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HOMEWORK #15 : FINAL EXAMINATION
Due on March 31th : individual work

Exercise 1 Warm-up : behaviour of characteristic exponent
Let n(u) be the characteristic exponent of a real-valued Lévy process :

1 .
n(u) = ibu — §Tu2 +/ [GWy -1- iuyl{‘ykl}}u(dy).
R

. on(u) 1 . . 1 - . B
1. Show that \ul|li>noo 2o —iF, by proving that Iulllgloo 2z | [emy_ 1_Zuy1{|y‘<1}] v(dy) = 0.
2. Show that X has bounded variations on every time interval a.s. if and only if I' = 0 and

Jx(L A Jyv(dy) < oo. Use Lévy-Ito decomposition or the exponential formula for PRM.

1
In that case lim w = id, where d = b — / yv(dy) is the drift. Use the dominated

lu| 00 U 1
convergence as in the first point.

3. Show that the characteristic exponent 7 is bounded if and only if X is a compound Poisson
process. If you assume that n is bounded, show that

(Ren)(w) = [ (cos(uy) ~ )o(dy)

and that

e W2 _ 1)y = ! e/ (Re sup(Re .
2= tputay) = = [ Ren)()ar < sup(Ren) O

Deduce further that X has bounded variations (in the sense of the preceding point).

Exercise 2 First round : subordinators
A non-decreasing Lévy process with values in Ry is called a subordinator.

1. Show that a real valued Lévy process X = (X, : t > 0) is a subordinator if its characteristic
exponent has the form

n(u) = ibu + / (eiy“ —1)v(dy), (1)
0
where b > 0 and the Lévy measure has the support in R, and satisfies
1 00 y
/ yr(dy) < oo or equivalently / v(dy) < 0. (2)
0 0 1+ Yy

Moreover X; = tb + ZAX s. Use the positivity and the monotonicity to prove that X
s<t
contains no Brownian part. Then use the existence of all moments of the third term in the

Lévy-1td decomposition of X to obtain (2).



2. Show that for a subordinator

E(e*AXt) = eftd’()‘), (3)

where the Laplace exponent

H(N) = n(iX) = —bA + /Ooo (1 — e ) u(dy). (4)

Analyse the analytic continuation of u +— E(ei“Xt).

3. A subordinator X is called one-sided stable process if for each a > 0 there corresponds a
constant c¢(a) > 0 such that a Xy and X have the same law.

(a)
(b)

Show that ¢(-) in this definition is continuous ans satisfies the equation c(aa) = c(a)c(a).
Then deduce that c¢(a) = a®, with some a > 0 (the index).

Deduce further that ¢(a) = c(a)¢(1) and hence
E(e_)‘Xt) = e " >0 (the rate). (5)

By using the concavity of ¢ deduce that « € (0,1).

Prove (or assume) that for o € (0, 1),

o0 1 I'(1-a)
A _ o
| o=y = e

where here I'(+) is the Euler’s gamma function. Deduce that the stable subordinators
with index a and rate r have the Laplace exponent (4) with Lévy measure

ar 1
M —a) g o

v(dy) =

An example : the stable subordinator with index % and rate 1 have the probability
density

t — — s
Ifx,(s) = <ﬁ>s 3/2o-1%/(4s) 5> 0.

Indeed, set
gt(N) == E(e*/\Xt) :/ e fx, (s)ds,
0

prove that gj(A) = —(t/2v/X)gi()\), that g;(0) = 1 and deduce that g;(A) = e ",

Exercise 3 Rising scale : transience and recurrence
Let X = (X :t > 0) be a Lévy process with the characteristic exponent 1. Denote by P, the
associated semigroup, given by

Py f(x) = /R f( + 9)P(X; € dy),

with f a non-negative measurable function. Recall that the resolvent R) is given, for measurable
f=0by

Ryf(z) = /OO e MP, f(x)dt = Ex(/oo e_)‘tf(Xt)dt).

0 0

1. Let 7 an exponential random time with parameter A\. Show that E f(X,;) = AR\ f(e).



2. Denote the Fourier transform of a function g € L!(R) by Fg(u) = / e g (x)dx
R
(attention, not the same definition as in the course). Show that for every f € L' NL>®,

bt
A= n(—u)
where t > 0 and A > 0. Moreover if A denotes the generator of P; and D its domain, show
that if f € D and Af € L', then F(Af)(u) = n(—u)Ff(u).

3. Let us introduce a familiy of measures called the potential measures {U(x,-) : = € R} given,
for B € B(R), by

FPf) ) = exp {tn(~w)}Ff(w), and  FRaf)(u) = ( JFF), ()

[e.9]

Uz, B) :/Ooopx(xt eB)dt:IEx</0

If Tp = inf{t > 0: X; € B} denotes the first entrance time into B, show that

l{XtEB}dt) c [0, OO]

[e.9]

Ulx, B) = Ea /T 1xemdt) = /B Uy, B)P.(Xr, € dy), ®)

where B is the closure of B.

4. We say that the process X is transient if the for every compact set K, Uz, K) < oo,
x € R, or equivalent if U(0, K) < oo since U(z, K) = U(0, K — {z}). Here we denoted by
B—B' ={x—1a:x € B,x’ € B'}. We say that a process is recurrent if U(0, B) = oo for
every open ball B centered in 0. We want to prove that the process is either transient or
recurrent.

(a) Suppose that 3¢ > 0 such that U(0, B) < oo, where B = (—¢,¢), and let B’ = [— 5 %]
Justify the following relations

U(x,B") < sup U(y,B') = sup U(0, B’ — {y}) <U(0,B'— B") <U(0, B) < .
yeB’ yeB’

Use (8) for the first inequality.

(b) Deduce that for every y € R, U(z,{y} + B’) < oo and then U(x, K) < oo for any
compact K.

5. Test of transience : the Lévy process X is transient iff for some r > 0 small enough

" 1
li Re( ———— )du < oo. 9
e | e )< o

T

(a) For r > 0 arbitrary small consider f = 1j_,,) * 1{_,] (the convolution). Clearly it
can be (proved) seen that 0 < f < 2r1|_9; 9, is continuous non-negative with support
[—2r,2r] and also that

P = { (Gosniralt itu 20

4r2 otherwise

is a bounded continuous non-negative function. Show that for A > 0,

Ry f(0) = 217?/11@ [% sin(ru)} 2Re()\_771(_u)>du. (10)

Use Fourier inversion, (7) and the fact that Ry f(0) is a real number.



(b) Deduce that 2rU(0, [-2r,2r]) > limsup R, f(0), and latter quantity is infinite whenever
AL0

r 1

limsup/ Re<7>du =00
ALO —r A —n(—u)

and then X is recurrent.

(c) Conversely, assume that for r > 0,
2r 1
limsup/ Re( ———— )du < o0.
MO J—2r ()\ - 77(—“))

g(z) = f(u) = { [(2/z) sin(rz)]?  ifz #0

472 otherwise

Set

having its Fourier transform Fg(u) = 271, ,j%1|_,,]. Deduce un expression of Rg(0).
One can use the same argument as in the previous point.

(d) Prove that U( [— %, £]) < oo. For instance one can (prove and) use that g(z) > r?
when |z| < 47 Conclude that X is transient.

Exercise 4 Final step : pathwise uniqueness
Let X = (X; :t >)) be a one-dimensional symmetric stable with index a € (1,2) having its Lévy
measure given by v(dz) = |z|717% on R* and its generator, for f a C2—function

L) = [ G+ 2) = @) = Lz @)

1. Set X}' = Z AXs1ax,|<n}- Show that X™ is a Lévy process and give its Lévy measure,
s<t
then show that X™ is a square integrable martingale.

2. Let H; be a bounded predictable process. Show that Z := fg H,dX7 is a square integrable
martingale.

3. Set U = Xy — X{*. Show that

t
E) / H,dU™
0

for some constant C. Show that the right hand side of the latter inequality is finite and
tends to 0, as n — oc.
4. Deduce that the process Z; = fg H,dX; is a martingale.

5. Let f be a C? function (with bounded first and second derivatives) and set K(s,z) :=
f(Zs— + Hsz) — f(Zs—) — f'(Zs-)H; z. Justify each of following equalities

< CE( > !AXs\l{\AXS|>n}) :
s<t

1(20) = J(Zo) + /0 (2047, + STUH(Z) — F(Za) — (20 )AZ]

s<t

= f(Z) +/t #(Z,_)dz, +/t/K(s,z)N(ds,dz) = f(Z) +Mt+/t/K(s,z)dsu(dz),

where M; = / f(Zs-)dZ, +/ /K s, 2) (ds dz). Here N is the PRM associated to X

with intensity measure dt v(dz).



t ~
6. Prove that for each m, V" = / / K (s,z)N(ds,dz) is a martingale and that M; is the
0 J|z|I<m

t
limit of martingales / 1'(Zs-)dZs + V™.
0

One can use the fact that for each k > m, V¥ — V;™ is a martingale and show that

t
E/ / |K (s, 2)|(N(ds,dz) + dsv(dz) < C'm'™?,
0 Jm<|z|

for some constant C’ not depending on m.
7. Show that, if Hs # 0, we have

/Ot/K(s, 2)dsv(dz) = /Ot L F(Zo),

One should come back to the expression of K, perform the change of variable w = H, z and
recall the expression of L. Conclude that even if H; = 0,

H(Z0) = F(Zo) + My + /0 HJ|*Lf(Z,_)ds. (1)

8. (Please read also Bonus Exercice) We study the uniqueness of the following SDE
dY; = F(Y,_)dX,, Yo =1y, (12)
where F' is supposed bounded continuous such that
|F(z) = F(y)l < p(lz —yl), Vz,yeR, (13)

with p : [0,00) — R a non-decreasing continuous function, p(0) = 0. More precisely we try

to prove that if
1
/ ———~dx = oo, (14)
o+ P(T)

then the solution of the SDE (12) is pathwise unique.
(a) Let Y and Y2 be any two solutions of (12) set Z; = Y,!~Y,? and H; = F(Y,} )—F(Y?2).
Deduce that Z; = fot H,dX,.
(b) Define A; = fot |Hs|*ds. Justify that A; < oo (use the fact that F' is bounded).

(¢) Denote by p¢(x,y) the transition density for Xy, that is the density of P,(X; € dy).
Fix A > 0, let ry(z) = [ e Mpy(x,0)dt and Ry f(x) = [ f(y)ra(z — y)dy. Recognize
Ry 7 It can be proved that rj(z) is bounded continuous in z, and ry(xz) < ry(0), if
x # 0(admitted).

(d) Let ay | 0 such that f;ln"H p(x)~*dx = n. For each n one can choose h,, a non-negative
C?—function with the support in [a,.1,a,], whose integral is 1 and with h,(z) <
2/(np(z)®) (admitted). Set f,, = Ryhn(z). Show that f,, is C2.

One can interchanges differentiation and integration and uses translation invariance.

(¢) Show that Lfy = LRxhn = ARohn — hn = Afn — hn.

(f) Use Ito’s product formula and (11) to deduce

E(e—)\Atfn(Zt)) —fn(O) = E/t eAAS‘Hs|aLfn(Zs—)d8—E/t eiAAS/\|Hs’afn(Zs—)ds'
0 0

5



(g) Conclude from the preceding two points that

fn(0) —E(e™ 1 f,(Z)) = E/t e M| Hy|%h (Zs_ )ds.
0

Show, by using the properties of h,, and the fact that |Hs| < p(Zs-)|, that the right
hand side of the latter equality is less that 2¢/n hence tends to 0, as n — oo.

(h) Justify that h,(y)dy — dp weakly, as n — oo and that f,(x) — r)(z) as n — 0o. Show
that
rA(0) — E(e ™7\ (Zy)) = 0.

(i) Conclude that P(Z; = 0) =1 for each t hence Z is identically 0.

Exercice (Bonus) Last word : another approach to pathwise uniqueness
Consider the same SDE (12) as in 8 of the Exercise 4 and make the same assumptions on F' and
p. Recall that N is the PRM associated to X with intensity measure dtv(dz).

1. Explain why the equation (12) can be written as

Yi=wo +/ / _)zN(ds, dz) / / _)zN(ds,dz). (15)
|z|<1 |z|>1

2. Consider again the sequence a,, | 0 such that f “r p(x)"*dz = n and also h, non-negative

(? even functions with the support in [an+1,an] whose integral is 1 and with h,(x) <
2/(np(x)®). Set u(z) = |z|*1 and u, = u* h,. Justify that u,(s) — u(z), as n — oco.

3. In this question we prove that Lu, = cu, with ¢ a constant independent of n. Set u(x) =
u(z)e"l and uf, = u¢ * hy,. The functions uf belongs to S(R).

(a) Use Exercise 3 point 2, with same notations, and show F(Lug,)(§) = c(a)|§]|*Fug, (§).
(b) Show that
Fup(€) = (@) [(e —i&) ™ + (€ — i&) "] Fhn(8).

(c) For £ # 0 compute hII(l) [(e = &)™ + (¢ — §)™*] and deduce Lu, = lime_o Luf, = cup,.
e—

4. Denote again Y'! and Y? two solutions of (12) and set Z; = Y;! — Y;2. Show that
Un(Z¢) — un(0 / |F(Y)) — F(Y2)|*Lu,(Zs)ds

+f t [ a2+ (P = PO2)2) = 0al(220)] W (s, ),

5. Show that |F(z) — F(y)|*Lun(z,y) < cp(|x — y|)*hn(z —y) < ¢/n.
6. Set, for k > 1, T, = inf{t > 0: |Z;| > k}. Deduce that

E[un(Zt/\Tk)] < 1 (0) +E[ /0 o %ds}.

Conclude that IEUZMT,J“_l] =0 and then Z; =0 a.s.



