
Université de Rennes 1 Année 2021-2022

Master 2ème Mathématiques Processus stochastiques à sauts

Homework #5 : final examination
Due on March 31th : individual work

Exercise 1 Warm-up : behaviour of characteristic exponent

Let η(u) be the characteristic exponent of a real-valued Lévy process :

η(u) = ibu− 1

2
Γu2 +

∫
R

[
eiuy − 1− iuy1{|y|<1}

]
ν(dy).

1. Show that lim
|u|→∞

η(u)

u2
= −1

2
Γ, by proving that lim

|u|→∞

1

u2

∫
R

[
eiuy−1−iuy1{|y|<1}

]
ν(dy) = 0.

2. Show that X has bounded variations on every time interval a.s. if and only if Γ = 0 and∫
R(1 ∧ |y|)ν(dy) < ∞. Use Lévy-Itô decomposition or the exponential formula for PRM.

In that case lim
|u|→∞

η(u)

u
= i d, where d = b −

∫ 1

−1
y ν(dy) is the drift. Use the dominated

convergence as in the �rst point.

3. Show that the characteristic exponent η is bounded if and only if X is a compound Poisson

process. If you assume that η is bounded, show that

(Re η)(u) =

∫
R∗

(
cos(uy)− 1

)
ν(dy)

and that ∫
R∗

(
e−ty

2/2 − 1
)
ν(dy) =

1√
2πt

∫
R
e−λ

2/2t(Re η)(λ)dλ ≤ sup
λ∈R

(Re η)(λ).

Deduce further that X has bounded variations (in the sense of the preceding point).

Exercise 2 First round : subordinators

A non-decreasing Lévy process with values in R+ is called a subordinator.

1. Show that a real valued Lévy process X = (Xt : t ≥ 0) is a subordinator if its characteristic

exponent has the form

η(u) = ibu+

∫ ∞
0

(
eiyu − 1

)
ν(dy), (1)

where b ≥ 0 and the Lévy measure has the support in R+ and satis�es∫ 1

0
y ν(dy) <∞ or equivalently

∫ ∞
0

y

1 + y
ν(dy) <∞. (2)

Moreover Xt = tb +
∑
s≤t

∆Xs. Use the positivity and the monotonicity to prove that X

contains no Brownian part. Then use the existence of all moments of the third term in the

Lévy-Itô decomposition of X to obtain (2).
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2. Show that for a subordinator

E
(
e−λXt

)
= e−tφ(λ), (3)

where the Laplace exponent

φ(λ) = η(iλ) = −bλ+

∫ ∞
0

(
1− e−λy

)
ν(dy). (4)

Analyse the analytic continuation of u 7→ E
(
eiuXt

)
.

3. A subordinator X is called one-sided stable process if for each a ≥ 0 there corresponds a

constant c(a) ≥ 0 such that aXt and Xt c(a) have the same law.

(a) Show that c(·) in this de�nition is continuous ans satis�es the equation c(aã) = c(a)c(ã).
Then deduce that c(a) = aα, with some α > 0 (the index).

(b) Deduce further that φ(a) = c(a)φ(1) and hence

E
(
e−λXt

)
= e−t r λ

α
, r > 0 (the rate). (5)

By using the concavity of φ deduce that α ∈ (0, 1).

(c) Prove (or assume) that for α ∈ (0, 1),∫ ∞
0

(1− e−λy) 1

y1+α
dy =

Γ(1− α)

α
λα,

where here Γ(·) is the Euler's gamma function. Deduce that the stable subordinators

with index α and rate r have the Laplace exponent (4) with Lévy measure

ν(dy) =
αr

Γ(1− α)

1

y1+α
. (6)

(d) An example : the stable subordinator with index 1
2 and rate 1 have the probability

density

fXt(s) :=
( t

2
√
π

)
s−3/2e−t

2/(4s), s ≥ 0.

Indeed, set

gt(λ) := E
(
e−λXt

)
=

∫ ∞
0

e−λsfXt(s)ds,

prove that g′t(λ) = −(t/2
√
λ)gt(λ), that gt(0) = 1 and deduce that gt(λ) = e−tλ

1/2
.

Exercise 3 Rising scale : transience and recurrence

Let X = (Xt : t ≥ 0) be a Lévy process with the characteristic exponent η. Denote by Pt the
associated semigroup, given by

Ptf(x) =

∫
R
f(x+ y)P(Xt ∈ dy),

with f a non-negative measurable function. Recall that the resolvent Rλ is given, for measurable

f ≥ 0 by

Rλf(x) =

∫ ∞
0

e−λt Ptf(x)dt = Ex
(∫ ∞

0
e−λtf(Xt)dt

)
.

1. Let τ an exponential random time with parameter λ. Show that E•f(Xτ ) = λRλf(•).
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2. Denote the Fourier transform of a function g ∈ L1(R) by Fg(u) =

∫
R
ei u xg(x)dx

(attention, not the same de�nition as in the course). Show that for every f ∈ L1 ∩ L∞,

F(Ptf)(u) = exp
{
tη(−u)

}
Ff(u), and F(Rλf)(u) =

( 1

λ− η(−u)

)
Ff(u), (7)

where t ≥ 0 and λ > 0. Moreover if A denotes the generator of Pt and D its domain, show

that if f ∈ D and Af ∈ L1, then F(Af)(u) = η(−u)Ff(u).

3. Let us introduce a familiy of measures called the potential measures {U(x, ·) : x ∈ R} given,
for B ∈ B(R), by

U(x,B) =

∫ ∞
0

Px(Xt ∈ B)dt = Ex
(∫ ∞

0
1{Xt∈B}dt

)
∈ [0,∞].

If TB = inf{t ≥ 0 : Xt ∈ B} denotes the �rst entrance time into B, show that

U(x,B) = Ex
(∫ ∞

TB

1{Xt∈B}dt
)

=

∫
B
U(y,B)Px(XTB ∈ dy), (8)

where B is the closure of B.

4. We say that the process X is transient if the for every compact set K, U(x,K) < ∞,

x ∈ R, or equivalent if U(0,K) < ∞ since U(x,K) = U(0,K − {x}). Here we denoted by

B − B′ = {x − x′ : x ∈ B, x′ ∈ B′}. We say that a process is recurrent if U(0, B) = ∞ for

every open ball B centered in 0. We want to prove that the process is either transient or

recurrent.

(a) Suppose that ∃ε > 0 such that U(0, B) <∞, where B = (−ε, ε), and let B′ =
[
− ε

3 ,
ε
3

]
.

Justify the following relations

U(x,B′) ≤ sup
y∈B′

U(y,B′) = sup
y∈B′

U(0, B′ − {y}) ≤ U(0, B′ −B′) ≤ U(0, B) <∞.

Use (8) for the �rst inequality.

(b) Deduce that for every y ∈ R, U(x, {y} + B′) < ∞ and then U(x,K) < ∞ for any

compact K.

5. Test of transience : the Lévy process X is transient i� for some r > 0 small enough

lim sup
λ↓0

∫ r

−r
Re
( 1

λ− η(u)

)
du <∞. (9)

(a) For r > 0 arbitrary small consider f = 1[−r,r] ? 1[−r,r] (the convolution). Clearly it

can be (proved) seen that 0 ≤ f ≤ 2r1[−2r,2r] is continuous non-negative with support

[−2r, 2r] and also that

Ff(u) =

{
[(2/u) sin(ru)]2 if u 6= 0
4r2 otherwise

is a bounded continuous non-negative function. Show that for λ > 0,

Rλf(0) =
1

2π

∫
R

[2

u
sin(ru)

]2
Re
( 1

λ− η(−u)

)
du. (10)

Use Fourier inversion, (7) and the fact that Rλf(0) is a real number.
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(b) Deduce that 2rU(0, [−2r, 2r]) ≥ lim sup
λ↓0

Rλf(0), and latter quantity is in�nite whenever

lim sup
λ↓0

∫ r

−r
Re
( 1

λ− η(−u)

)
du =∞

and then X is recurrent.

(c) Conversely, assume that for r > 0,

lim sup
λ↓0

∫ 2r

−2r
Re
( 1

λ− η(−u)

)
du <∞.

Set

g(x) = f(u) =

{
[(2/x) sin(rx)]2 if x 6= 0
4r2 otherwise

having its Fourier transform Fg(u) = 2π1[−r,r]?1[−r,r]. Deduce un expression of Rλg(0).
One can use the same argument as in the previous point.

(d) Prove that U(0, [− π
3r ,

π
3r ]) < ∞. For instance one can (prove and) use that g(x) ≥ r2,

when |x| ≤ π
3r . Conclude that X is transient.

Exercise 4 Final step : pathwise uniqueness

Let X = (Xt : t ≥)) be a one-dimensional symmetric stable with index α ∈ (1, 2) having its Lévy

measure given by ν(dz) = |z|−1−α on R∗ and its generator, for f a C2−function

Lf(x) =

∫
R∗

[f(x+ z)− f(x)− 1{|z|≤1}zf
′(x)]|z|−1−αdz.

1. Set Xn
t =

∑
s≤t

∆Xs1{|∆Xs|≤n}. Show that Xn is a Lévy process and give its Lévy measure,

then show that Xn is a square integrable martingale.

2. Let Ht be a bounded predictable process. Show that Znt :=
∫ t

0 HsdX
n
s is a square integrable

martingale.

3. Set Unt = Xt −Xn
t . Show that

E
∣∣∣ ∫ t

0
HsdU

n
s

∣∣∣ ≤ CE(∑
s≤t
|∆Xs|1{|∆Xs|>n}

)
,

for some constant C. Show that the right hand side of the latter inequality is �nite and

tends to 0, as n→∞.

4. Deduce that the process Zt =
∫ t

0 HsdXs is a martingale.

5. Let f be a C2
b function (with bounded �rst and second derivatives) and set K(s, z) :=

f(Zs− +Hs z)− f(Zs−)− f ′(Zs−)Hs z. Justify each of following equalities

f(Zt) = f(Z0) +

∫ t

0
f ′(Zs−)dZs +

∑
s≤t

[f(Zs)− f(Zs−)− f ′(Zs−)∆Zs]

= f(Z0) +

∫ t

0
f ′(Zs−)dZs +

∫ t

0

∫
K(s, z)N(ds, dz) = f(Z0) +Mt +

∫ t

0

∫
K(s, z)dsν(dz),

where Mt =

∫ t

0
f ′(Zs−)dZs +

∫ t

0

∫
K(s, z)Ñ(ds, dz). Here N is the PRM associated to X

with intensity measure dt ν(dz).
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6. Prove that for each m, V m
t =

∫ t

0

∫
|z|≤m

K(s, z)Ñ(ds, dz) is a martingale and that Mt is the

limit of martingales

∫ t

0
f ′(Zs−)dZs + V m

t .

One can use the fact that for each k > m, V k
t − V m

t is a martingale and show that

E
∫ t

0

∫
m<|z|

|K(s, z)|
(
N(ds, dz) + dsν(dz) ≤ C ′m1−α,

for some constant C ′ not depending on m.

7. Show that, if Hs 6= 0, we have∫ t

0

∫
K(s, z)dsν(dz) =

∫ t

0
|Hs|αLf(Zs−).

One should come back to the expression of K, perform the change of variable w = Hs z and
recall the expression of L. Conclude that even if Hs = 0,

f(Zt) = f(Z0) +Mt +

∫ t

0
|Hs|αLf(Zs−)ds. (11)

8. (Please read also Bonus Exercice) We study the uniqueness of the following SDE

dYt = F (Yt−)dXt, Y0 = y0, (12)

where F is supposed bounded continuous such that

|F (x)− F (y)| ≤ ρ(|x− y|), ∀x, y ∈ R, (13)

with ρ : [0,∞) → R a non-decreasing continuous function, ρ(0) = 0. More precisely we try

to prove that if ∫
0+

1

ρ(x)α
dx =∞, (14)

then the solution of the SDE (12) is pathwise unique.

(a) Let Y 1 and Y 2 be any two solutions of (12) set Zt = Y 1
t −Y 2

t andHt = F (Y 1
t−)−F (Y 2

t−).

Deduce that Zt =
∫ t

0 HsdXs.

(b) De�ne At =
∫ t

0 |Hs|αds. Justify that At <∞ (use the fact that F is bounded).

(c) Denote by pt(x, y) the transition density for Xt, that is the density of Px(Xt ∈ dy).
Fix λ > 0, let rλ(x) =

∫∞
0 e−λtpt(x, 0)dt and Rλf(x) =

∫
f(y)rλ(x − y)dy. Recognize

Rλ ? It can be proved that rλ(x) is bounded continuous in x, and rλ(x) < rλ(0), if
x 6= 0(admitted).

(d) Let an ↓ 0 such that
∫ an
an+1

ρ(x)−αdx = n. For each n one can choose hn a non-negative

C2−function with the support in [an+1, an], whose integral is 1 and with hn(x) ≤
2/(nρ(x)α) (admitted). Set fn = Rλhn(x). Show that fn is C2.

One can interchanges di�erentiation and integration and uses translation invariance.

(e) Show that Lfn = LRλhn = λRλhn − hn = λfn − hn.
(f) Use Itô's product formula and (11) to deduce

E
(
e−λAtfn(Zt)

)
−fn(0) = E

∫ t

0
e−λAs |Hs|αLfn(Zs−)ds−E

∫ t

0
e−λAsλ|Hs|αfn(Zs−)ds.
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(g) Conclude from the preceding two points that

fn(0)− E
(
e−λAtfn(Zt)

)
= E

∫ t

0
e−λAs |Hs|αhn(Zs−)ds.

Show, by using the properties of hn and the fact that |Hs| ≤ ρ(Zs−)|, that the right

hand side of the latter equality is less that 2t/n hence tends to 0, as n→∞.

(h) Justify that hn(y)dy → δ0 weakly, as n→∞ and that fn(x)→ rλ(x) as n→∞. Show

that

rλ(0)− E
(
e−λAtrλ(Zt)

)
= 0.

(i) Conclude that P(Zt = 0) = 1 for each t hence Z is identically 0.

Exercice (Bonus) Last word : another approach to pathwise uniqueness

Consider the same SDE (12) as in 8 of the Exercise 4 and make the same assumptions on F and

ρ. Recall that N is the PRM associated to X with intensity measure dtν(dz).

1. Explain why the equation (12) can be written as

Yt = y0 +

∫ t

0

∫
|z|≤1

F (Ys−)zÑ(ds, dz) +

∫ t

0

∫
|z|>1

F (Ys−)zN(ds, dz). (15)

2. Consider again the sequence an ↓ 0 such that
∫ an
an+1

ρ(x)−αdx = n and also hn non-negative

C2 even functions with the support in [an+1, an], whose integral is 1 and with hn(x) ≤
2/(nρ(x)α). Set u(x) = |x|α−1 and un = u ? hn. Justify that un(s)→ u(x), as n→∞.

3. In this question we prove that Lun = cun with c a constant independent of n. Set uε(x) =
u(x)e−ε|x| and uεn = uε ? hn. The functions u

ε
n belongs to S(R).

(a) Use Exercise 3 point 2, with same notations, and show F(Luεn)(ξ) = c(α)|ξ|αFuεn(ξ).

(b) Show that

Fuεn(ξ) = c′(α)
[
(ε− iξ)−α + (ε− iξ)−α

]
Fhn(ξ).

(c) For ξ 6= 0 compute lim
ε→0

[
(ε− iξ)−α + (ε− ξ)−α

]
and deduce Lun = limε→0 Lu

ε
n = c un.

4. Denote again Y 1 and Y 2 two solutions of (12) and set Zt = Y 1
t − Y 2

t . Show that

un(Zt)− un(0) =

∫ t

0
|F (Y 1

s )− F (Y 2
s )|αLun(Zs)ds

+

∫ t

0

∫ [
un
(
Zs− + (F (Y 1

s )− F (Y 2
s ))z

)
− un(Zs−)

]
Ñ(ds, dz).

5. Show that |F (x)− F (y)|αLun(x, y) ≤ cρ(|x− y|)αhn(x− y) ≤ c/n.
6. Set, for k ≥ 1, Tk = inf{t > 0 : |Zt| > k}. Deduce that

E
[
un(Zt∧Tk)

]
≤ un(0) + E

[ ∫ t∧Tk

0

c

n
ds
]
.

Conclude that E
[
|Zt∧Tk |α−1

]
= 0 and then Zt = 0 a.s.
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