HOMEWORK # 4 : Feller semigroups and martingales Due on February 13th

Exercise 1 A basic martingale

Let $X = (X_t : t \ge 0)$ be a Feller process with generator $(A, \mathcal{D}(A))$ and semigroup $(P_t : t \ge 0)$. Show that for every $f \in \mathcal{D}(A)$, the process

$$M_t^f = f(X_t) - f(X_0) - \int_0^t Af(X_s)ds, \quad t \ge 0,$$
 (1)

is a martingale for the canonical filtration $\mathcal{F}_t^X = \sigma(X_r : r \leq t)$ and for any \mathbb{P}_x , $x \in \mathbb{R}^{d+1}$

Exercise 2 A martingale transformation and a martingale problem

1. Let (M_t) be a càdlàg (\mathcal{F}_t) -martingale and let $f:[0,\infty)\to\mathbb{R}$ be a continuously differentiable deterministic function. Show that for all s< t

$$\mathbb{E}(M_t f(t) - M_s f(s)|\mathcal{F}_s) = (f(t) - f(s))M_s = \mathbb{E}\left(\int_s^t M_u f'(u)du|\mathcal{F}_s\right)$$
(2)

and that $M_t f(t) - \int_0^t M_u f'(u) du$ is also an (\mathcal{F}_t) -martingale.

Hint: to get the second equality in (2) introduce a division $s = u_0 < u_1 < \ldots < u_n = t$ of the interval [s,t] with $u_j = j(t-s)/n$, $j = 0, 1, \ldots, n$ and use the same argument as for the first equality in (2).

2. Let $X = (X_t : t \ge)$ solve the (L, \mathcal{D}) martingale problem and let $\phi : [0, \infty) \to \mathbb{R}$ be a bounded continuously differentiable deterministic function. Show that, for any $f \in \mathcal{D}$,

$$S_t := f(X_t)\phi(t) - \int_0^t \left[\phi'(s) f(X_s) + \phi(s) Lf(X_s)\right] ds$$
 is a martingale.

Hint: use the first part.

3. Application : if $\phi(s) = e^{-\lambda s}$, $\lambda > 0$, what is S?

Exercise 3 Resolvent equation

Let $(P_t : t \ge 0)$ be a Feller semigroup. Prove that its resolvent operator R_{λ} satisfies the following equation

$$R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\lambda}R_{\mu}$$
, for all $\lambda, \mu > 0$.

^{1.} Let L be a linear operator $L: \mathcal{D} \to B_b(\mathbb{R}^d)$, $\mathcal{D} \subset C(\mathbb{R}^d)$: we say that a \mathbb{R}^d -valued process $X = (X_t: t \geq 0)$ solves the (L, \mathcal{D}) -martingale problem if processes (1) with A replaced by L are martingales for any $f \in \mathcal{D}$ with respect to its own filtration. Hence any Feller process X solves the (A, \mathcal{D}) -martingale problem, where A is the generator of X and $\mathcal{D} \subset \mathcal{D}(A)$.