Université de Rennes 1 Master 2ème Mathématiques

Homework # 3 : Martingales càdlàg/ Itô-Lévy décomposition Due on February 22nd, 2022

Exercise 1 Product of martingales

Let $(M_t^1)_{t>0}$ and $(M_t^2)_{t>0}$ two centered càdlàg real-valued martingales with respect to a filtration $(\mathcal{F}_t)_{t>0}$ such that $\overline{M}_0^1 = M_0^2 = \overline{0}$. We assume that

$$\mathbb{E}\big[|M_t^1|^2\big] < \infty \text{ and } \mathbb{E}\big[|V(M^2)_t)|^2\big] < \infty, \ \forall t \ge 0,$$

where $V(M^2)_t$ denotes the variation of M^2 on [0, t].

1. Denote $\pi : 0 = t_0 < t_1 < \ldots < t_k = t$ a partition of the interval [0, t]. Show that

$$\mathbb{E}[M_t^1 M_t^2] = \sum_{j=0}^{k-1} \mathbb{E}[(M_{t_{j+1}}^1 - M_{t_j}^1)(M_{t_{j+1}}^2 - M_{t_j}^2)].$$

2. Find a sequence of partitions $(\pi_n)_{n\geq 1}$ of the interval [0, t] such that $\lim_{n\to\infty} \operatorname{mesh}(\pi_n) = \lim_{n\to\infty} \max_{0\leq j\leq k(n)-1} |t_{j+1}^{(n)} - t_j^{(n)}| = 0.$ We will prove that, with probability 1,

$$(\star) \quad \lim_{n \to \infty} \sum_{j=0}^{k(n)-1} (M^1_{t^{(n)}_{j+1}} - M^1_{t^{(n)}_j}) (M^2_{t^{(n)}_{j+1}} - M^2_{t^{(n)}_j}) = \sum_{0 < s \le t} \Delta M^1_s \Delta M^2_s.$$

Fix $\omega \in \Omega$ and set $D = \{\tau_r : r \ge 1\}$ the common points of discontinuity of $[0, \infty) \ni t \mapsto M^1_t(\omega)$ and $[0,\infty) \ni t \mapsto M_t^2(\omega)$. With this notation the right hand side of (\star) is

$$\sum_{0 < s \le t} \Delta M_s^1 \Delta M_s^2 = \sum_{r \ge 1} \Delta M_{\tau_r}^1 \Delta M_{\tau_r}^2.$$

Prove (\star) by using the following steps (for simplicity we will omit ω).

(a) Denote by $K := 2\left(\sup_{0 < s \le t} |M_s^1| + \sup_{0 < s \le t} |M_s^2|\right) < \infty$. Fix $\varepsilon > 0$ arbitrary and show that there exists $\{\eta_r^{(\varepsilon)} : r \ge 1\}$ such that for each $s \in (0, \eta_r^{(\varepsilon)}]$:

$$\max\left\{|M_{\tau_r}^1 - M_{\tau_r-s}^1 - \Delta M_{\tau_r}^1|, |M_{\tau_r}^2 - M_{\tau_r-s}^2 - \Delta M_{\tau_r}^2|\right\} \le \frac{\varepsilon}{K2^r}.$$

(b) Let $(\pi_n)_{n\geq 1}$ a partition of the interval [0,t] containing exactly $\{\tau_1,\ldots,\tau_{r(n)}\}$ among the points of D and such that $\operatorname{mesh}(\pi_n) \leq \inf_{i \leq r(n)} \eta_i^{(\varepsilon)}$. Show that the quantity

$$\sum_{j=0}^{k(n)-1} (M^{1}_{t^{(n)}_{j+1}} - M^{1}_{t^{(n)}_{j}}) (M^{2}_{t^{(n)}_{j+1}} - M^{2}_{t^{(n)}_{j}}) - \sum_{r \ge 1} \Delta M^{1}_{\tau_{r}} \Delta M^{2}_{\tau_{r}} \Big|$$

can be bounded by a sum of the following two quantities

$$A := \Big| \sum_{i=0}^{r(n)} (M_{\tau_i}^1 - M_{t_{p_{i-1}}^{(n)}}^1) (M_{\tau_i}^2 - M_{t_{p_{i-1}}^{(n)}}^2) - \sum_{j=0}^{r(n)} \Delta M_{\tau_i}^1 \Delta M_{\tau_i}^2 \Big|$$

and

$$B := \sum_{j=0,\dots,k(n)-1, j \notin \{p_i, i \le r(n)\}} (M^1_{t_{j+1}^{(n)}} - M^1_{t_j^{(n)}}) (M^2_{t_{j+1}^{(n)}} - M^2_{t_j^{(n)}}),$$

where $\tau_i = t_{p_i}^{(n)}, \forall i \leq r(n)$, and thus $t_j^{(n)}$ for $j \notin \{p_1, \ldots, p_{r(n)}\}$ is not in $\{\tau_1, \ldots, \tau_{r(n)}\}$.

(c) Denote $A(\eta^{(\varepsilon)}) := \sum_{r=1}^{\infty} \left[(M^1_{\tau_r} - M^1_{\tau_r - \eta^{(\varepsilon)}_r}) (M^2_{\tau_r} - M^2_{\tau_r - \eta^{(\varepsilon)}_r}) - \Delta M^1_{\tau_r} \Delta M^2_{\tau_r} \right]$. By noting that

$$\begin{split} \left| (M_{\tau_r}^1 - M_{\tau_r - \eta_r^{(\varepsilon)}}^1) (M_{\tau_r}^2 - M_{\tau_r - \eta_r}^2) - \Delta M_{\tau_r}^1 \Delta M_{\tau_r}^2 \right| \\ & \leq \left| M_{\tau_r}^1 - M_{\tau_r - \eta_r^{(\varepsilon)}}^1 - \Delta M_{\tau_r}^1 \right| \left| M_{\tau_r}^2 - M_{\tau_r - \eta_r^{(\varepsilon)}}^2 \right| + \left| M_{\tau_r}^2 - M_{\tau_r - \eta_r^{(\varepsilon)}}^2 - \Delta M_{\tau_r}^2 \right| \left| \Delta M_{\tau_r}^1 \right|, \end{split}$$

show that,

$$|A(\eta^{(\varepsilon)})| \le 2\left(\sup_{0 < s \le t} |M_s^1| + \sup_{0 < s \le t} |M_s^2|\right) \sum_{r=1}^{\infty} \frac{\varepsilon}{K2^r} < \varepsilon.$$

Conclude that $A \leq \varepsilon$ as $\operatorname{mesh}(\pi_n) \leq \inf_{i \leq r(n)} \eta_k^{(\varepsilon)}$. Show that

(d) Show that

$$B \le \max_{0 \le j \le k(n) - 1, j \notin \{p_i, i \le r(n)\}} |M_{t_{j+1}^{(n)}}^1 - M_{t_j^{(n)}}^1| V_{\pi_n}(M^2), \quad \text{where} \quad V_{\pi_n}(M^2) = \sum_{j=0}^{k(n) - 1} |M_{t_{j+1}^{(n)}}^2 - M_{t_j^{(n)}}^2|$$

Prove that,

$$\lim_{n \to \infty} \max_{1 \le j \le k(n), j \notin \{p_i, i \le r(n)\}} |M_{t_j^{(n)}}^1 - M_{t_{j-1}^{(n)}}^1| = 0.$$

Hint^{*}: suppose that there exists $\delta > 0$ and $(n_{\ell}) \uparrow$ s.t. exists $i_{\ell} \in \{1, \ldots, k(n_{\ell})\} \setminus \{p_1, \ldots, p_{n_{\ell}}\}$ with $\left|M^1(t_{i_{\ell}}^{(n_{\ell})}) - M^1(t_{i_{\ell}-1}^{(n_{\ell})})\right| > \delta$ for all ℓ , and reveal a contradiction.

3. Deduce that $\mathbb{E}[M_t^1 M_t^2] = \mathbb{E}\sum_{0 < s \le t} \Delta M_s^1 \Delta M_s^2$, by noting that $\mathbb{E}\Big[\Big(\sup_{0 < s \le t} |M_s^1|\Big)V(M^2)_t\Big] < \infty$, and

the fact that

$$\Big|\sum_{j=0}^{k(n)-1} \Big((M^1_{t_{j+1}^{(n)}} - M^1_{t_j^{(n)}}) \Big(M^2_{t_{j+1}^{(n)}} - M^2_{t_j^{(n)}}) \Big) \Big| \le 2 \Big(\sup_{0 < s \le t} |M^1_s| \Big) V(M^2)_t.$$

4. Let B be a Borel set bounded away from 0 and let $g \in L^2(B, \mu_X)$ where μ_X is the Lévy measure associated to a Lévy process X. Show that $M_t = \int_B g(z) \widetilde{N}_X(t, dz)$ satisfies

$$\mathbb{E}[|M_t|^2] < \infty$$
 and $\mathbb{E}[|V(M)_t|^2] < \infty, \ \forall t \ge 0.$

Exercise 2 Interlacing

Let $Y = (Y(t) : t \ge 0)$ be a Lévy process with jumps bounded by 1, but may have jumps of arbitrarily small size, i.e. that there exists no $a \in (0, 1)$ such that $\nu((-a, a)) = 0$, where ν is the Lévy measure of Y. Assume that its Lévy-Itô decomposition is $Y(t) = bt + B_{\Gamma}(t) + \int_{|z|<1} z \widetilde{N}(t, dz), t \ge 0$. Define the sequence $(\varepsilon_n)_{n\ge 1}$ given by $\varepsilon_n = \sup\{y \ge 0 : \int_{0 \le |z| \le y} z^2 \nu(dz) \le 1/8^n\}$ and introduce a sequence of Lévy processes having the size of each jump bounded below by ε_n and above by 1, as follows: $Y_n(t) = bt + B_A(t) + \int_{\varepsilon_n \le |z| \le 1} z \widetilde{N}(t, dz), t \ge 0$.

- 1. Show that Y_n can be written as the sum of a Brownian motion with drift C_n and of a compound Poisson process with jumps ΔY .¹ What is the expression of the drift?
- 2. Verify that the sequence $(\varepsilon_n)_n$ is decreasing and converges to 0.
- 3. Fix T > 0. Show that for each $n \ge 1$ the process $Y_{n+1} Y_n$ is an L²-martingale, satisfying $\mathbb{E}\left(\sup_{0\le t\le T}|Y_{n+1}(t)-Y_n(t)|^2\right)\le {}^{4T}\!/\!s^n$ and $\mathbb{P}\left(\liminf_{n\to\infty}\left\{\sup_{0\le t\le T}|Y_{n+1}(t)-Y_n(t)|<{}^{1}\!/\!{}^{2^n}\right\}\right)=1.$
- 4. Deduce that the sequence $\{Y_n(t)\}_{n\geq 1}$ is almost surely uniformly Cauchy on compact intervals. Conclude that Y_n tends to Y uniformly on compact intervals of $[0, +\infty)$.²

¹Thus the process Y_n can be built by interlacing. <u>Bonus</u>: write the interlaced expression of Y_n .

²If X is an arbitrary Lévy process, then by the Lévy-Itô decomposition, $X(t) = Y(t) + \int_{|z| \ge 1} zN(t, dz), t \ge 0$, so its paths can be obtained by a further interlacing of Y by a compound Posson process with jumps of size bigger than 1.