Université de Rennes 1 Master 2ème Mathématiques

Homework # 3: Poisson random measures / Itô-Lévy décomposition Due on February 6th

Exercise 1 Functional of Poisson Random measure

Let Φ be a Poisson Random Measure (PRM) with intesity measure μ on $S \in \mathcal{B}(\mathbb{R}^d)$ and let $f: S \to \mathbb{R}$ be a Borel measurable function. We set $X := \int_S f(z) \Phi(dz)$. We want to prove that X is a.s. absolutely convergent if and only if $\int_{S} (1 \wedge |f(z)|) \mu(dz) < \infty$ and then to compute $\mathbb{E}(e^{iuX})$.

- 1. Assume first that f is a simple function $f(z) = \sum_{j=1}^{p} f_j \mathbb{1}_{A_j}(z)$ with f_j positive constants, A_1, \ldots, A_p disjoint subsets in S such that $\mu(A_1 \cup \ldots \cup A_p) < \infty$. Show that $X < \infty$ a.s. and compute $\mathbb{E}(e^{-vX})$ for v > 0.
- 2. Assume now that f is a positive measurable function. Show that, for any v > 0,

$$(\star) \qquad \mathbb{E}\left(e^{-vX}\right) = \exp\left\{-\int_{S} \left(1 - e^{-vf(z)}\right)\mu(dz)\right\}.$$

Deduce that $X < \infty$ a.s. if and only if, for any v > 0, $\int_{S} (1 - e^{-v f(z)}) \mu(dz) < \infty$.¹

- 3. For a general measurable function f write $f = f^+ f^-$ and introduce two random measures $\Phi_+ = \Phi(\cdot \cap \{z : f(z) \ge 0\})$ and $\Phi_- = \Phi(\cdot \cap \{z : f(z) < 0\})$. Show that Φ_{\pm} are independent PRM and $X = X_+ - X_-$. Conclude.
- 4. Under the same condition, show that, for any $u \in \mathbb{R}$, $\mathbb{E}(e^{iuX}) = \exp\left\{-\int_{S} (1-e^{iuf(z)})\mu(dz)\right\}$. Hint : follow the same steps as precedingly (for instance, show that if f is positive, (\star) could be extended analytically with v replaced by v - iu and conclude for this case).²

Exercise 2 Interlacing

Let $Y = (Y(t) : t \ge 0)$ be a Lévy process with jumps bounded by 1, but may have jumps of arbitrarily small size, i.e. that there exists no $a \in (0,1)$ such that $\nu((-a,a)) = 0$, where ν is the Lévy measure of Y. Assume that its Lévy-Itô decomposition is $Y(t) = bt + B_{\Gamma}(t) + \int_{|z| < 1} z \widetilde{N}(t, dz),$ $t \ge 0$. Define the sequence $(\varepsilon_n)_{n\ge 1}$ given by $\varepsilon_n = \sup\{y \ge 0 : \int_{0 \le |z| \le y} z^2 \nu(dz) \le 1/8^n\}$ and introduce a sequence of Lévy processes having the size of each jump bounded below by ε_n and above by 1, as follows : $Y_n(t) = bt + B_A(t) + \int_{\varepsilon_n \le |z| < 1} z \widetilde{N}(t, dz), t \ge 0.$

- 1. Show that Y_n can be written as the sum of a Brownian motion with drift C_n and of a compound Poisson process with jumps ΔY .³ What is the expression of the drift?
- 2. Verify that the sequence $(\varepsilon_n)_n$ is decreasing and converges to 0.
- 3. Fix T > 0. Show that for each $n \ge 1$ the process $Y_{n+1} Y_n$ is an L²-martingale, satisfying $\mathbb{E}\left(\sup_{0\le t\le T}|Y_{n+1}(t) Y_n(t)|^2\right) \le \frac{4T}{8^n}$ and $\mathbb{P}\left(\liminf_{n\to\infty}\left\{\sup_{0\le t\le T}|Y_{n+1}(t) Y_n(t)| < \frac{1}{2^n}\right\}\right) = 1.$
- 4. Deduce that the sequence $\{Y_n(t)\}_{n\geq 1}$ is almost surely uniformly Cauchy on compact intervals. Conclude that Y_n tends to Y uniformly on compact intervals of $[0, +\infty)$.⁴

^{1. &}lt;u>Bonus</u>: Show that the condition in Ex. 1.2 is equivalent with $\int_{S} (1 \wedge f(z)) \mu(dz) < \infty$ (*f* is still positive). 2. <u>Bonus</u>: Show that $\mathbb{E}(X) = \int_{S} f(z) \mu(dz)$, if $\int_{S} |f(z)| \mu(dz) < \infty$ and $\mathbb{E}(X^{2}) = \int_{S} f(z)^{2} \mu(dz) + \int_{S} f(z) \mu(dz))^{2}$, if $\int_{S} f(z)^2 \mu(dz) < \infty$.

^{3.} Thus the process Y_n can be built by interlacing. <u>Bonus</u>: write the interlaced expression of Y_n .

^{4.} If X is an arbitrary Lévy process, then by the Lévy–Itô decomposition, $X(t) = Y(t) + \int_{|z|>1} zN(t, dz), t \ge 0$, so its paths can be obtained by a further interlacing of Y by a compound Posson process with jumps of size bigger than 1.