Analyse 1 - Contrôle continu (1 heure et 15 minutes)

Les documents et calculatrices sont interdits. Les exercices sont indépendants. Toutes les réponses doivent être justifiées soigneusement.

Exercice 1. Soit $f: D \to \mathbb{R}$ une fonction définie sur un intervalle D et continue au point $a \in D$. Énoncer et donner une démonstration de la caractérisation séquentielle de la continuité de f en a.

Exercice 2. Soit (u_n) la suite réelle définie par

$$u_0 \in [0,2]$$
 et $u_{n+1} = \sqrt{2 - u_n}$, $\forall n \in \mathbb{N}$.

1. Justifier que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que

$$\forall n \in \mathbb{N}, \quad u_n \in [0, 2].$$

- 2. Si on suppose que $(u_n)_{n\in\mathbb{N}}$ admet une limite finie ℓ , quelles sont les valeurs possibles de ℓ ?
- 3. Vérifier que

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - 1| = \frac{|u_n - 1|}{1 + \sqrt{2 - u_n}}.$$

- 4. En déduire que la suite $(|u_n 1|)_{n \in \mathbb{N}}$ est monotone et qu'elle converge vers une limite $\lambda \geq 0$.
- 5. On suppose $\lambda>0$, montrer en utilisant le point 3 que $\lim_{n\to\infty}u_n=2$. Que pensez-vous de ce résultat ?
- 6. En déduire les limites des suites $(|u_n-1|)_{n\in\mathbb{N}}$ et $(u_n)_{n\in\mathbb{N}}$.

Exercice 3. Soit l'expression suivante $f(x) = \ln(\sqrt{x^2 + 1} + x)$.

- 1. Déterminer le domaine de définition de la fonction f.
- 2. Montrer que f est impaire.
- 3. Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.

Exercice 4. Soit $f:[0,+\infty[\to\mathbb{R}])$ une fonction continue avec f(0)>0 et telle que

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \ell < 1.$$

On veut montrer qu'il existe $\alpha > 0$ tel que $f(\alpha) = \alpha$.

- 1. On introduit $g(x) = \frac{f(x)}{x}$ pour $x \in \mathbb{R}_+^*$. Calculer les limites $\lim_{x \to 0^+} g(x)$ et $\lim_{x \to +\infty} g(x)$.
- 2. Montrer qu'il existe 0 < a < b tels que g(a) > 1 et g(b) < 1.
- 3. En déduire qu'il existe $\alpha \in]a,b[$ tel que $g(\alpha)=1$ et conclure.
- 4. Est-ce que le résultat reste en général vrai lorsque $\ell = 1$?