Théorème de Cochran et applications en statistiques

1 Théorème de Cochran

On munit \mathbb{R}^n de sa structure euclidienne canonique.

Théorème 1 (Cochran¹). Soit $X = {}^t(X_1, \ldots, X_n)$ un vecteur gaussien centré réduit. Pour F un sousespace vectoriel de \mathbb{R}^n de dimension p, on note P_F (resp. $P_{F^{\perp}}$) la projection orthogonale sur F (resp. F^{\perp}).

Alors les vecteurs aléatoires P_FX et $P_{F^{\perp}}X$ sont gaussiens indépendants de lois

$$P_F X \sim \mathcal{N}(0, P_F)$$
 et $P_{F^{\perp}} X \sim \mathcal{N}(0, P_{F^{\perp}})$

De plus, les variables aléatoires $||P_FX||^2$ et $||P_{F^{\perp}}X||^2$ sont indépendantes de lois

$$||P_F X||^2 \sim \chi_p^2$$
 et $||P_{F^{\perp}} X||^2 \sim \chi_{n-p}^2$

Remarque 2. Ce théorème est un analogue "en loi" du théorème de Pythagore. L'identité $||x||^2 = ||P_F x||^2 + ||P_{F^{\perp}} x||^2$ (pour $x \in \mathbb{R}^n$) devient en effet dans le contexte du théorème $||X||^2 \stackrel{\mathcal{L}}{=} ||P_F X||^2 + ||P_{F^{\perp}} X||^2$, et on a aussi (surtout!) les lois des 2 termes de la somme.

Démonstration. Le résultat est immédiat si on l'écrit dans une base orthonormée adaptée à la somme directe orthogonale $\mathbb{R}^n = F \oplus F^{\perp}$: soit (u_1, \dots, u_p) (resp. (u_{p+1}, \dots, u_n)) une base orthonormée de F (resp. F^{\perp}), alors $u = (u_1, \dots, u_n)$ est une base orthonormée de \mathbb{R}^n . Notons U la matrice (orthogonale, $U^{\dagger}U = U^{-1}$) de passage de la base canonique à la base U.

Les projections orthogonales sur F et F^{\perp} s'expriment très simplement dans la base u:

$$P_F = UI_p^{\ t}U$$
 et $P_{F^{\perp}} = UJ_{n-p}^{\ t}U$

où I_p est la matrice diagonale avec des 1 sur les p premiers coefficients diagonaux et des 0 ensuite, et $J_{n-p} = \operatorname{Id} - I_p$.

On pose $Y = {}^tUX$. C'est encore un vecteur gaussien centré réduit (car il est de matrice de covariance tU IdU =Id, la loi gaussienne centrée réduite est invariante par rotation), qui correspond aux coordonnées de X dans la base u.

Pour Y, on a immédiatement que $I_pY = {}^t(Y_1, \dots, Y_p, 0, \dots, 0)$ et $J_{n-p}Y = {}^t(0, \dots, 0, Y_{p+1}, \dots, Y_n)$ sont indépendants, de lois $\mathcal{N}(0, I_p)$ et $\mathcal{N}(0, J_{n-p})$, puis que $||I_pY||^2 = \sum_{i=1}^p Y_i^2 \sim \chi_p^2$ et $||J_{n-p}Y||^2 = \sum_{i=p+1}^n Y_i^2 \sim \chi_{n-p}^2$.

On peut alors revenir au vecteur X en remarquant que $P_FX = UI_pY$ et $P_{F^{\perp}}X = UJ_{n-p}Y$ sont gaussiens centrés indépendants de matrice de covariance respective $UI_p^{\ t}U = P_F$ et $UJ_{n-p}^{\ t}U = P_{F^{\perp}}$, puis, comme une transformation orthogonale préserve la norme, que

$$||P_F X||^2 = ||I_p Y||^2 \sim \chi_p^2$$
 et $||P_{F^{\perp}} X||^2 = ||J_{n-p} Y||^2 \sim \chi_{n-p}^2$

¹Je triche un peu, c'est une version simplifiée, donc plus compréhensible mais généralement suffisante en pratique, du théorème de Cochran.

2 Statistique des échantillons gaussiens

Soit (X_1, \dots, X_n) un échantillon de variables aléatoires réelles iid de loi $\mathcal{N}(\mu, \sigma^2)$. On note

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 la moyenne empirique de l'échantillon
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 la variance empirique de l'échantillon

Théorème 3. Les variables aléatoires \overline{X} et S^2 sont indépendantes, et on connait les lois de

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
 ; $(n-1)\frac{S^2}{\sigma^2} = \sum_{i=1}^n \left(X_i - \overline{X}\right)^2 \sim \chi_{n-1}^2$; $\sqrt{n}\frac{\overline{X} - \mu}{S} \sim T_{n-1}$

Remarque 4. On note T_n la loi de Student à n degrés de liberté, qui est par définition la loi de $\frac{X}{\sqrt{Z/n}}$, avec X et Z indépendantes, X de loi normale centrée réduite, Z de loi du chi-deux à n degrés de liberté.

Démonstration. Soit $Y = {}^t(Y_1, \dots, Y_n)$ un vecteur gaussien centré réduit. On notera

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 et $R^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$

On sait que \overline{Y} est de loi normale centrée de variance $\frac{1}{n}$.

Soit $\mathbf{1} = {}^t(1,\ldots,1) \in \mathbb{R}^n$ et $F = \text{Vect}(\mathbf{1})$. Pour tout $y \in \mathbb{R}^d$, on note $\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$. On vérifie immédiatement que $P_F(y) = \overline{y}\mathbf{1}$ car $\overline{y}\mathbf{1} \in F$ et

$$\langle y - \overline{y} \mathbf{1}, \mathbf{1} \rangle = \sum_{i=1}^{n} (y_i - \overline{y}) = 0$$

donc $y - \overline{y} \in F^{\perp}$. On en déduit que $\overline{Y}\mathbf{1} = P_F Y$ et $Y - \overline{Y}\mathbf{1} = P_{F^{\perp}}(Y)$. On peut alors appliquer le théorème de Cochran, en remarquant que F^{\perp} est de dimension n - 1. Ainsi la variable

$$\|Y - \overline{Y}\mathbf{1}\|^2 = \sum_{i=1}^n (Y_i - \overline{Y})^2 = (n-1)R^2 \sim \chi_{n-1}^2$$

et est indépendante de \overline{Y} . On en déduit immédiatement, par définition de la loi de Student, que

$$\sqrt{n}\frac{\overline{Y}}{R} \sim T_{n-1}$$

On sait que $X = {}^{t}(X_1, \dots, X_n) \stackrel{\mathcal{L}}{=} \mu + \sigma Y$, soit aussi

$$\overline{X} \stackrel{\mathcal{L}}{=} \mu + \sigma \overline{Y} \sim \mathcal{N} \left(\mu, \frac{\sigma^2}{2} \right)$$

$$X - \overline{X} \mathbf{1} \stackrel{\mathcal{L}}{=} \sigma (Y - \overline{Y} \mathbf{1}) \in F^{\perp}$$

$$(n-1) \frac{S^2}{\sigma^2} = \frac{1}{\sigma^2} \left\| X - \overline{X} \mathbf{1} \right\|^2 \stackrel{\mathcal{L}}{=} \left\| Y - \overline{Y} \mathbf{1} \right\|^2 = (n-1)R^2 \sim \chi_{n-1}^2$$

$$\sqrt{n} \frac{\overline{X} - \mu}{S} \stackrel{\mathcal{L}}{=} \sqrt{n} \frac{\overline{Y}}{R} \sim T_{n-1}$$

et \overline{X} et S^2 sont indépendantes.

Corollaire 5. La variable aléatoire \overline{X} (resp. S^2) est un estimateur sans biais et convergent de μ (resp. σ^2). De plus, la connaissance des lois de $(n-1)\frac{S^2}{\sigma^2}$ et $\sqrt{n}\frac{\overline{X}-\mu}{S}$ permet de construire des intervalles de confiance pour ces estimations.

3 Modèle linéaire gaussien

Soit $(x_1, ..., x_n)$ des valeurs fixées, et $(Y_1, ..., Y_n)$ un échantillons de variables aléatoires réelles définies par $Y_i = \alpha + \beta x_i + \sigma E_i$ où $(E_1, ..., E_n)$ sont des vaiid gaussiennes centrées réduites.

On peut remarquer que c'est une généralisation du modèle étudié section 2, qui correspond exactement au cas $\beta = 0$ (et $\alpha = \mu$). Ici aussi, le calcul sur les vecteurs gaussiens va permettre de construire des estimateurs et des intervalles de confiance (voire des tests) pour les paramètres du modèle α , β et σ^2 . On note

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

$$B = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) Y_{i}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \qquad A = \overline{Y} - B\overline{x}$$

$$\forall x_{0} \in \mathbb{R}, \ Y_{0}^{\star} = A + Bx_{0} \qquad S^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_{i} - Y_{i}^{\star})^{2}$$

Théorème 6. Les variables aléatoires \overline{Y} , B et S^2 sont indépendantes, et on connait les lois de

$$\overline{Y} \sim \mathcal{N}\left(\alpha + \beta \overline{x}, \frac{\sigma^2}{n}\right) \qquad B \sim \mathcal{N}\left(\beta, \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)
A \sim \mathcal{N}\left(\alpha, \sigma^2\left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)\right) \qquad Y_0^{\star} \sim \mathcal{N}\left(\alpha + \beta x_0, \sigma^2\left(\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)\right)
(n-2)\frac{S^2}{\sigma^2} \sim \chi_{n-2}^2$$

Démonstration. Les deux variables aléatoires \overline{Y} et B sont obtenues par combinaison linéaire des $(Y_i)_{1 \le i \le n}$ gaussiennes indépendantes, donc sont gaussiennes de moyennes $\mathbb{E}(\overline{Y}) = \alpha + \beta \overline{x}$ et $\mathbb{E}(B) = \beta$ et de variances et covariance

$$Var(\overline{Y}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(Y_i) = \frac{\sigma^2}{n}$$

$$Var(B) = \frac{1}{\left(\sum_{i=1}^{n} (x_i - \overline{x})^2\right)^2} \sum_{i=1}^{n} (x_i - \overline{x})^2 Var(Y_i) = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$Cov(\overline{Y}, B) = \frac{1}{n \sum_{i=1}^{n} (x_i - \overline{x})^2} \sum_{i=1}^{n} (x_i - \overline{x}) = 0$$

Comme \overline{Y} et B sont gaussiennes indépendantes, on obtient immédiatement que $A = \overline{Y} - B\overline{x}$ et $Y_0^* = A + Bx_0 = \overline{Y} + B(x_0 - \overline{x})$ sont gaussiennes, ainsi que leur loi.

Soit $\mathbf{1} = {}^t(1, \dots, 1)$ et $x - \overline{x}\mathbf{1}$ deux vecteurs (orthogonaux) de \mathbb{R}^d , et $F = \text{Vect}(\mathbf{1}, x - \overline{x}\mathbf{1})$. Pour tout $e \in \mathbb{R}^d$, on note $\overline{e} = \frac{1}{n} \sum_{i=1}^n e_i$, $b(e) = \frac{\sum_{i=1}^n (x_i - \overline{x}) e_i}{\sum_{i=1}^n (x_i - \overline{x})^2}$ et $e^* = \overline{e}\mathbf{1} + b(e)(x - \overline{x}\mathbf{1})$. On a alors $e^* = P_F(e)$; en effet $e^* \in F$ et, comme $\langle \mathbf{1}, x - \overline{x}\mathbf{1} \rangle = 0$,

$$\langle e - e^{\star}, \mathbf{1} \rangle = \langle e - \overline{e} \mathbf{1}, \mathbf{1} \rangle = 0$$
 et $\langle e - e^{\star}, x - \overline{x} \mathbf{1} \rangle = \langle e, x - \overline{x} \mathbf{1} \rangle - b(e) ||x - \overline{x} \mathbf{1}||^2 = 0$

On peut donc appliquer le théorème de Cochran au vecteur gaussien centré réduit $E = {}^t(E_1, \ldots, E_n)$ pour obtenir que la variable aléatoire $||E - E^*||^2$ suit une loi du chi-deux à n - 2 degrés de liberté et est indépendante de \overline{E} et b(E).

La conclusion est alors immédiate en remarquant que $Y = \alpha + \beta x + \sigma E$, donc $\overline{Y} = \alpha + \beta \overline{x} + \sigma \overline{E}$, $B = \beta + \sigma b(E)$, $Y^* = \alpha + \beta x + \sigma E^*$, et par conséquent $(n-2)\frac{S^2}{\sigma^2} = ||E - E^*||^2$.

Comme dans le cas d'un échantillon gaussien, ce résultat permet de construire des intervalles de confiance centrés en A, B et S^2 pour les paramètres α , β et σ^2 . Je détaille en corollaire la construction d'un intervalle de confiance pour $\alpha + \beta x_0$, qui est la moyenne de la variable aléatoire Y_0 , lorsqu'une valeur x_0 est donnée. Ça donne une région de confiance pour l'estimation de la droite de liaison linéaire, d'équation $y = \alpha + \beta x$, par la droite de régression linéaire, d'équation y = A + Bx.

Corollaire 7. La variable aléatoire

$$\frac{Y_0^{\star} - \alpha - \beta x_0}{S\sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}} \sim T_{n-2}$$

Un intervalle de confiance pour $\alpha + \beta x_0$ *est donné par*

$$\left[Y_0^{\star} - t_{n-2}S\sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}; Y_0^{\star} - t_{n-2}S\sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}\right]$$

où t_{n-2} est le quantile de niveau souhaité de la loi de Student à n-2 degrés de liberté.

Démonstration. On sait que

$$\frac{Y_0^{\star} - \alpha - \beta x_0}{\sigma \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}} \sim \mathcal{N}(0, 1) \qquad (n-2)\frac{S^2}{\sigma^2} \sim \chi_{n-2}^2$$

et que S^2 est indépendante de B et de \overline{Y} , donc de Y_0^* . On peut donc conclure par définition d'une loi de Student.

On peut aussi utiliser la valeur estimée Y_0^* pour prévoir la valeur de $Y_0 = \alpha + \beta x_0 + E_0$ lors d'un tirage futur. Un intervalle de prévision sert à encadrer cette valeur. On utilise pour cela le fait que E_0 est un tirage indépendant de (E_1, \ldots, E_n) , donc

$$Y_0 - Y_0^{\star} \sim \mathcal{N}\left(0; \sigma^2\left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)\right)$$

soit aussi

Corollaire 8. La variable aléatoire

$$\frac{Y_0 - Y_0^2}{S\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}} \sim T_{n-2}$$

Un intervalle de prédiction pour Y₀ est donné par

$$\left[Y_0^{\star} - t_{n-2}S\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}} \; ; \; Y_0^{\star} - t_{n-2}S\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}\right]$$

où t_{n-2} est le quantile de niveau souhaité de la loi de Student à n-2 degrés de liberté.

Remarque 9. Par exemple, pour t_{n-2} tel que $\mathbb{P}(|T_{n-2}| > t_{n-2}) = 0.05$, l'intervalle de prédiction contiendra environ (car Y_0^* n'est qu'une estimation de la vraie moyenne $\alpha + \beta x_0$ au vu des observations précédentes) 95% des tirages de variables indépendantes de même loi que Y_0 .