ∈ P(Dloc(R)) be the unique probability measure belonging to M(LV )
and starting from a. Define the bounded mapping G : R× V × R+ → R as follows:

G(a, V, ε) := Ea,V,ε
[
F
(
εYb•/ε2c

)]
and G(a, V, 0) := Ea,V,0 [F (X)] . (4.5)

An application of Theorem 4.3, shows that the mapping G is continuous at every point of
R× V × {0}. Thus,

En [G(εnZ
n
0 ,Wn, εn)] −→

n→∞
E [G(Z0,W, 0)] . (4.6)

Combining the definitions (4.2) and (4.5) we can write

En
[
F
(
εnZ

n
b•/ε2nc

)]
= En

[
En
[
F
(
εnZ

n
b•/ε2nc

)∣∣εn, Zn0 , (qn,`)`∈Z
]]

= En [G(εnZ
n
0 ,Wn, εn)] . (4.7)

Gathering (4.6) on the right hand side of (4.7), and invoking (4.4)-(4.5), we obtain

En
[
F
(
εnZ

n
b•/ε2nc

)]
−→
n→∞

E [G(Z0,W, 0)] = E
[
E
[
F (Z)

∣∣Z0, W
]]

= E [F (Z)] .

We conclude that (εnZ
n
bt/ε2nc

)t converges in distribution to Z.
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Example 4.7. Let us describe three examples of application.
1) Let (qk)k be an i.i.d sequence of centred real random variables with finite variance σ2

and suppose that qn,k =
√
εnqk. Suppose also that W is a Brownian motion with variance σ2.

Then, by Donsker’s theorem, (Wn) given by (4.3) converges in distribution to W , so we can
apply Corollary 4.6 to deduce the convergence of a random walk in a random i.i.d. medium
(introduced by Sinai in [Sin82]) to the diffusion corresponding to a Brownian movement in a
Brownian potential (introduced by Brox in [Bro86]). We recover in this manner Theorem 1 from
[Sei00], p. 295, without a technical hypothesis imposing that the common distribution of the
random variables qk is compactly supported.

2) Fix this time a deterministic q ∈ R∗ and also λ > 0. Suppose that for each n ∈ N, (qn,k)k
is an i.i.d sequence of random variables such that Pn(qn,k = q) = 1 − Pn(qn,k = 0) = λεn.
Suppose also that W (a) = qNλa, where N stands for a standard Poisson process on R. Then, it
is classical (see for instance [Car97]), that (Wn) given by (4.3) converges in distribution to W .
So we can apply Corollary 4.6 to deduce the convergence of Sinai’s random walk to the diffusion
corresponding to a Brownian movement in a Poisson potential. We recover now Theorem 2 from
[Sei00], p. 296.

3) More generally, suppose that for each n ∈ N, (qn,k)k is an i.i.d sequence of random variables.
Likewise, suppose that (Wn) given again by (4.3), converges in distribution to some Lévy process
W . We can apply Corollary 4.6 to deduce the convergence of Sinai’s random walk to the diffusion
corresponding to a Brownian movement in a Lévy potential (introduced in [Car97]). ♦

We go further and detail the proofs of Theorems 4.3 and 4.5. To achieve this, we need to state
two more auxiliary results contained in Lemma 4.8 and Remark 4.9. The proof of the lemma is
essentially an application of the second chapter of [Man68] and it will postponed at the end of
this section.

Lemma 4.8. Let V be a potential in V and let h ∈ C(R,R∗+) be a function such that, for all
n ∈ N,

inf
n≤|a|≤n+1

h(a) ≤ 1

n

ñÇ∫ n+1

n

∫ a

0

eV(b)−V(a)db da

å
∧
Ç∫ n+2

n+1

∫ n+1

n

eV(a)−V(b)db da

å
∧
Ç∫ −n
−(n+1)

∫ 0

a

eV(b)−V(a)db da

å
∧
Ç∫ −(n+1)

−(n+2)

∫ −n
−(n+1)

eV(a)−V(b)db da

åô
(4.8)

Then, with the notations (4.1) and (2.2), the operator (hLV )∩
(
C0(R)×C0(R)

)
is the (C0×C0)-

generator of a Feller semi-group.

Remark 4.9. Consider a1, a2 ∈ R and let V : [a1∧a2, a1∨a2]→ R be a measurable function such
that e|V | ∈ L1([a1∧a2, a1∨a2]). For any absolutely continuous function f ∈ C([a1∧a2, a1∨a2],R)
such that e−V f ′ is absolutely continuous and g := 1

2eV (e−V f ′)′ is continuous, we have two
elementary but useful representations. Firstly, we can write

f(a2) = f(a1) +

∫ a2

a1

f ′(b)db,

and we deduce

f(a2) = f(a1) +

∫ a2

a1

eV (b)

Ç
(e−V f ′)(a1) + 2

∫ b

a1

e−V (c)g(c)dc

å
db , (4.9)
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Furthermore, we can also develop

f(a2) = f(a1) + (e−V f ′)(a1)

∫ a2

a1

eV (b)db+ 2g(a1)

∫ a2

a1

∫ b

a1

eV (b)−V (c)dcdb

+ 2

∫ a2

a1

∫ b

a1

eV (b)−V (c)(g(c)− g(a1))dcdb. (4.10)

This last equality will be useful to show that some operators satisfy the positive maximum
principle. ♦

Proof of Theorem 4.3. We are now ready to give the proof of the first part of theorem as an
application of Theorem 2.1. Firstly, by using the result of Lemma 4.8 and, by quoting (2.2) and
(2.3), we deduce that the operator

L̃ :=
1

h
(hLV ) ∩

(
C0(R)× C0(R)

)
is the generator of a locally Feller family. Here the closure is taken in C0(R) × C(R), and
it is straightforward that L̃ ⊂ LV . Secondly, thanks to the representation (4.9), it is also
straightforward to obtain LV = LV . Invoking (4.10), we can deduce that LV satisfies the
positive maximum principle. Finally, using Theorem 2.1 we deduce the existence result for the
martingale local problem associated to LV . We conclude that LV = L̃ is the generator of a
locally Feller family.

We proceed with the proof of the second part of Theorem 4.3. Let us denote by (Pna)a and
(P∞a )a the locally Feller families associated, respectively, to LVn and LV . Thanks to Theorem
2.2, it is enough to prove that for each sequence of real numbers (an)n converging to a∞ ∈ R,
Pnan converges weakly to P∞a∞ for the local Skorokhod topology. According to Lemma 5.2 in the
Appendix (see also Lemma 4.22 from [GH21], p. 154), forM ∈ N∗, there exists hM ∈ C(R, [0, 1])
such that

{hM 6= 0} = (−2M, 2M), {hM = 1} = [−M,M ],

and, for all n ∈ N, the martingale local problems associated to hMLV and to hMLVn are well-
posed. For n ∈ N and M ∈ N∗, we denote by (Pn,Ma )a and (P∞,Ma )a the locally Feller families
associated, respectively to hMLVn and hMLV . For n ∈ N, define the extension of hMLVn :flLn,M :=

{
(f, g) ∈ C0(R)× C(R)

∣∣∣ g =
1

2
hMeVn(e−Vnf ′)′1(−2M,2M)

}
,

where f and e−Vnf ′ are supposed to be locally absolutely continuous only on (−2M, 2M). By
(4.10) it is straightforward to obtain thatflLn,M satisfies the positive maximum principle, so using
Theorem 2.1, flLn,M is a linear subspace of the generator of the family (Pn,Ma )a. We will prove
that the sequence of operators (flLn,M ) converges to the operator hMLV in the sense of the third
statement of Theorem 2.2. Pick f ∈ D(L) and define fn ∈ C0(R) by

fn(a) :=


f(a), a /∈ (−2M − n−1, 2M + n−1),

f(0) +

∫ a

0

eVn(b)
[
(e−V f ′)(0) + 2

∫ b

0

e−Vn(c)LV f(c)dc
]
db, a ∈ [−2M, 2M ],

with fn affine function on [−2M −n−1,−2M ] and on [2M, 2M +n−1]. Hence fn ∈ D(flLn,M ) andflLn,Mfn = hML
V f . We can deduce the upper bound

‖fn − f‖ ≤ sup
a∈[−2M,2M ]

|fn(a)− f(a)|+ sup
2M≤|a1|,|a2|≤2M+n−1

0≤a1a2

|f(a2)− f(a1)|.
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Since f is continuous, the second supremum in the latter equation tends to 0. By using the
expression of fn and the convergence Vn → V , it is straightforward to deduce from (4.9) that

sup
a∈[−2M,2M ]

|fn(a)− f(a)| −→
n→∞

0.

Hence lim
n→∞

‖fn − f‖ = 0, so according to Theorem 2.2,

Pn,Man −→
n→∞

P∞,Ma∞ . (4.11)

At this level we need to employ Lemma 5.1 in the Appendix (see also Proposition 4.15 from
[GH21], p. 153): for all M ∈ N∗ and n ∈ N ∪ {∞},

LPn,Man

Ä
Xτ(−M,M)

ä
= LPnan

Ä
Xτ(−M,M)

ä
. (4.12)

Finally, we use a result of localisation of the continuity contained in Lemma 5.3 in the Appendix
(see also Lemma A1 from [GH21], p. 159). Putting together (4.11) and (4.12) and then letting
M →∞ we conclude that Pnan −→n→∞ P∞a∞ .

Proof of Theorem 4.5. For n ∈ N, define the continuous function ϕn : R× R→ R+ given by

ϕn(a, h) := 2

∫ a+h

a

∫ b

a

eVn(b)−Vn(c)dcdb.

For each a ∈ R, it is clear that ϕn(a, ·) is strictly increasing on R+ and ϕn(a, 0) = 0. Furthermore,
since Vn is constant on the interval

[
εnda/εne, εn(da/εne+ 1)

)
,

ϕn(a, 2εn) ≥ 2

∫ εn(da/εne+1)

εnda/εne

∫ b

εnda/εne
eVn(b)−Vn(c)dcdb = ε2

n.

Hence, there exists a unique ψ1,n(a) ∈ (0, 2εn] such that

ϕn(a, ψ1,n(a)) = ε2
n. (4.13)

Using the continuity of ϕn and the compactness of [0, 2εn], it is straightforward to obtain that
ψ1,n is continuous. In the same manner, we can prove that, for each a ∈ R, there exists a unique
ψ2,n(a) ∈ (0, 2εn] such that

ϕn(a,−ψ2,n(a)) = ε2
n, (4.14)

and that ψ2,n is continuous. Introduce the continuous function pn : R→ (0, 1) given by

pn(a) :=

Ç∫ a

a−ψ2,n(a)

eVn(b)db

å¬Ç∫ a+ψ1,n(a)

a−ψ2,n(a)

eVn(b)db

å
. (4.15)

Also define a transition operator Tn : C0(R)→ C0(R) by

Tnf(a) := pn(a)f(a+ ψ1,n(a)) + (1− pn(a))f(a− ψ2,n(a)).

According to Definition 3.1, we can denote by (‹Pna)a ∈ P
(
RN)R the discrete time locally Feller

family with Tn as a transition operator. For any k ∈ Z, Vn is constant on the interval [εnk, εn(k+
1)) and on the interval [εn(k − 1), εnk), hence we have

ϕn(εnk,±εn) = 2

∫ εn(k±1)

εnk

∫ b

εnk

dcdb = ε2
n
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and therefore ψ1,n(εnk) = ψ2,n(εnk) = εn. Furthermore

pn(εnk) :=

∫ εnk
εn(k−1)

eVn(b)db∫ εn(k+1)

εn(k−1)
eVn(b)db

=
εneVn(εn(k−1))

εneVn(εn(k−1)) + εneVn(εnk)
=

1

1 + eqn,k
,

hence for any f ∈ C0(R),

Tnf(εnk) :=
1

1 + eqn,k
f(εn(k + 1)) +

1

1 + e−qn,k
f(εn(k − 1)).

We deduce that for any µ ∈ P(Z) and n ∈ N, LPnµ(εnY ) = ‹Pnµ̃ , where µ̃ is the push-forward
measure of µ with respect to the mapping k 7→ εnk.

We shall now use Theorem 3.2 of convergence of discrete time Markov families. If f ∈ D(LV ),
we need to prove that there exists a sequence of continuous functions fn ∈ C0(R) converging
to f such that (Tnfn − fn)/ε2

n converges to LV f . By the second part of Proposition 4.3, there
exists a sequence of continuous functions fn ∈ D(LVn) such that fn converges to f and LVnfn
converges to LV f . Applying (4.10) to fn and Vn and recalling (4.13) and (4.14), we can write,
for all a ∈ R and n ∈ N,

f(a+ ψ1,n(a)) =f(a) + (e−V f ′)(a)

∫ a+ψ1,n(a)

a

eV (b)db+ ε2
nL

Vnfn(a)

+ 2

∫ a+ψ1,n(a)

a

∫ b

a

eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb,

and

f(a− ψ2,n(a)) =f(a)− (e−V f ′)(a)

∫ a

a−ψ2,n(a)

eV (b)db+ ε2
nL

Vnfn(a)

+ 2

∫ a−ψ2,n(a)

a

∫ b

a

eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb.

Hence by (4.15), for all a ∈ R and n ∈ N,∣∣∣∣Tnfn(a)− fn(a)

ε2
n

− LVnfn(a)

∣∣∣∣
≤ 2pn(a)

ε2
n

∣∣∣ ∫ a+ψ1,n(a)

a

∫ b

a

eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb
∣∣∣

+
2(1− pn(a))

ε2
n

∣∣∣ ∫ a−ψ2,n(a)

a

∫ b

a

eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb
∣∣∣

≤ sup
|h|≤2εn

|LVnfn(a+ h)− LVnfn(a)|.

It is not difficult to deduce that (Tnfn − fn)/ε2
n converges to LV f . Therefore we can apply

Theorem 3.2 of convergence of discrete time Markov families, so for any sequence µn ∈ P(Z)
such that µ̃n converges to a probability measure µ ∈ P(R), we have

LPnµn

(
(εnYbt/ε2nc)t

)
= L‹Pn‹µn ((Ybt/ε2nc)t) P(Dloc(S))−→

n→∞
Pµ,

where µ̃n are the push-forwards of µn with respect to the mappings k 7→ εnk.
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Proof of Lemma 4.8. As was already announced this proof is essentially an application of the
second chapter of [Man68]. For the sake of completeness we give here few details.

As was quoted in Remark 4.2, the operator hLV coincides on C0(R)×C0(R) with the operator
DmD

+
p ⊂ C(R)× C(R), on the extended real line R, described in [Man68], pp. 21-22, where

dm(a) :=
2e−V (a)

h(a)
da and dp(a) := eV (a)da.

Applying our hypothesis(4.8) we can obtain∫ ∞
0

∫ a

0

dm(b)dp(a) ≥ lim sup
n→∞

∫ n+2

n+1

∫ n+1

n

dm(b)dp(a) ≥ lim sup
n→∞

2n =∞,∫ ∞
0

∫ a

0

dp(b)dm(a) ≥ lim sup
n→∞

∫ n+1

n

∫ a

0

dp(b)dm(a) ≥ lim sup
n→∞

2n =∞,∫ 0

−∞

∫ 0

a

dm(b)dp(a) ≥ lim sup
n→∞

∫ −n−1

−n−2

∫ −n
−n−1

dm(b)dp(a) ≥ lim sup
n→∞

2n =∞,∫ 0

−∞

∫ 0

a

dp(b)dm(a) ≥ lim sup
n→∞

∫ −n
−n−1

∫ 0

a

dp(b)dm(a) ≥ lim sup
n→∞

2n =∞.

Thus, according to the definition given in [Man68], pp. 24-25, the boundary points −∞ and +∞
are natural. Thanks to Theorem 1 and Remark 2 p. 38 in [Man68], DmD

+
p is the generator of a

conservative Feller semi-group on C(R). Furthermore by steps 7 and 8 from [Man68], pp. 31-32,

DmD
+
p f(−∞) = DmD

+
p f(+∞) = 0, ∀f ∈ D(DmD

+
p ),

so that the operator

(hLV ) ∩ C0(R)× C0(R) = DmD
+
p ∩ C0(R)× C0(R)

is the (C0 × C0)-generator of a Feller semi-group.

5 Appendix
We recall below the statements of three results already proved in [GH21] and used in the proof of
Theorem 4.3. We refer the interested reader to the paper [GH21] for the introductory contexts
and complete proof of each lemma.

Lemma 5.1 (cf. Proposition 4.20 in [GH21], p. 153). Let L1, L2 ⊂ C0(S) × C(S) be such that
D(L1) = D(L2) is dense in C0(S) and assume that the martingale local problems associated to
L1 and L2 are well-posed. Let P1 ∈M(L1) and P2 ∈M(L2) be two solutions of these problems
having the same initial distribution and let U ⊂ S be an open subset. If for all f ∈ D(L1),
(L2f)|U = (L1f)|U , then LP2

(
XτU

)
= LP1

(
XτU

)
.

Lemma 5.2 (cf. Lemma 4.22 in [GH21], p. 154). Let U be an open subset of S and L be a subset
of C0(S)×C(S) with D(L) is dense in C(S). Assume that the martingale local problem associated
to L is well-posed. Then there exists a function h0 ∈ C(S,R+) satisfying {h0 6= 0} = U , such
that for all h ∈ C(S,R+) with {h 6= 0} = U and supa∈U (h/h0)(a) < ∞, the martingale local
problem associated to hL is well-posed.
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Lemma 5.3 (cf. Lemma A.1 in [GH21], p. 159). Let (Um)m∈N be an increasing sequence of
open subsets such that S =

⋃
m Um. For n,m ∈ N ∪ {∞}, let Pn,m ∈ P(Dloc(S)) be such that

i) for each m ∈ N, Pn,m −→
n→∞

P∞,m, weakly for the local Skorokhod topology,

ii) for each m ∈ N and n ∈ N ∪ {∞}, LPn,m

Ä
XτUm

ä
= LPn,∞

Ä
XτUm

ä
.

Then Pn,∞ −→
n→∞

P∞,∞, weakly for the local Skorokhod topology.
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